
Design and Evaluation of a Utility-based Caching

Mechanism for Information-centric Networks

Aifang Xu Xiaodong Tan Ye Tian∗

School of Computer Science and Technology

University of Science and Technology of China, Hefei, Anhui 230026, China

Email: {xaf, xdtan}@mail.ustc.edu.cn, yetian@ustc.edu.cn

Abstract—Information-centric networking (ICN) is one
promising direction for the future Internet, and how to manage
the in-network caching resources is a fundamental problem in
ICN. In this paper, we address the problem by proposing a
utility-based caching mechanism. In the mechanism, network
nodes track the utilities of the contents that they have ever
cached, and en-route nodes cooperate to make the caching
decisions. For enabling the utility tracking, we introduce a novel
component named Tracking Store in ICN routers, and develop
two methodologies for implementing this component based on
dynamic LRU queue and time-decaying Bloom filter (TBF).
Through analysis and extensive simulations using real-world
topologies, we show that at a sustainable router overhead, our
proposed mechanism, with both of its implementations, achieves
a superior caching performance than existing solutions under
various content popularity scenarios. We also explore the inherent
tradeoff of the mechanism, and provide guideline for its real-
world deployment.

I. INTRODUCTION

With information becoming the first-class citizen on the

Internet, a number of information-centric network (ICN) archi-

tectures, such as DONA [1], CCN [2], and COMET [3], have

been proposed in recent years. Using CCN [2] as example, we

briefly describe the basic idea of ICN. In CCN, a content object

is divided into equal-sized chunks, and each chunk has an

URL-like name that is globally unique. When a router receives

a chunk requesting message (named Interest in CCN), it looks

up its Forwarding Information Base (FIB) using the chunk

name, and forwards the request towards the content servers.

After that, the request is kept in router’s Pending Interest Table

(PIT), until the corresponding content chunk traverses the node

along the reverse path or timeout. However, when the router

has already cached the chunk in its local Content Store (CS),

it can directly respond the request with its local cached replica

and drop the request.

Unlike the conventional forwarding-only network, caching

is pervasively applied in ICN, where many content requests,

especially the ones for the popular contents, can be answered

by routers rather than the content servers. With such a perva-

sive in-network caching, how to manage the caching spaces on

the network nodes becomes one of the fundamental problems

in ICN study.

∗Correponding author
This work was supported by the National Natural Science Foundation of

China (No. 61202405) and the sub task of the Strategic Priority Research
Program of the Chinese Academy of Sciences (No. XDA06010302).

There exist two paradigms in the ICN cache management,

namely the en-route caching (e.g., [2], [4], and [5]) and the

collaborative caching (e.g., [6] and [7]). In en-route caching,

only the nodes along the path between the content origin (i.e.,

content server or the router that answers the content request

using its locally cached replica) and the content requesting

client are considered as candidates for caching the replica.

On the other hand, in collaborative caching, nodes from

the entire network can be the candidates, and these nodes

explicitly exchange messages to make the caching decisions

in a collaborative way. Comparing with en-route caching,

collaborative caching may lead to a higher cache hit ratio

since more nodes are involved; however, the merit of en-

route caching is its simplicity, which is very desirable for the

practical deployment in high-speed networks.

The original CCN network proposal [2] adopts en-route

caching and employs a “leave a copy everywhere” (LCE)

strategy. In LCE, the network caches a replica of the content

on every router along the content’s traversing path. However,

studies [4][5] shows that by caching duplicate replicas, LCE

indeed wastes the precious storage space on routers and

degrades the network’s caching performance.

On the other hand, recent works propose to keep only one

replica at a carefully selected position on the content traversing

path, so as to avoid the redundancy and promote the usefulness

of the cached replica. There are two representative approaches:

one is to “keep the replica close to the content origin”.

For example, the “leave a copy down” (LCD) strategy [8]

which is originally proposed for multi-level cache in computer

architecture, has been considered to apply under the context

of ICN recently [9]. In LCD, one replica is cached at the node

that is immediately downstream from the node that answers the

content request. The rationale behind LCD is that since content

requests from all over the network will be multiplexed at the

nodes that are close to the origin, then by caching contents at

these positions, the network will be more likely to intercept

these requests.

