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Abstract. The inter-contact time between mobile human-carried de-
vices is one of the key metrics in studying the mobility-assisted routing
paradigms for wireless mobile networks. Recent studies on this topic are
focused on the aggregated distribution integrating all the device pairs’
inter-contact times. In this work, we study real-world inter-contact times
from a new aspect. By dividing the device pairs in groups and by inves-
tigating the group-wise inter-contact time distribution, we find that for
the frequently contacting pairs, there are three segments on the distri-
bution curve. We use superposition of three stochastic contact processes
caused by the devices’ independent movements and human intentions to
explain the segments. Furthermore, we propose a mobility model, where
each node uses a priority queue to schedule its movement, to emulate
real-world human mobility. Theoretical analysis shows that the priority
queue results in a power-law inter-contact time and we also demonstrate
that our model seamlessly integrates the three contact processes. Finally,
simulation study testifies that our mobility model could reproduce the
contacts with their inter-contact times resembling the empirical ones,
therefore is accurate in characterizing the complexity of the device con-
tacts in wireless mobile networks.

Keywords: Inter-contact times, mobility model, wireless mobile net-
works

1 Introduction

In recent years, an infrastructure-free wireless mobile network composed of human-
carried mobile devices such as cell phones and PDAs has been proposed (e.g.
[1][2][3][4]). In such a network, as the topology is not always connected, a mobility-
assisted routing paradigm (e.g. [2][3]) is applied, where a node receiving the data
which is not destinated to itself holds the data, until it encounters the destina-
tion node or another node considered as the next hop for data delivery. Clearly



in such a routing scheme, contacts between the devices are the only opportunity
for communication, so the interval between consecutive contacts of a device pair,
which is referred to as the inter-contact time, is essential.

In this paper, we investigate the inter-contact times obtained from a number
of real-world datasets. Unlike previous studies, we group the device pairs accord-
ing to their contacting frequencies and analyze the group-wise inter-contact time
distribution. We find that for a frequently contacting group, there are three seg-
ments on its distribution curve, which is different from the previous observations
[5][6]. Based on well-known results of human dynamics, we use superposition of
three stochastic contact processes caused by devices’ random movements and
intentions of the humans carrying the devices to explain the observation.

We further present a mobility model for human-carried devices in wireless
mobile network. In our model, each node uses a priority queue to schedule its
movement. Theoretical analysis shows that power-law inter-contact times are
resulted, and the model has integrated the three contact processes seamlessly.
From simulation we find that the model generates contacts with their inter-
contact times of the same characteristics as the ones empirically observed. As
the model exhibits the same characteristics as the ones observed from real world,
it is very suitable to be applied in emulating and evaluating realistic wireless
mobile networks composed of human-carried devices.

The remainder part of this paper is organized as the follows: Section 2 surveys
the related work; We analyze the group-wise inter-contact time distribution in
Section 3; In Section 4, the three stochastic contact processes are proposed, and
we explain the empirical inter-contact time distribution with superposition of the
three processes; We present the mobility model in Section 5, and analyze and
examine the inter-contact times produced by our model in this section; Finally,
Section 6 concludes this paper.

2 Related Work

In recent years, contact patterns of human-carried devices, in particular, the
inter-contact times, are widely studied. By investigating a number of real-world
datasets, Chaintreau et. al. find that the inter-contact time distributions aggre-
gating all the device pairs are power-law, with the exponents smaller than one
[5]. Recently, Karagiannis et. al. observe that a dichotomy exists on the com-
plementary cumulative distribution function (CCDF) curves of the device pairs’
aggregated inter-contact times [6]. Yoneki et. al. find that the inter-meeting times
among meeting groups do not follow a power-law distribution[7]. A number of
mobility models are proposed to interpret these observations. For example, Kara-
giannis et. al prove that for a random walk (RW) on a circuit, the distribution of
two nodes’ inter-meeting time scales as n−1/2, when the inter-meeting time n is
sufficiently large, and there is an exponential tail[6]. Cai et. al. derive a similar
result using more general random mobility models of random waypoint model
(RWP) or RW on a two-dimensional area with finite boundary, and point out
that the finite boundary is responsible for the exponential tail [8]. While some



