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[1] A new code for solving radiation belt diffusion equations has been developed and
applied to the 2-D bounce-averaged energy pitch angle quasi-linear diffusion equation.
The code uses Monte Carlo methods to solve Itô stochastic differential equations
(SDEs) which are mathematically equivalent to radiation belt diffusion equations. We
show that our SDE code solves the diffusion equation with off-diagonal diffusion
coefficients in contrast to standard finite difference codes which are generally unstable
when off-diagonal diffusion coefficients are included. Our results are in excellent
agreement with previous results. We have also investigated effects of assuming purely
parallel propagating electromagnetic waves when calculating the diffusion coefficients and
find that this assumption leads to errors of more than an order of magnitude in flux at
some equatorial pitch angles for the specific chorus wave model we use. Further work is
needed to investigate the sensitivity of our results to the wave model parameters.
Generalization of the method to 3-D is straightforward, thus making this method a very
promising new way to investigate the relative roles of pitch angle, energy, and radial
diffusion in radiation belt dynamics.
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1. Introduction

[2] The Earth’s outer radiation belt is very dynamic, and
electron fluxes can vary by several orders of magnitude
during storm times, which makes it very hazardous
to spacecrafts and astronauts [e.g., Baker et al., 1997].
Quasi-linear diffusion theory has been used to evaluate
dynamic changes of particle fluxes in the radiation belts
[Albert, 2004; Albert and Young, 2005; Horne and Thorne,
2003; Horne et al., 2003]. Using the quasi-linear diffusion
theory to model radiation belt dynamics requires at least two
kinds of computations: numerical solution of a diffusion
equation, which is a one-dimensional or multidimensional
Fokker-Planck equation, depending on diffusion processes
we are interested in, and calculation of diffusion coefficients.
[3] Albert [2004] has shown that numerical problems

arise when applying standard finite difference methods to
pitch angle and energy diffusion equations because of
rapidly varying off-diagonal diffusion coefficients. Albert
and Young [2005] developed a method for the 2-D diffusion
equation which diagonalizes the diffusion tensor by trans-
forming to a new set of coordinates and solves the trans-
formed equation by simple finite difference methods. In this

work we introduce another method which uses probabilistic
representations of solutions of Fokker-Planck equations
[Freidlin, 1985; Costantini et al., 1998] via stochastic
differential equations (SDEs), and we develop a 2-D code
for solving pitch angle and energy diffusion equations.
Compared with finite difference methods, the SDE method
has three main advantages. First, the SDE method is very
efficient when solutions on only a small number of points
are desired, particularly when applied to high-dimensional
problems, and it is easy to code and parallelize, with
parallelization efficiency close to one. Second, with the
SDE method, we are able to handle complicated boundary
geometry other than constant-coordinate boundaries (see
section 2.2). Third, generalization of the SDE method to
higher dimensions is straightforward, and we expect the
method to be applicable to general 3-D radiation belt
diffusion equations. For more applications of similar
methods using relations between Fokker-Planck equations
and SDEs, see, e.g., Zhang [1999], Albright et al. [2003],
Alanko-Huotari et al. [2007], Qin et al. [2005], and Yamada
et al. [1998].
[4] Besides solving diffusion equations, correctly calcu-

lating quasi-linear diffusion coefficients is also important
for numerical modeling of the radiation belt dynamics using
quasi-linear theory. Albert [2005] and Glauert and Horne
[2005] have shown full calculations of diffusion coefficients
for cyclotron resonant wave-particle interactions, where up
to n = ± 5 resonances are included. However, the full
calculation of diffusion coefficients is very time consuming.
Summers [2005] derived simplified formulae for coeffi-
cients with a parallel propagation approximation (and hence
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only the n = �1 resonance is included [Albert, 2007]), and
the computation becomes much faster. Shprits et al. [2006]
calculated bounce-averaged pitch angle and energy diffu-
sion coefficients Da0a0 and Dpp with the parallel propaga-
tion approximation for E � 1 MeV particles and compared
them with fully calculated coefficients from the PADIE code
of Glauert and Horne [2005]. They concluded that coef-
ficients for field-aligned waves are close to coefficients for
waves with mildly oblique wave normal angle distribution
from the PADIE code. However, using the wave model
from Horne et al. [2005], we compute particle fluxes and
we show that for E = 2 MeV electrons, Da0a0 and Dpp