The other representative approach is to “keep the replica

at important positions”. For example, in the topology-aware

caching strategy (referred to as TA for short) proposed in [4],

a replica is cached at the node that has the largest betweenness

centrality along the path. The TA strategy also has its rationale,

that is, by keeping replicas at the important positions, a higher

cache hit ratio could be expected.



In this paper, we focus on the en-route caching paradigm,

and propose a utility-based caching mechanism for ICN net-

works. Unlike the existing solutions that are based on the

metrics such as the distance from the content origin (as in

LCD) and the betweenness centrality (as in TA), which only

indirectly reflect the usefulness of the content replica, in our

proposed mechanism, we allow a router to directly measure

the utility of a content replica that it has ever cached, and

after the replica has been evicted, the router will still track the

content’s utility for some time. When a new replica of the same

content needs to be cached on the network, the content origin

collects the utilities of the content that are tracked by the nodes

along the path, and uses the information to make the caching

decision. To fulfill the utility-based caching mechanism, we

make the following efforts in this paper:

• We introduce a novel component named Tracking Store

(or TS for short) in ICN routers for enabling the router

to track the content utilities; we also extend ICN’s basic

content request and response messages to piggyback the

utility information tracked by the en-route nodes, and

assist the network to make the caching decision based

on the utilities.

• We develop two methodologies based on dynamic LRU

queue and time-decaying Bloom filter (TBF) to imple-

ment the TS component, and we analyze the overheads

on routers that are incurred by our proposed caching

mechanism.

• We extensively evaluate our proposal using real-world In-

ternet topologies, and find that our proposed mechanism,

with both of its implementations, outperforms its existing

solution counterparts; we explore the mechanism’s inher-

ent tradeoff, and provide guideline for deploying it in real

world.

The remainder part of this paper is organized as follows:

In Section II, we propose the utility-based caching mecha-

nism, present its implementing methodologies, and analyze its

overheads; In Section III, we evaluate the performance of our

proposal and compare it with existing solutions; We conclude

this paper in Section IV.

II. UTILITY-BASED CACHING MECHANISM

A. The Basic Design

We first describe the basic idea of the utility-based en-route

caching mechanism. We assume that our proposed mechanism

is working on a typical ICN network as in [2], where each

router employs a Content Store (CS) to cache the chunk

replicas.

1) The Tracking Store component: In our proposed mech-

anism, for each chunk replica cached by an ICN router in

the CS component, in addition to its name and the content

data, the router also keeps a counter named hit to indicate

how many times this replica has been hit since it was cached.

For example, for a newly cached replica, its initial hit value

is the number of the arrival interfaces of the corresponding

content request in PIT minus one, and if the router uses

������� �����

��

	�
���� �����

������������

������������

������������

������������

��

���������������

���������������

���������������

��� !

"����� "����������#��

��#��

��#��

��#��

��

"�#��"�����

�$%�&! '

()*+!�

"�����

*�% +&*

"��,-./

���,-./

���,-./

���,-./

��

Fig. 1. The Tracking Store (TS) component

its locally cached replica to respond a content request, the

replica’s associated hit value will be incremented by one.

In addition to CS, in each ICN router we introduce a

new component named Tracking Store (or TS for short). As

demonstrated in Fig. 1, TS employs an LRU queue where each

entry tracks the utility of a content that the router has ever

cached and evicted from CS. More specifically, each entry in

TS a <key: value> pair as < name : (utility, tlast) >, where

name is the name of the content under track, utility is a non-

negative value indicating how useful if the content is cached

on this router, and tlast is the latest time that the entry was

updated. Note that each entry in TS only keeps the metadata

such as the name and utility value of the content without

storing the actual content data, therefore a router would be

able to track much more contents in TS than it is capable to

cache in its CS component. A more detailed analysis on the

storage overhead of the TS component can be found in Section

II-B3.