other general-purpose mobility models, such as the time-variant community mo-
bility[9] and the levy walk model[10], also stick to the observations from the
aggregated inter-contact times in [5] and [6]. On the other hand, although Co-
nan et. al. address the heterogeneity in inter-contact times by studying contacts
from single pairs of devices[11], however, the raw nature of pairwise contact data
prohibits people to find more insights regarding device’s contact pattern.

Meanwhile, it is every interesting to note that besides the inter-contact time,
many recent studies[12][13][14][15] reveal that in human activities, the inter-
event time is power-law. Barabasi et. al. studies the time intervals between
sending emails by a group of users, and reports that the distribution of the
inter-email times by one user is power-law, of which the cumulative distribution
function (CDF) could be modeled as F (τ) ∼ τ−2[12]. In [13], [14], and [15],
the intervals between human activities of visiting web sites, responding surface
mails, and initializing finance transactions are examined, and it is observed that
in these activities, the inter-event time distributions are all power-law, with a
CDF as F (τ) ∼ τ−α, where α ≥ 2.

3 Studying Group-wise Inter-Contact Time
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Fig. 1. Inter-contact time distribution of percentile groups in 0 − 50% for (a)
Reality, (b) Dartmouth, (c) UCSD

We obtain and study the inter-contact times for pairs of devices in three real-
world datasets, denoted as Reality[16], Dartmouth[17], and UCSD[18]. Unlike
previous studies, in this work, we sort all the device pairs of a dataset in an
ascending order based on their mean inter-contact times, and group the pairs in
each ten percentiles. For example, by denoting the percentile group of “10-20”,
we mean the pairs with their mean inter-contact times between the first ten and
the first twenty percents in this order.

We plot the aggregated inter-contact time distribution in CCDF for each
percentile groups in 0 − 50% of the three datasets, as pairs in these groups
contribute majority of the contacts. We also plot the distributions aggregating all
the inter-contact times in the datasets for comparison. From the figures one can



see that the distributions cannot be simply considered as exponential or power-
law, suggesting the complexity in devices’ contacting behaviors. Moreover, one
can see that except for the “0-10” group in Dartmouth, all the other distribution
curves of a same dataset closely resemble each other, suggesting that the device
pairs in these groups were following similar patterns in making contacts.

To further investigate the frequently contacting device pairs, we focus on the
percentile group with most contacts in each dataset, that is, the “0-10” group in
Reality, the “20-30” group in Dartmouth, and the “10-20” group in UCSD. By
carefully examining the figures, one can see that the distribution curve could be
divided into three segments, as labeled in Fig. 1(a-c). The first segment’s inter-
contact time is from 0 to a certain characteristic time, and the segment is almost
a straight line with a slope rate less than one. The second segment’s range is
from the first characteristic time to another characteristic time, and the segment
is also power-law, but its slope rate is no less than two, as demonstrated in the
figure. The third segment is the rest of the distribution curve with inter-contact
times larger than the second characteristic time. If the distributions were plotted
under linear-log scale, one can see that the segments are straight lines, making
them as exponential tails.

For less frequently contacting groups in 50 − 100%, we also study their
inter-contact times, and find that their inter-contact times are exponentially
distributed. We do not show the results here for space reason.