calculated with the parallel propagation approximation
produce flux differences of about 1 order of magnitude at
some pitch angles, compared to using fully calculated
coefficients. Furthermore, we show that by including off-
diagonal terms in the calculation, the parallel propagation
approximation also produces large errors in fluxes for both
E = 0.5 MeV and 2 MeV electrons at small pitch angles.
[5] The remainder of this paper is organized as follows.

The SDE method and its numerical implementation are
introduced in section 2. In section 3 we present the
application of the SDE method to a bounce-averaged
radiation belt pitch angle and energy diffusion equation.
After describing the implementation of the SDE method for
the pitch angle energy equation (section 3.1), we show
comparisons between results from the SDE method and the
Albert and Young [2005] transformation method (section 3.2).
Then fluxes calculated from diffusion coefficients with the
parallel propagation approximation [Summers, 2005] are
compared with fluxes computed with coefficients from full
quasi-linear theory [Albert, 2005] (section 3.3).We summarize
our work and discuss future work in section 4.

2. SDE Method

[6] Our SDE code is based on mathematical results which
show that solutions of diffusion equations can be obtained
using an equivalent stochastic process. Thus, we first give a
description of a stochastic process using Itô stochastic
differential equations in section 2.1. Then we show how
these lead to probabilistic representations of solutions of
diffusion equations in section 2.2.

2.1. Itô Stochastic Differential Equations

[7] Stochastic differential equations (SDEs) are used to
describe stochastic processes. They differ from ordinary
differential equations by having terms involving random
variables [Gardiner, 1985; Freidlin, 1985]. A general
m-dimensional SDE with an n-dimensional Wiener process
is written as

dX tð Þ ¼ b X; tð Þ dt þ s X; tð Þ dW tð Þ; ð1Þ

where the m vector X represents an m-dimensional
stochastic process (X1, X2,. . ., Xm). Throughout this work,
stochastic processes are indicated by uppercase characters,
and their values at a given time are represented by
corresponding lowercase characters. The n vector W is
an n-dimensional Wiener process (W1, W2, . . ., Wn) and
dW(t) =W(t + dt)�W(t) [Gardiner, 1985]; an increment of
a one-dimensional Wiener process is proportional to a

Gaussian random number. The m vector b and the m � n
matrixs are coefficients that determine the values ofX(t), they
will be directly related to the coefficients of a corresponding
diffusion equation in section 2.2. Stepping equation (1) in time
generates a random walk trajectory through X space.
[8] Note that SDEs may be formulated using two main

mathematical methods: the Itô method and the Stratonovich
method [Gardiner, 1985]. In this work we use Itô SDEs
because they are directly related to diffusion equations of
interest for the radiation belts and they are mathematically
more convenient [Oksendal, 1992;Freidlin, 1985;Costantini
et al., 1998].

2.2. Probabilistic Representation of Solutions of
Diffusion Equations

[9] To solve a diffusion equation using SDEs, we can first
write the diffusion equation in Fokker-Planck form and then
obtain equivalent ‘‘time-forward’’ SDEs from the diffusion
equation. These time-forward SDEs can then be used to
simulate particle trajectories using a Monte Carlo technique,
and the distribution of particles at any given time can be
obtained by binning particles in phase space. This time-
forward SDE method is presented in Appendix A to show
local effects of off-diagonal terms on the distribution of
particles. Alternatively, in this section we present a ‘‘time-
backward’’ SDE method, where solutions of diffusion
equations are represented by the mean value of a functional
of trajectories of a stochastic process [Freidlin, 1985]. This
is the method used in our current SDE code. Compared with
the time-forward method, the time-backward method is
more efficient when solutions on fewer points are of
interest, and it is better for handling a variety of boundary
conditions.
[10] To introduce the time-backward SDE method, let us