As we can see in Fig. 1, when a replica of a content, say

content x, is evicted from CS, the ICN router examines the

replica’s associated counter x.hit, if x.hit > 0, suggesting

that this replica has been hit at least once, the router inserts

or updates x’s corresponding entry in TS as follows: the

router first looks up TS using the content’s name x.name,

if there is no entry for it, the router directly uses x.hit
as x’s utility, i.e., x.utility = x.hit, and inserts an entry

like < x.name : (x.utility, tcur) > at the head of the

LRU queue in TS, where tcur is the router’s current local

time; On the other hand, if there already exists an entry as

< x.name : (x.utility, tlast) > in TS, the router updates x’s

utility using the following equation:

x.utility =

{

x.hit, If x.utility × ρtcur−tlast < x.hit

α× x.hit+ (1− α)× x.utility × ρtcur−tlast , Else
(1)

where α (0 < α < 1) is the weight of the hit times of the

newly evicted replica in utility, and ρ (0 < ρ < 1) determines

how utility decays over time. Equation (1) suggests that x’s

utility value is indeed an exponential weighted moving average

of the hit times of all the content x replicas that have ever

been cached by the router; however, if the updated utility is

smaller than the hit times of the newly evicted replica, i.e.,

x.hit, the router directly uses x.hit as the utility value without

calculating the moving average.



Algorithm 1 Utility update algorithm

1: procedure UPDATE UTILITY(x)
2: ⊲ x is a newly evicted replica from CS
3: if x.hit > 0 then
4: if Entry of x.name exists then
5: Update x’s utility using Equation (1);
6: Move the updated entry to the TS queue head;
7: else
8: x.utility ← x.hit;
9: Insert a new entry < x.name : (x.utility, tcur) > at

the TS queue head;
10: end if
11: end if
12: end procedure

After computing the utility value, the router removes the old

entry and places a new entry with the updated utility value as

< x.name : (x.utility, tcur) > at the head of the LRU queue

in TS. Algorithm 1 presents a formal description of the utility

update algorithm.

2) Making caching decisions: With each ICN router

equipped with a TS component, which enables it to track

utilities of the contents it has ever cached, we show how the

network can employ such a tracking capability to make the

caching decisions. Consider an example in Fig. 2, where a

client connecting to node v1 sends out a request for content

x, the requesting message is forwarded along the path towards

the content origin (i.e., the content server s). For each router

on the path, in addition to forward the request message,

the router also looks up its TS using x.name, and if there

exists an entry < x.name : (x.utility, tlast) >, the router

decays x’s utility value in the entry with current time tcur
as x.utility × ρ(tcur−tlast), and attaches the decayed utility

value together with the router ID to the message, as we can

see in Fig. 2; In case that no entry for content x is found,

the router simply forwards the request without attaching any

utility information.

After the content origin s receives the content request, it

also receives with the message an array of the utilities from

all the routers along the path. The content origin makes the

caching decision based on the utilities. In this paper, we allow

the content origin to select the router with the highest utility

value, for example, node vk−1 in Fig. 2, to cache the replica.

The caching decision can be piggybacked to the chunk that is

sent towards the requesting client along the reverse path.

B. Implementation

1) Determining dynamic LRU queue size: In the above

description of the utility-based caching mechanism, we employ

an LRU queue to implement the TS component. It is very

necessary to determine an appropriate size of the queue: If the

queue is too small, the network may not be able to make proper

caching decisions, as only limited number of the contents

can be tracked; on the other hand, if the queue is too large,

precious storage spaces on ICN routers are wasted. Following

we present a methodology for dynamically determining the

LRU queue size in the TS component.