4 Interpreting the Inter-Contact Time Distribution

4.1 Source of the contacts

To interpret the inter-contact time distributions observed from real-world datasets,
we first discuss the causes of the device contacts. Generally, the contacts between
human-carried devices are the result of human movement. Simplified random
mobility models such as random waypoint model (RWP) or random walk (RW)
are usually used to model human movement. Studies[19][20] prove that under
these mobility models, the inter-meeting times are exponentially distributed.
And people also use these simple random mobility models to explain power-law
inter-contact times, as in [6] and [8]. However, we believe that these simple ran-
dom mobility models are not sufficient to explain our observation in Section 3,
because of the following reasons. First of all, [6] and [8] suggest that the power-
law inter-contacts appear only when the inter-contact time is sufficiently large
(Theorem 2 in [6] and Theorem 4 in [8]). However, from Fig. 1, one can see that
the first power-law curve segment appears when the inter-contact time is less
than half a day, which apparently is not very large. Moreover, [6] and [8] cannot
explain the second power-law segment, which has a slope rate no less than two.

Meanwhile, recent studies show that in many human activities, the inter-
event time is power-law, of which the distribution function can be modeled as
F (τ) ∼ τ−α, with α ≥ 2. These activities include sending emails [12], visiting
websites [13], responding surface mails [14], and initializing finance transactions



[15]. Clearly, these findings strongly suggest that power-law inter-event time
distribution with a slope rate larger than two is an universal principle in many
human activities including human contacts. However, we must note that human
contacting is a little different from other human activities such as sending emails
and visiting websites, as in these activities, events are purely intentional results,
but the contacts between two human beings may be unintentional (although
each one moves intentionally).

Motivated by the above discussion, we use two factors to interpret the con-
tacts between two human-carried devices: 1) independent random movement of
devices that result in exponential inter-contact times; and 2) the same princi-
ple causing power-law inter-event times in other human activities such as email
sending and website visiting. We deem the contacts caused by the first fac-
tor unintentional, as they are a byproduct of the device’s independent random
movement. The contacts caused by the second factor are regarded as intentional.
Unintentional contacts may be the result of random movement of devices within
a large (or “global”) area as well as of movement restricted within a small (or
“local”) area. Contacts due to the former type of movement are likely to have
larger inter-contact times than those due to the latter. In addition, “local” move-
ment usually leads to “bursty” contacts, while “global” movement is more likely
to incur “scattered” contacts. For example, the entire campus of a university
can be viewed as a global area, while a building or a lab of the university can
be viewed as a local area. Any two students on the campus have chances to
encounter each other, but the contacts are scattered as the two students are
unlikely to meet often in such a large area. On the other hand, when the two
students are in a same building of the campus, they are more likely to make
frequent contacts, until any of them leaves the building. The contacts are bursty
as the time that the two students stay in the building is limited, compared with
the time they stay on the campus. They will have another sequence of bursty
contacts when they are within a local area simultaneously again.

Formally, we define three stochastic contact processes in the following.

– The first contact process is caused by device’s local independent random
movement, and the contacts are bursty. When there are contacts, the inter-
contact time distribution could be expressed as

F1(t) = 1− e−λlt

with λl > 0; as the contacts are in bursts, there exist long intervals without
contacts between contact bursts. We refer to this process as local contact
process (denoted as LCP for short).

– The second contact process is intentional. Similar to the inter-event time
in other human activities, the inter-contact time is power-law. To make our
analysis mathematically tractable, we use the shifted Pareto distribution to
express the inter-contact time distribution as

F2(t) = 1−
(
1 +

t

tm

)−α

, α ≥ 2



where tm > 0 and α ≥ 2, and tm is the smallest value t can take. As it
is human’s intention that causes the contacts, the process is refer to as the
intentional contact process (denoted as ICP for short).

– The third contact process is caused by device’s global independent random
movement, and the inter-contact time distribution could be expressed as

F3(t) = 1− e−λgt

with λg > 0. We refer to this process as the global contact process (denoted
as GCP for short).

Given the three contact processes, we assume that LCP’s mean inter-contact
time, 1/λl, is much smaller than that of the other two processes; while GCP’s
mean inter-contact time, 1/λg, is much larger than that of the other two. For
ICP, as its inter-contact time distribution is power-law, it has many very short
inter-contact times as well as many inter-contact times that are very long. The
underlying intuition of our assumption is that if two persons are in a small
area simultaneously, they are more likely to encounter each other. In a large
global area, unintentional contacts happen less frequently than intentional ones
(especially those between people with certain relationship).