first consider a d-dimensional diffusion equation written as

@f

@t
¼

Xd
i;j¼1

1

2
aij t; xð Þ @2f

@xi@xj
t; xð Þ

þ
Xd
i¼1

bi t; xð Þ @f
@xi

t; xð Þ þ c t; xð Þf t; xð Þ; ð2Þ

with initial and Dirichlet boundary conditions

f 0; xð Þ ¼ g0 xð Þ; x 2 D; ð3Þ

f t; xð Þ ¼ g1 t; xð Þ; x 2 @D: ð4Þ

Here D is the domain of the problem with boundary @D, and
g1(0, x) = g0(x) on @D. Note that @D is not restricted to
constant coordinate surfaces in the SDE method [Freidlin,
1985].
[11] The solution f (x, t) of equation (2) is related to the

following d-dimensional stochastic process:

dX sð Þ ¼ b t � s;Xð Þ dsþ s t � s;Xð Þ dW sð Þ; 0 � s � t; ð5Þ

where X(s = 0) = x and W(s) is a d-dimensional Wiener
process. Here the d � d matrix s is defined by ssT = a.
Note that s is not uniquely determined by this equation, but
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according to Levy’s theorem [Zhang, 1999; Freidlin, 1985],
different choices of s generate equivalent stochastic
processes that yield the same solution of the diffusion
equation (2). Also, note that equation (5) is a time-backward
SDE: at s = 0, we evaluate b and s at time t, while at s = t,
we evaluate b and s at time zero. The solution f (x, t) is then
represented by the stochastic process defined in equation (5)
as

f x; tð Þ ¼ E Fxð Þ; ð6Þ

where E denotes the expectation value and Fx is defined by

Fx ¼
g0 Xjs¼t

� �
exp Y js¼t

� �
; t 
 t;

g1 t � t;Xjs¼t

� �
exp Y js¼t

� �
; t < t;

8<
: ð7Þ

where t has the value of s when the stochastic process X(s)
exits from the boundary @D for the first time and Y(s) is
defined by

Y sð Þ ¼
Z s

0

c t � r;X rð Þð Þdr: ð8Þ

[12] Numerical calculation of f can be constructed easily
from equations (6)–(8). To obtain f (x, t), we sample a
number of trajectories of the stochastic process defined by
equation (5) starting from x and s = 0, using a Monte Carlo
technique. The simulation of a trajectory will stop either by
reaching the initial condition at s = t (where time = 0) or by
reaching the boundary of the domain D at s = t, whichever
comes first, and returns a value defined by equation (7).
Then we use the average of values returned by all trajecto-
ries to approximate f (x, t). This process is repeated if we
want to calculate f at other points.
[13] Now let us also consider a particular type of

Neumann boundary condition that is commonly encoun-
tered in radiation belt diffusion equations:

rf � n ¼ 0; x 2 @1D; ð9Þ

where rf = (@f /@x1, @f /@x2,. . ., @f /@xd), the boundary @1D
is the part of @D with the Neumann condition, and n is the
inward unit normal vector on @1D. General methods for
implementing Neumann boundary conditions in SDE solu-
tions are given by Freidlin [1985] and Costantini et al.
[1998]; here we simply note that condition (9) can be
enforced in our numerical calculation of f (x, t) as follows:
Every time a trajectory reaches the Neumann boundary @1D,
we immediately reflect it about the normal vector n [Bossy et
al., 2004]. This trajectory will later be stopped by either
reaching the initial condition or a Dirichlet boundary, and at
that time the trajectory returns a value defined by equation (7).