01 0123 04 03
5

67897:;

<= >?@A@?BCDEF

67897:;

<= >?@A@?BCDEF

<GH= >?@A@?BCIEJ

K K

67897:;

<= >?@A@?BCDEF

<GH= >?@A@?BCIEJ

K K

<G >?@A@?BCDEL

MN9OP

MQRN7 Q; <GS=

MN9OP

MQRN7 Q; <GS=

MN9OP MN9OP

RQRN7
N7T7

Fig. 2. A example of caching decision made based on content utilities that
are piggybacked on ICN’s chunk request and response messages

For each ICN router, it keeps a global variable named umax,

which records the largest utility value the router has observed

during a recent period of time. We also define a threshold umin

for the “useless” content, that is, for any content tracked by a

router, if its utility becomes less than umin, we consider it as

useless and no longer needs to be tracked. For the LRU queue

in TS, when an entry with a utility value of umax is placed at

the head of the queue, according to Equation (1), the time it

takes for umax to be decayed to as small as umin is

tmax = logρ umin − logρ umax

where ρ is the decaying factor.

Suppose that each time an entry is placed at the head of

the LRU queue, we consider it as a “new” entry, and we

suppose that an entry will not be evicted from TS until it

becomes useless, then tmax can be considered as an optimistic

estimation of the lifetime that an entry can stay in TS. Let λTS

be the rate that entries are placed at the LRU queue head,

regardless whether they are updated from existing entries or

newly inserted, then by Little’s law, an optimistic estimation

of the LRU queue size is

L = λTS × tmax = λTS × (logρ umin − logρ umax) (2)

We dynamically adjust a node’s TS queue size as the

following: each ICN router monitors the rate λTS that entries

are placed at the LRU queue head, and it also records the

maximum utility umax it has observed in a recent time

window; periodically, the node applies Equation (2) to adjust

its LRU queue size.

From Equation (2) we can see that the smaller the decaying

factor ρ is, the shorter the LRU queue will be. However, there

is a price, as we will see in Section III-D, a smaller ρ value

will lead to a lower cache hit ratio of the network.

2) A Time-decaying Bloom filter implementation: For fur-

ther reducing the storage usage when tracking a large number

of contents, we propose a methodology based on the time-

decaying Bloom filter (TBF) [10][11] to implement the TS

component. As demonstrated in Fig. 3, the TBF-based TS is

implemented as an array b[1 · · ·m] of m cells, where each

cell contains a non-negative value representing the utility of

the content that is mapped to the cell.

The mapping between the content names and the TBF cells

are determined by k hash functions: H1, H2, . . . , Hk. More



UVW XVX WVX XVUU UVW UVY XVZ UVW WVX XVX

[\]^_` a\]^_`

WVX

UVXZ XVX UVZ X UVZ UVbc XVYW UVXZ UVZ XVX

defgh

ijUk ijWk ijck ijlk ijbk ijmk ijYk ijZk ijnk ijUXk

opqrs

tuvwpqrx

Fig. 3. Demonstration of a time-decaying Bloom filter for TS implementation

specifically, when a content x’s utility is inserted in TS, for all

the cells with their indices as H1(x.name), H2(x.name), . . . ,

Hk(x.name), their values will be set as the content’s utility,

that is, for i = 1, . . . , k, we have b[Hi(x.name)] = x.utility.

Moreover, a cell’s value will be overwritten by a new content if

the content has a different utility value and its name is hashed

to the same cell. For example in Fig. 3, b[5] is first set by

content x with its utility value 1.2, but when the Bloom filter

is updated by another content y, b[5] is changed to 2.0, which

is y’s utility value.

In our TBF-based TS, cells decay over time. After each

time interval, a cell’s value is decayed with the decaying

factor ρ (0 < ρ < 1), that is, for ∀j, b[j] is decayed to as

b[j] ← ρ × b[j]. Moreover, when a cell’s value becomes less

that umin, which is the “useless” threshold, it is cleared to

zero. For example in Fig. 3, after the decaying, cell b[4] is

cleared. Finally, to query a content’s utility in the TBF-based

TS, we use the minimum value of all the cells that the content

is mapped to. That is, for content x, the TBF-based TS returns

its utility value as x.utility = mini=1,··· ,k (b[Hi(x.name)]).

There are two errors that could be introduced by TBF. One

is the Bloom filter’s inherent false positive error, that is, the

TBF may return a non-zero utility for a content that is not

tracked by TS. The other error is that the queried utility value

may be smaller than the real one, as we use the minimum

value among all the cells to return the query. We will discuss

the influence of the TBF errors in Section III-E.