In the following subsections, we show that the three segments on the distribu-
tion curves observed in Section 3 could be explained by the superposition of the
three stochastic contact processes aforementioned. By superposition, we mean
that events from different source processes are undifferentiated. Strict definition
can be found in [21].

4.2 Explaining the knob between the second and the third segments

We first explain the knob between the second the third segments on the inter-
contact time distributions in Fig. 1. As the second characteristic time separating
the two segments is from days to tens of days, which is sufficiently large, we ig-
nore the first contact process which produces small inter-contact times in bursts,
and focus on the second and the third contact processes. Assuming that the two
processes are independent and renewal, with their inter-contact times following
the distributions of F2(t) and F3(t) respectively, the inter-contact time distri-
bution of the superposition process from ICP and GCP could be expressed as
[21]

Rs(t) =
v̄2v̄3

v̄2 + v̄3
(ψ2(t)R3(t) + ψ3(t)R2(t)) (1)

where Ri(t) = 1 − Fi(t), v̄i is the mean contact rate, and ψi(t) =
∫∞
t

Ri(u)du,
for i = 2, 3.

By applying Equ. (1), we can obtain expression of the inter-contact time
distribution for the superposition process. Taking logarithm, we have

logRs(t) = log

(
1 +

λgt

λgtm + α− 1

)
− λgtm

t

tm
− α log

(
1 +

t

tm

)
(2)



Since the mean inter-contact time of GCP is much larger than ICP, we have
(α− 1) À λgtm. We consider two cases.

– Case I, the inter-contact time is moderately larger than tm, but is much
smaller than α−1

λg
, i.e., tm < t ¿ α−1

λg
. First of all we know that t

tm
>

log
(
1 + t

tm

)
. On the other hand, as α > (α − 1) and (α − 1) À λgtm, we

have α À λgtm. Mutipling α with log
(
1 + t

tm

)
and λgtm with t

tm
, recall

that t
tm

is only moderately larger than log
(
1 + t

tm

)
but α À λgtm, it should

have α log
(
1 + t

tm

)
À λgtm

t
tm

. In addition, as λgt ¿ α−1,
λgt

λgtm+α−1 → 0,

so log
(
1 +

λgt
λgtm+α−1

)
≈ λgt

λgtm+α−1 ¿ λgtm
t
tm

¿ α log
(
1 + t

tm

)
. Since

log
(
1 +

λgt
λgtm+α−1

)
and λgtm

t
tm

are much smaller than α log
(
1 + t

tm

)
, by

ignoring them we can see that for this case logRs(t) ≈ −α log
(
1 + t

tm

)
≈

−α log
(

t
tm

)
. The distribution is power-law with a slope rate of α.

– Case II, the inter-contact time is much larger than α
λg

log(1 + t
tm

), i.e., t À
α
λg

log(1+ t
tm

). Obviously, for this case λgtm
t
tm

À α log
(
1 + t

tm

)
, and since

α ≥ 2, we have t
tm

>
λgt

λgtm+α−1 , so it is easy to see that α log
(
1 + t

tm

)
>

α log
(
1 +

λgt
λgtm+α−1

)
> log

(
1 +

λgt
λgtm+α−1

)
. As λgt is much larger than

α log
(
1 + t

tm

)
and log

(
1 +

λgt
λgtm+α−1

)
, by ignoring them, we have logRs(t) ≈

−λgt, that is, the distribution has an exponential tail with a rate of λg.

4.3 Explaining the knob between the first and the second segments

We then explain the knob between the first and the second segments observed in
Fig. 1. As we are interested in the inter-contact time of the superposition process
around the first characteristic time where the knob appears, which is about half
a day, we ignore the process of GCP for its large mean inter-contact time, and
only consider the contact processes of LCP and ICP. Unfortunately, as LCP is
not renewal, we cannot apply Equ. (1) directly.