3. Application

[14] In this section, we apply the above (see section 2) SDE
method to a bounce-averaged pitch angle and energy diffu-
sion equation [Albert, 2004]. In section 3.1 we derive the
stochastic process used to solve the diffusion equation. In
section 3.2 fluxes calculated using the SDE code are com-

pared with results from Albert and Young [2005] to show that
the SDE code is capable of solving the diffusion equation
with off-diagonal diffusion coefficients. To show the effect of
diffusion coefficients with the parallel propagation approxi-
mation [Summers, 2005] on particle fluxes, we solve the
diffusion equation using these diffusion coefficients and in
section 3.3 the results are compared with those obtained from
fully calculated coefficients.

3.1. Application to Pitch Angle and Energy
Diffusion Equations

[15] We apply the above SDE method to the bounce-
averaged pitch angle and energy diffusion equation written
in equatorial pitch angle and momentum (a0, p)

@f

@t
¼ 1

Gp

@

@a0

G Da0a0

1

p

@f

@a0

þ Da0p

@f

@p

� 	

þ 1

G

@

@p
G Da0p

1

p

@f

@a0

þ Dpp

@f

@p

� 	
; ð10Þ

where Da0a0, Da0p, and Dpp are bounce-averaged pitch
angle, mixed, and momentum diffusion coefficients [Albert,
2004]. HereG is a Jacobian factor,G = p2T(a0) sin(a0) cos(a0),
and T(a0) 
 1.30 � 0.56 sin(a0) is the normalized bounce
period. Initial and boundary conditions are chosen to be the
same as from Albert and Young [2005]. Thus, the initial flux
is j(t = 0) = exp[�(E � 0.2)/0.1][sin(a0) � sin(a0L)], where
the loss cone angle a0L = 5� and flux j is related to phase
space density f by j =f /p2. Boundary conditions are

f ja0¼a0L
¼ 0; ð11Þ

@f

@a0






a0¼90�

¼ 0; ð12Þ

f jE¼Emax
¼ 0; ð13Þ

f jE¼Emin
¼ j t ¼ 0ð ÞjE¼Emin

=p2
min
; ð14Þ

where Emin = 0.2 MeV, Emax = 5 MeV, and pmin is the
momentum corresponding to Emin [Albert and Young,
2005].
[16] To solve the equation using the time-backward SDE

method, we first write equation (10) in the form of (2):

@f

@t
¼ Da0a0

p2
@2f

@a2
0

þ 2
Da0p

p

@2f

@a0@p
þ Dpp

@2f

@p2

þ ba0

@f

@a0

þ bp
@f

@p
; ð15Þ

with

ba0
t;a0; pð Þ ¼ 1

Gp

@

@a0

GDa0a0

p

� 	
þ 1

G

@

@p

GDa0p

p

� 	
; ð16Þ

bp t;a0; pð Þ ¼ 1

Gp

@

@a0

GDa0p

� �
þ 1

G

@

@p
GDpp

� �
: ð17Þ
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Thus, the two-dimensional stochastic process defined in
equation (5) becomes

dA0 sð Þ ¼ ba0
t � s;A0;Pð Þ dsþ s11 dW1 þ s12 dW2; ð18Þ

dP sð Þ ¼ bp t � s;A0;Pð Þ dsþ s21 dW1 þ s22 dW2; ð19Þ

with A0(s=0) = a0 and P(s=0) = p. Then, because of the
Neumann boundary condition at a0 = 90�, we numerically
reflect A0 with respect to a0 = 90� if it is larger than 90�.
Here components of the matrix s are defined by

s11 s12

s21 s22

2
4

3
5 s11 s21

s12 s22

2
4

3
5 ¼

2Da0a0
=p2 2Da0p=p

2Da0p=p 2Dpp

2
4

3
5: ð20Þ

[17] In this work, we choose s12 = 0 for simplicity and
then the other components are

s11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Da0a0

p
=p; ð21Þ

s21 ¼
ffiffiffi
2

p
Da0p=

ffiffiffiffiffiffiffiffiffiffiffi
Da0a0

p
; ð22Þ

s22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dpp � s2

21

q
; ð23Þ

where we have used the fact that Da0a0 is never zero in
equation (22).
[18] We have developed a 2-D SDE code to solve the

diffusion equation (10) where SDEs (18) and (19) are

integrated using the Euler-Maruyama method [Kloeden
and Platen, 1992]:

A0 snþ1ð Þ ¼ A0 snð Þ þ ba0
t � sn;A0 snð Þ;P snð Þ½ �Ds

þ s11 snð ÞDW1 þ s12 snð ÞDW2; ð24Þ

P snþ1ð Þ ¼ P snð Þ þ bp t � sn;A0 snð Þ;P snð Þ½ �Ds

þ s21 snð ÞDW1 þ s22 snð ÞDW2: ð25Þ

Here DW =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
snþ1 � sn

p
N(0, 1), where N(0, 1) is a standard

Gaussian random number with zero mean and unit variance
generated using the Box-Muller algorithm [Press et al.,
2002]. Because the original time-backward SDE method
requires fresh samples of trajectories for every different (a0,
p) and traces trajectories back to the initial condition or to a
boundary every time, the current SDE code is less efficient
when solutions on many grid points for long times are
needed. Improving the efficiency of the SDE code is one of
tasks in our future work. In this work, we mainly want to
show that the method can be used to solve multidimensional
diffusion equations. Results from the SDE code are compared
with those of Albert and Young [2005] in section 3.2.

3.2. Comparisons With Results of
Albert and Young [2005]

[19] Albert and Young [2005] solve the diffusion
equation (10) by first transforming to new coordinates
which diagonalize the diffusion tensor and then applying
standard finite difference methods to the transformed diffu-
sion equation. The bounce-averaged diffusion coefficients
Da0a0, Da0p, and Dpp for storm time chorus waves were
calculated at L = 4.5, with computational methods of Albert
[2005]. The wave model used to calculate diffusion coef-
ficients is described by Horne et al. [2005] and Albert and
Young [2005]; the wave magnetic field is given by B2

w =
B2(w)gw(tanq), where the wave power spectral density
B2(w) and the wave normal angle (tanq) distribution func-
tion gw(tanq) are truncated Gaussian functions defined
between lower and upper frequency cutoffs (wLC < w <
wUC) and wave normal angle cutoffs (qLC < q < qUC). The
latitudinal distribution of the waves and the ratio of electron
plasma frequency (fpe) to electron cyclotron frequency (fce)
are the same as those used by Horne et al. [2005] and Albert
and Young [2005] and are shown in Table 1. Similar models
were used by Li et al. [2007]. Up to n = ±5 resonance
harmonics were included in the calculation. The calculated
diffusion coefficients Da0a0 are proportional to (pDa0)

2 /
Dt, as from Lyons [1974a, 1974b] and are divided by p2 to
give the inverse time scales plotted in Figure 1.
[20] Using the above diffusion coefficients in equation (10),

we obtain fluxes for E = 0.5 MeV and 2.0 MeV electrons
with a0 ranging from 6� to 88� with 1� spacing at t = 0.1
and 1 day. We have sampled N = 9000 trajectories at each
a0 for E = 0.5 MeV and N = 18000 trajectories for E =
2.0 MeV with dt = 0.0004 day. The chosen dt gives small
relative change in a0 and E per step, compared with scales
of the diffusion coefficients and initial phase space density.
Our choices of N and dt might not be optimal, and choosing
N adaptively is probably better (G. Cunningham, personal
communication, 2007). Results from the SDE code are