3) Overhead discussion: We analyze the storage and com-

munication overheads that are incurred by our proposed

caching mechanism on routers.

Storage overhead We first look at the TS implementation

based on the dynamic LRU queue. According to [12], for

the LRU-based TS, its hash table would consume 136n bits,

where n is the number of the entries in TS, and if we use

16 bits to represent a utility value, and 32 bits for storing the

latest update time, then the total memory space required is

MemLRU−TS = (136+ 16+ 32)n = 184n bits. Considering

a typical chunk size of 10K bytes [9], we can see that the

storage overhead for tracking a content is 184
8×10K ≈ 0.22% of

the cost for caching it; and if we implement the TS component

on a 16M SRAM chip, a single chip is capable to track the

content chunks of a total size of 6.96 gigabytes.

We then show that the storage overhead can be fur-

ther reduced with a TBF-based implementation. Note that

in TBF, the memory required for tracking n contents is

MemTBF−TS = −16
n ln pfp

(ln 2)2 ≈ −33.3(ln pfp)n bits, where

pfp is the Bloom filter’s false positive probability [10]. Com-

paring with MemLRU−TS , we can see that, as long as pfp is

larger than 0.4%, the TBF-based TS implementation would be

more storage-efficient with MemTBF−TS ≤MemLRU−TS .

Communication overhead By piggybacking on ICN’s

content request and response messages, our proposed caching

mechanism incurs additional communication overheads. For

example, if we use the MAC address as the router ID and

use 16 bits for a utility value, then each router will attach at

most 54 bits on the content request message. We believe the

overhead is not significant for two reasons: First, it is reported

that the Internet’s averaged path length in terms of ASes is

less than four and exhibit a decreasing trend [13]; Second,

with the pervasively deployed in-network caching capacity,

many contents can be served by routers, thus the distance

between the content requester and the content provider will

be significantly reduced on ICN.

III. PERFORMANCE EVALUATION

In this section, we evaluate the utility-based caching mech-

anism with simulation-based experiments. We employ real-

world topologies of large ISPs in our evaluation, and compare

our proposal with existing solutions of LCE [2], LCD [8], and

TA [4] as introduced in Section I.

A. Simulation Setup

In our simulation, we use the PoP-level topologies of two

large ISPs: one is Cogent in Europe and North America, which

we download its topology containing 180 nodes and 212 links

from Topology Zoo [14]; the other ISP is ChinaNet, which has

the largest commercial backbone network in China, and we

obtain its topology containing 278 nodes and 908 links from

[15]. Note that the two ISPs represent two types of Internet

topologies. The ChinaNet topology is a typical small-world

network with a heavy-tailed node degree distribution, and there

exist a few “hub nodes” connecting many neighbors in the

network; on the other hand, the Cogent network is much more

regular than ChinaNet, exhibiting a less skewed node degree

distribution.

For each emulated network in our simulation, we randomly

select four nodes to connect to the content server clusters,

thereby servers at each node serve one fourth of the entire

content catalog. Each node in the network is connected by a

large number of clients that request and consume contents all

the time. We assume that averagely the clients at each node

request five content chunks per second with a Poisson process.

We consider a catalog of as many as 500 million distinct

content chunks on the ICN network, and assume that the con-

tent popularity follows a Mandelbrot-Zipf (MZipf) distribution

[16], where the probability of the kth most popular content

being requested is

pk =
1/(k + q)s

∑
i 1/(i+ q)s

(3)

here s is the model’s skewness factor and q is referred to

as the plateau factor. We denote the popularity model as



MZipf(s, q). To name the contents, we employ the 100
million most popular domain names obtained from Alexa, and

create 500 million distinct names from them1.

For an ICN network, most of its advantages are based on its

in-network caching capacity, we therefore focus on the cache

hit ratio in our evaluation. More specifically, for a caching

mechanism under study, we consider its performance gain,

which is defined as the cache hit ratio accomplished by the

mechanism divided by the cache hit ratio achieved by the LCE

strategy, as LCE is the default solution in the original CCN

proposal [2]. We assume routers apply LRU as the eviction

policy in CS. For the parameters used in the utility-based

caching mechanism, we let ρ = 0.95, α = 0.6, umin = 0.1,

and pfp = 0.01 if not otherwise specified.