Meanwhile, as the mean inter-contact time of LCP is much less than ICP,
and there are long intervals without contacts between its contact bursts, we use
a two-state Markov chain for LCP to produce bursts of contacts. In this model,
LCP may be in ON or OFF state: when at the ON state, with probability p a
contact with a random interval to the next contact following the distribution of
F1(t) is generated, and the model stays at the ON state; LCP changes to the
OFF state with probability 1 − p. At the OFF state, there is no contacts for
an interval of length L, and at the end of the interval, the process stays at the
OFF state with a probability of q without a contact, and goes to the ON state
to have a new contact with a probability 1 − q. We further assume that the
influence of the contacts from LCP on the inter-contact times of ICP, especially



the long inter-contact times, is neglectable. Therefore, the inter-contact times of
LCP and ICP can be considered separately. Specifically, the distribution of the
inter-contact time in the superposition process can be approximated as

Fc(t) ≈ p1 · F1(t) + p2 · F2(t) =

{
1− p1e

−λlt − p2

(
t
tm

)−α

, t > tm

1− e−λlt, t ≤ tm
(3)

for λl, tm > 0, and α ≥ 2
Let Rc(t) = 1−Fc(t). Since the mean inter-contact time of LCP is much less

than ICP, we have tmλl ¿ α−1
α . Two cases are considered.

– Case I, the inter-contact time t is much smaller than tm, i.e., t ¿ tm. In
this case, logRc(t) ≈ log e−λlt, the distribution should be exponential. How-
ever, as here we do not consider the distribution tail, we show that Rc(t)
can also be approximated by a power-law distribution function, as shown
in the following. Let t′m be a constant smaller than tm, and rewrite e−λlt

as e
−λl·t′m· t

t′m , since e
−λl·t′m· t

t′m ≈
(
1 + t

t′m

)−λl·t′m
for t

t′m
sufficiently small

(note that log(1 + x) ≈ x for x → 0), logRc(t) ≈ −λlt
′
m log

(
1 + t

t′m

)
≈

−λlt
′
m log

(
t
t′m

)
, which is power-law with a slope rate of λlt

′
m. As tmλl ¿

α−1
α < 1 and t′m can take any value smaller than tm, clearly λlt

′
m < 1. This

explains the first segment.
– Case II, the inter-contact time t is larger than tm, i.e., t > tm. For this case,

Rc(t) ≈ p1 ·e−λlt+p2 ·
(

t
tm

)−α

. As an exponential distribution decays much

faster than a power-law distribution function, when t is sufficiently large, we

can ignore p1e
−λlt and rewrite Equ. (3) as logRc(t) = log

(
p2 ·

(
t
tm

)−α
)

=

log p2 − α log
(

t
tm

)
. The distribution is power-law with a slope rate of α

(α ≥ 2). This explains the second distribution curve segment.

From the above analysis, one can see than tm actually is the first characteris-
tic time in Section 3, thus tm ≈ half a day. In addition, we believe that the first
power-law curve segment observed in Fig. 1 should be the integration of a num-
ber of contact processes as LCP, as a device may be restricted in different local
areas during different times. From [22], we know that synthesizing a power-law
distribution with a number of exponential distributions is possible.

To validate our analysis, we simulate three contact processes of LCP, ICP
and GCP with their inter-contact time distributions expressed as F1, F2(t) and
F3(t) using different parameter values of λl, α, tm, and λg, and plot the inter-
contact time distribution of the superposition process in Fig. 2. One can see from
the figure that on the distribution curve there is a power-law segment with a
slope rate smaller than one, followed by a power-law segment with a slope rate
of approximately two, and the rest of the superposition process’s distribution
can be viewed as an exponential tail. Moreover, the value of tm determines the
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Fig. 2. Inter-contact time distribution of the superposition process of LCP, ICP,
and GCP.

position of the first knob. In short, the inter-contact time distribution in Equ.
(2) and Equ. (3) explain the two knobs on the inter-contact time distribution
curves observed in Fig. 1.