Figure 1. Da0a0/p
2, Dpp/p

2, and |Da0p|/p
2: inverse time

scales in units of s�1 from diffusion coefficients of Albert
and Young [2005]. Also shown is the sign of the cross
diffusion coefficients.(Reprinted from Albert and Young
[2005].)
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compared with those of Albert and Young [2005]. Figure 2
shows the comparisons for E = 0.5 MeVelectrons (Figure 2,
top) and E = 2.0 MeV electrons (Figure 2, bottom), with
results from the SDE method smoothed using a six-point
moving window average in a0 with Da0 = 1�. Within small
numerical errors associated with each of the methods, the
two sets of results are in excellent agreement, and they
demonstrate that our SDE code is able to successfully solve
the bounce-averaged pitch angle and energy diffusion
equation.
[21] To show the effects of ignoring off-diagonal terms on

change of flux, we rerun the SDE code, setting off-diagonal
diffusion coefficients to zero. Results are shown in Figure 3

for 0.5 MeV (Figure 3, top) and 2 MeV (Figure 3, bottom)
electrons. From Figure 3 we see that for 0.5 MeV electrons,
while there is a relatively small effect at large pitch angles,
ignoring off-diagonal terms overestimates electron fluxes at
small pitch angles by a factor of 2 to �5 at t = 1 day. For
2 MeV electrons, ignoring off-diagonal terms overestimates
fluxes by a factor of 5 to �10 at t = 1 day, with larger errors
at smaller pitch angles. Thus, off-diagonal terms are more
important for 2 MeV electrons. We emphasize that these
results are for the Horne et al. [2005] wave model, and we
note that the peak in flux of 2 MeV electrons near 30� may
be related to the cutoff in wave power at 35� latitude in the
Horne et al. [2005] model (see discussion in section 4).

3.3. Effects of Parallel Propagation Approximation

[22] Summers [2005] and Summers et al. [2007a, 2007b]
have derived cyclotron resonance diffusion coefficients for
field-aligned waves, where only the n = �1 resonance is
included (henceforth denoted by Dk). This assumption of
parallel propagation greatly improves the computation
efficiency. Bounce-averaged Dk are given and compared
with diffusion coefficients obtained from the PADIE code

Table 1. Latitudinal Distribution of the Waves and fpe/fce of the

Wave Model [Horne et al., 2005] Used to Calculate Diffusion

Coefficients

Local Time Sector

2300–0600 MLT 0600–1200 MLT 1200–1500 MLT

fpe/fce �3.4 to 2.5 �3.0 to 0.9 �5.9 to 1.4
Latitudinal range 0� to 15� 15� to 35� 10� to 35�

Figure 3. Fluxes for (top) E = 0.5 MeV and (bottom) E =
2.0 MeV at t = 0.1 day (blue lines) and t = 1 day (red lines)
with and without off-diagonal diffusion terms. Dashed lines
are results without off-diagonal diffusion coefficients, and
solid lines are results with off-diagonal terms.

Figure 2. Comparisons between results obtained from the
SDE method (solid lines) and the Albert and Young [2005]
method (dashed lines) for (top) E = 0.5 MeV and (bottom)
E = 2.0 MeV at t = 0.1 day (blue lines) and t = 1 day (red
lines). Here black lines show the initial condition.
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[Glauert and Horne, 2005] by Shprits et al. [2006]. In the
present work, we also calculate Dk using the methods of
Albert [2005] with the same wave parameters as the wave
model described in section 3.2, except that qLC = qUC = 0.
The resulting diffusion coefficients are the same as those
obtained from the PADIE code and are half of those given
by Summers et al. [2007a] (this factor of 2 difference is
discussed by Albert [2007]).
[23] Figure 4 shows inverse time scales from diffusion

coefficients with the parallel wave approximation. Com-
pared with Figure 1, we see that the general behavior of Dk

is quite good, with larger differences for E > 1 MeV
electrons. The off-diagonal terms of Dk are worse
approximations than the diagonal terms, with details
discussed by Albert [2007].
[24] To compare effects of Dk with fully calculated

diffusion coefficients D, we solve equation (10) for 0.5 MeV
and 2 MeV electrons using the following four sets of
diffusion coefficients: (1) Dk, (2) diagonal terms of Dk