B. Impact of Content Popularity Model

In our first experiment, we evaluate the performance of our

proposed utility-based caching mechanism, engaging both the

LRU-based and the TBF-based implementations (referred to

as LRU-TS and TBF-TS respectively), and compare with the

existing strategies of LCD [8] and the topology-aware (TA)

approach [4]. We explore a wide range of popularity models

by varying the MZip distribution’s skewness parameter s from

0.8 to 1.3, and carry out the simulation on both Cogent and

ChinaNet topologies.

In Fig. 4, we present performance gains of the different

ICN caching solutions. From the figures we can make the

following observations: First, all the approaches under evalua-

tion, namely LRU-TS, TBF-TS, LCD, and TA, significantly

outperform LCE with their performance gains larger than

one, which conforms to the previous study [4] that better

performance can be achieved by avoiding caching duplicated

replicas. Second, LRU-TS and TBF-TS have higher perfor-

mance gains than LCD and TA under all the popularity models,

and LCD outperforms TA in most cases; in fact, only under the

small-world ChinaNet topology, TA starts to outperform LCD

when the contents’ popularity is skewed enough (s > 1.2);

however, under this case, there is actually little differences

among the four schemes, as all of them can easily identify

the popular contents. Finally, we find that LRU-TS is slightly

better than TBF-TS under all the circumstances, which can be

explained with the errors that are introduced by the Bloom

filter.

C. Impact of Content Popularity Dynamics

In the previous experiment, we assume that a content’s

popularity is static, that is, when the content is assigned with

a popularity, it will never change. However, in real world, a

content’s popularity will change over time. In this experiment,

we consider a dynamic popularity scenario. More specifically,

for each content, say the kth content, we define its accumu-

lative popularity as Ak =
∑k

i=1 pi, where pi is the content’s

popularity defined in Equation (3). In our experiment, in every

60 seconds, we randomly select a number of content pairs,

1For example, for the name “google.com”, we create five names as
“1.google.com”, . . . , “5.google.com”.

yz{ yz| } }z} }z~ }z�
}

}z�

~

~z�

�

�z�

�������� ������ �

�
�
��
�
��
�
�
�
�
�
�
��

���

��

������

� ¡���

(a) Cogent

¢£¤ ¢£¥ ¦ ¦£¦ ¦£§ ¦£¨
¦

¦£©

§

§£©

¨

¨£©

ª

«¬®¯°° ±²³´µ¶ °

·
¸
¹º
»
¹¼
½
¾
¿
¸
À
½
Á¾

ÂÃÄ

ÅÆ

ÂÇÈÉÅ«

ÅÊËÉÅ«

(b) ChinaNet

Fig. 4. Performance comparison of different caching solutions under the
Cogent and ChineNet topologies

where in each pair, one content has its accumulative popularity

in the range of (0, 0.5] and the other has its accumulative

popularity in (0.5, 1], and we switch the popularities of the

two contents.

In Fig. 5, we present performances of different en-route

caching solutions of LCD, TA, LRU-TS and TBF-TS under

the popularity dynamics. For each plot on the figure, its x-axis

is the ratio of the contents with their popularities changed in

the entire content catalog, and the y-axis is the performance

gain. From the figure one can see that the dynamics of the

content popularity can considerably influence the network’s

performance, as the performance gains of all the caching

schemes degrade when the dynamic ratio becomes larger.

In addition, we find that our proposed utility-based caching

schemes of LRU-TS and TBF-TS can better handle the pop-

ularity dynamics, while TA has the worst performance. The

better performances of our solutions can be explained with

Equation (1), in which a content’s utility decays over time,

but can be updated by a newly evicted replica, so as to be

adaptive to the content’s recent popularity.

D. Evaluating Dynamic Queue Size in LRU-TS

In Section II-B, we present a methodology for dynamically

determining the LRU queue size for the LRU-based TS imple-

mentation. In this experiment, we examine the effectiveness of

this methodology, and compare it with the approach that each

router in the ICN network maintains a fixed-sized LRU queue

in its TS component.