(hereinafter referred to as Dd
k ), (3) D, and (4) diagonal terms

of D (hereinafter referred to as Dd). Results are shown in
Figures 5–7.
[25] Figure 5 (top) shows the comparison between fluxes

calculated using Dd
k and Dd for 0.5 MeV electrons. We see

that results from Dd
k agree very well with Dd, with slight

differences for a0 greater than about 40�. Figure 5 (bottom)
shows the same comparison for 2.0 MeV electrons from
which we see that the flux from Dd

k is smaller than that from
Dd by up to �5 orders of magnitude at low a0 (<15�) at t =
1 day. This behavior occurs because Dd

k underestimates
energy diffusion coefficients for high-energy particles at
small pitch angles, where n 6¼ �1 resonances also make a
significant contribution. Thus, Dd

k produces larger differ-

ences in fluxes for 2 MeV electrons than 0.5 MeV at small
a0 compared with Dd.
[26] Figure 6 shows comparisons between fluxes calcu-

lated using Dd
k and D for 0.5 MeV electrons (Figure 6, top)

and 2 MeV electrons (Figure 6, bottom). Figure 6 (top)
shows that Dd

k overestimates increase of flux at small pitch
angles for 0.5 MeVelectrons, which is expected, because Dd

k

yields very similar flux increases as Dd for 0.5 MeV
electrons. For 2.0 MeVelectrons, fluxes from Dd

k are smaller
than that from D for a0 ] 18� and larger for a0 ^ 18� at t =
1 day (where the difference can be about 1–2 orders of
magnitude).
[27] Fluxes calculated from Dk and D (i.e., with off-

diagonal terms included) for 0.5 MeV and 2 MeV electrons
are shown in Figure 7 (top) and Figure 7 (bottom),
respectively. Reasonable agreement between Dk and D
fluxes is obtained for a0 ^ 50�, but significant differences
occur at smaller pitch angles. For 0.5 MeV electrons, Dk

underestimates increases of flux at t = 1 day by approxi-
mately an order of magnitude for a0 < 20�. For 2.0 MeV
electrons, behavior of Dk is worse at t = 1 day. We see from
Figure 7 (bottom) that Dk underestimates increases of flux

Figure 4. Same as Figure 1, except that diffusion
coefficients are calculated with the parallel propagation
approximation.

Figure 5. Comparisons between results obtained from
diffusion coefficients Dd

k (dashed lines) and Dd (solid lines)
for (top) E = 0.5 MeV and (bottom) E = 2.0 MeV at t = 0.1
day (blue lines) and t = 1 day (red lines).
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by � 1–4 orders of magnitude for 10� ] a0 ] 35�. Thus,
the approximation of parallel propagation produces larger
differences at small pitch angles for higher-energy particles,
especially when off-diagonal terms are included.

4. Summary and Discussion

[28] In this work a new code, based on the mathematical
theory of expressing solutions of diffusion equations in
terms of related stochastic processes, has been developed
for solving multidimensional radiation belt diffusion
equations. Two examples are used to show its applications.
[29] First, we apply the SDE code to a bounce-averaged

pitch angle and energy diffusion equation and obtain
excellent agreement with a previously developed method
[Albert and Young, 2005]. We also confirm that ignoring
off-diagonal terms in the diffusion equation overestimates
increase of flux, especially at small pitch angles, at t = 1 day
(by a factor of 2 to �5 for 0.5 MeV, and 5 to �10 for 2 MeV
electrons) using the Albert and Young [2005] diffusion
coefficients.
[30] Second, by solving the bounce-averaged pitch angle

and energy diffusion equation using fully calculated diffu-

sion coefficients D [Albert and Young, 2005] and coeffi-
cients with the parallel propagation approximation Dk

[Summers, 2005; Summers et al., 2007a, 2007b], both
calculated using the chorus wave model of Horne et al.
[2005], we show that diagonal diffusion coefficients of Dk

agree well with those of D only for low-energy particles
(e.g., E=0.5 MeV). For high-energy electrons, the difference
between the diagonal terms of Dk and D produces large
differences in fluxes at some pitch angles (difference of up
to 5 orders of magnitude for 2 MeVelectrons at a0 ] 15�, at
t = 1 day). By including off-diagonal diffusion coefficients
in our calculation, we show that the off-diagonal terms of
Dk can produce differences in fluxes of 4 orders of
magnitude for 2 MeV electrons at t=1 day. A discussion
of the details of different diffusion coefficients and another
approximation for a full calculation of diffusion coefficients
are presented by Albert [2007].
[31] Note that the above conclusions on the magnitude

and location of differences that occur by omitting off-
diagonal terms and assuming parallel propagating waves
are very likely to be dependent on the wave model used. For
example, a different latitudinal distribution of wave power
may result in different diffusion coefficients and thus

Figure 6. Comparisons between results obtained from
diffusion coefficients Dd

k (dashed lines) and D (solid lines)
for (top) E = 0.5 MeV and (bottom) E = 2.0 MeV at t =
0.1 day (blue lines) and t = 1 day (red lines).

Figure 7. Comparisons between results obtained from
diffusion coefficients Dk (dashed lines) and D (solid lines)
for (top) E = 0.5 MeV and (bottom) E = 2.0 MeV at t =
0.1 day (blue lines) and t =1 day (red lines).
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different conclusions. The sensitivity of our results to wave
models needs further study. However, before such work is
done, it is safer to include both off-diagonal terms and
oblique waves in calculations of electron flux.
[32] The SDE method is less efficient when solutions on

many grid points are desired. However, when parallel
computers are available, computation time can be greatly
reduced because of high parallelization efficiency. General-
ization to 3-D including pitch angle, energy, and radial
diffusion is straightforward. The SDE method is very
promising for providing new insights into the relative roles
of local acceleration and radial diffusion as acceleration
mechanisms and the importance of pitch angle diffusion as a
loss process.

Appendix A: Time-Forward SDE Method

[33] To use the time-forward SDE method, we first set
F = Gf and write the bounce-averaged pitch angle and
energy diffusion equation (10) in the following form:

@F

@t
¼ @2

@a2
0

Da0a0

p2
F

� 	
þ 2

@2

@a0@p

Da0p

p
F

� 	

þ @2

@p2
DppF
� �

� @

@a0

ba0
Fð Þ � @

@p
bpF
� �

; ðA1Þ

where ba0 and bp are defined in equations (16) and (17).
Thus, the time-forward stochastic differential equations
corresponding to equation (A1) are [ Alanko-Huotari et al.,
2007; Yamada et al., 1998; Qin et al., 2005]

dA0 tð Þ ¼ ba0
t;A0;Pð Þ dt þ s11 dW1 þ s12 dW2; ðA2Þ

dP tð Þ ¼ bp t;A0;Pð Þ dt þ s21 dW1 þ s22 dW2; ðA3Þ

where components of the matrix s are also defined by
equations (21)–(23).

[34] Equations (A2) and (A3) are solved to give changes
of particle coordinates (a0, p). Thus, after a given time
period, the distribution of electrons can be obtained. Here
we choose a time period short enough to ignore boundary
effects. To explore local effects of off-diagonal diffusion
coefficients on distributions of particles, we release 9000
particles from a0 = 30�, E = 1 MeV, where Da0p is positive,
and a0 = 50�, E = 3 MeV, where Da0p is negative. We obtain
the distribution of particles shown in Figure A1 after t = 0.06
day for E = 3 MeVand t = 0.01 day for E = 1 MeV. We also
turned off-diagonal diffusion coefficients on and off to show
local effects of ignoring off-diagonal terms. Figure A1 (left)
has Da0p 6¼ 0, and Figure A1 (right) has Da0p = 0. We see
from Figure A1 that without Da0p , the local distribution of
particles has a shape of an ellipse, while with Da0p this
ellipse is tilted, and the tilt direction is determined by the
sign of Da0p. With Da0p positive (as for the a0 = 30�, E = 1
MeV case) the ellipse tilts clockwise, and with Da0p negative
(a0 = 50�, E = 3 MeV), the ellipse tilts counterclockwise.
These results are consistent with previous analytical results
using Green functions [Albert and Young, 2005].
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