In Fig. 6, we plot the performances of the utility-based

caching mechanisms using two different decaying factor ρ
values, and we employ both the dynamic-sized LRU queue and

the fixed-sized queue in the LRU-based TS implementation

under different ρ values. Note that for the dynamic-sized LRU

queue, we have only one plot on the figure, whose x-axis is

the averaged queue size as determined by Equation (2) for

all the nodes within the network; while for the fixed-sized

approach, we vary the queue size from 50 to 400 entries,

and plot the performance gains. From the figure, we can

see that under the approach with the fixed-sized LRU queue,

when the queue is small, increasing its size can improve the

network’s performance, but when the queue is large enough,

further expanding it barely helps. Moreover, for our proposed

methodology with the dynamic-sized LRU queue, the network



Ì ÌÍÌÌÎÏ ÌÍÌÌÐÏ ÌÍÌÑÒÏ ÌÍÌÑÓÏ
ÑÍÌÔ

ÑÍÑ

ÑÍÑÔ

ÑÍÒ

ÑÍÒÔ

ÑÍÕ

ÑÍÕÔ

Ö×ØÙÚÛÜ ÝÙÞÛß

à
á
âã
ä
âå
æ
ç
è
á
é
æ
êç

ëìÖ

íî

ëïðñíò

íóôñíò

Fig. 5. Performance comparison of differ-
ent caching solutions under popularity dynam-
ics, employing the ChinaNet topology and the
MZipf(1.2, 10) popularity model

õö ÷öö ÷õö øöö øõö ùöö ùõö úöö
÷ûüü

÷ûüý

÷ûý

÷ûý÷

÷ûýø

÷ûýù

÷ûýú

÷ûýõ

÷ûýþ

ÿ���� ���� �� �� ��	
����


�
��
�
��
�
�
�
�
�
�
��

����� ����� ρ � öûýö

����� ����� ρ � öûýõ

���� �! ����� ρ � öûýö

���� �! ����� ρ � öûýõ

Fig. 6. Comparison between the dynamic-sized
queue and the fixed-sized queue in the LRU-based
TS implementation, under the ChinaNet topology
and the MZipf(1.0, 10) popularity model

" "#"$ "#"% "#"& "#"' "#(
(#&

(#&)

(#*

(#*)

(#'

(#')

(#+

(#+)

$

,-./0 12/34350 1627#

8
9
:;
<
:=
>
?
@
9
A
>
B?

" "#"$ "#"% "#"& "#"' "#(
"

$

C ("
D

" "#"$ "#"% "#"& "#"' "#(
"

"#)

(

(#)

$

$#)

E
C ("

D

F
G<
:>
A
9
HI
BG
J
K

LM,NLO 106P26Q-RS0

TUVNLO 106P26Q-RS0

LM,NLO /426-W0

TUVNLO /426-W0

Fig. 7. Comparison between the TBF- and LRU-
based TS implementations under various false pos-
itive probabilities, employing the ChinaNet topol-
ogy and the MZipf(1.0, 10) popularity model

achieves higher performance gains, but employing much less

entries on the ICN nodes on average.

From Fig. 6, one may find that a larger decaying factor

ρ leads to a better performance. However, there are pros

and cons: under a dynamic popularity scenario as we have

discussed in Section III-C, a large decaying factor will make

the caching mechanism less responsive to the popularity

dynamics, and it will also cause more storage usages as we

can see from Equation (2).

E. Impact of Bloom Filter Errors in TBF-TS

In our last experiment, we focus on the TBF-based im-

plementation, and explore how the errors that are introduced

by the Bloom filter can influence an ICN network’s caching

performance. In our experiment, we vary the expected false

positive probability pfp from 0.001 to 0.1 when implementing

the TBF-based TS component, and examine the network’s

performance gain and the memory usage of the TS component

on each node. Fig. 7 shows our experimental results. We also

plot the performance gains and the storage usages under the

LRU-based TS implementation for comparison.

From Fig. 7, we can see that: when the false positive prob-

ability is very small, the TBF-based TS implementation has a

performance gain that is very close to the one achieved by the

LRU-based implementation, but employs even more storage.

When pfp becomes larger, the TBF-based TS implementation

consumes less storage, but at cost of a lower performance gain.

From the figure we can see that in real-world deployment, the

false positive probability pfp can serve as a tuning parameter,

which enables the network administrator to trade an ICN

network’s caching performance with the storage usage on

routers in the ICN network.

IV. CONCLUSION

In this paper, we address the fundamental problem of the in-

network caching management in ICN networks. We propose

a utility-based en-route caching mechanism, and present two

implementing methodologies which are based on dynamic

LRU queue and time-decaying Bloom filter (TBF). From sim-

ulation experiments using real-world topologies, we show that

our proposed mechanism outperforms existing solutions with

higher cache hit ratios; moreover, we find that the proposed

implementing methodologies are storage-efficient and provide

flexibilities in real-world deployment.

REFERENCES

[1] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” in Proc. of ACM SIGCOMM’07, Kyoto, Japan, Aug. 2007.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard, “Networking named content,” in Proc. of

CoNEXT’09, Rome, Italy, Dec. 2009.
[3] G. Garcia, A. Beben et al., “COMET: Content mediator architecture for

content-aware networks,” in Proc. of Future Network & Mobile Summit,
Warsaw, Poland, Jun. 2011.

[4] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache ‘less for more’ in
information-centric networks,” in Proc. of IFIP Networking’12, Seattle,
WA, USA, May 2012.

[5] I. Psaras, W. K. Chai, and G. Pavlou, “In-network cache management
and resource allocation for information-centric networks,” IEEE Trans.

on Parallel and Distributed Systems, vol. 25, no. 11, pp. 2920 – 2931,
2014.

[6] S. Guo, H. Xie, and G. Shi, “Collaborative forwarding and caching
in content centric networks,” in Proc. of IFIP Networking’12, Prague,
Czech, May 2012.

[7] L. Saino, I. Psaras, and G. Pavlou, “Hash-routing schemes for in-
formation centric networking,” in Proc. of SIGCOMM ICN Workshop

(ICN’13), Hong Kong, China, Aug. 2013.
[8] N. Laoutaris, H. Che, and I. Stavrakakis, “The LCD interconnection of

LRU caches and its analysis,” Performance Evaluation, vol. 63, no. 7,
pp. 609 – 634, 2006.

[9] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing (and more),” Telecom ParisTech,
Tech. Rep., 2011.

[10] K. Cheng, L. Xiang, and M. Iwaihara, “Time-decaying bloom filters
for data streams with skewed distributions,” in Proc. Int. Workshop

on Research Issues in Data Engineering: Stream Data Mining and
Applications, Tokyo, Japan, Apr. 2005.

[11] G. Bianchi, N. d’Heureuse, and S. Niccolini, “On-demand time-decaying
bloom filters for telemarketer detection,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 5, pp. 5 – 12, 2011.

[12] D. Perino and M. Varvello, “A reality check for content centric network-
ing,” in Proc. of SIGCOMM ICN Workshop (ICN’11), Toronto, Canada,
Aug. 2011.

[13] B. Edwards, S. A. Hofmeyr, G. Stelle, and S. Forrest, “Internet
topology over time,” CoRR, vol. abs/1202.3993, 2012. [Online].
Available: http://arxiv.org/abs/1202.3993

[14] “The Internet Topology Zoo,” http://www.topology-zoo.org.
[15] Y. Tian, D. Ratan, Y. Liu, and K. W. Ross, “Topology mapping

and geolocating for china’s internet,” IEEE Trans. on Parallel and

Distributed Systems, vol. 24, no. 9, pp. 1908 – 1917, 2013.
[16] M. Hefeeda and O. Saleh, “Traffic modeling and proportional partial

caching for peer-to-peer systems,” IEEE/ACM Trans. on Networking,
vol. 16, no. 6, pp. 1447 – 1460, 2008.