4.4 Verification by the real-world datasets

10-4 10-2 10010-410-310-210-1100

Inter-contact time (days)
CCDF Contacts at either device's home locationContacts at neither device's home location

(a)

5 10 15 20 25 30
100

Inter-contact time (days)
CCDF Contacts at either device's home locationContacts at neither device's home location

(b)

Fig. 3. Inter-contact time distribution of contacts at (a) either device’s home
location, and (b) neither device’s home location

In the above discussions, we used the superposition of three contact pro-
cesses to interpret the inter-contact time distributions observed in Section 3.
In this section, we justify our explanation by analyzing the real-world datasets.
Unfortunately, for all the currently available datasets, we cannot tell the source
of a contact (e.g., intentional or unintentional), therefore we have to find other
methods to infer the contacts in a real-world dataset.

Our approach is to consider the location where contacts took place. In UCSD,
as contacts are inferred by simultaneous AP association, we recorded the location



information (i.e. AP) for each contact. We found that every device stayed at
one particular location for most of the time. This location is considered as its
“home” location. For example, it is observed that on average a device in UCSD
spent 90.9% of all its time at its home location. In our approach, we exploited
home locations to filter out some of the unintentional contacts caused by global
device movement. Specifically, given a pair of frequently contacting devices with
different home locations, we treat the contacts at either home location and the
contacts at other locations separately. We collect the inter-contact times for the
two types of contacts for all of the device pairs in the “10-20” percentile group in
UCSD, and plot their inter-contact time distributions in Fig. 3, using a log-log
scale in Fig. 3(a) and a linear-log scale in Fig. 3(b). The figures show that for the
contacts at either device’s home location, the power-law segments are prominent,
indicating that most of the contacts at either device’s home are caused by device’s
local independent movement and human’s intention, while the inter-contact time
distribution of the contacts at non-home locations is exponential, suggesting that
the contacts are caused by device’s global independent movement.

5 Mobility Model

In this section, we present a mobility model based on our observation and inter-
pretation of the human-carried device contacts discussed in previous sections.
Under this model, the distribution of inter-contact time between nodes closely re-
sembles the distributions observed in the real-world datasets discussed in Section
3, with two power-law segments followed by an exponential tail. With these prop-
erties, our model can be applied for design and evaluation of mobility-assisted
routing paradigms for wireless mobile networks.

5.1 Model description

In our mobility model, we assume that nodes are equipped with omni-antennas
and the disk communication model applies: a node can communicate with an-
other if their distance is less than a communication range of r. Moreover, each
node is associated with a region called its home region. The size of the home
region is much smaller than the entire network area, but should be larger than
a node’s communication area (i.e., a disk of size πr2). In our implementation,
the network area is a square of L × L, and the home region is a l × l square
where L > l. Each node knows the home region of itself as well as that of all
the other nodes (referred to as foreign regions for this node) in the network.
It stays in its home region or visits another node’s home region according to a
two-state Markov chain. Specifically, when a node is in a region, either home or
foreign, the time is divided into intervals of length Tl. At the end of each interval,
if the node is in its home region, it stays at the home region during the next
interval with a probability of pH , and visits a foreign region with a probability
of 1 − pH . Similarly, when a node is in a foreign region, it stays in the same
foreign region with a probability of pF , and returns to its home region with a



probability of 1 − pF . When in a region, a node performs random movement.
In our implementation, we uses the random waypoint mobility model without
pause.

The selection of foreign region for a node to visit is critical. In our model,
each node keeps a queue of visiting plans. A visiting plan keeps the information
of the node’s ID of which the home region is to be visited, as well as a priority
value uniformly chosen from [0, 1). When a node decides to visit a foreign region,
it selects and removes the visiting plan in its queue with the highest priority,
and moves to a randomly chosen position in the corresponding foreign region
directly. When a node at a foreign region returns to its home region, it also
moves to a randomly chosen position in its home region directly. At the same
time, a new visiting plan with a randomly selected priority to the foreign region
the node is currently leaving is inserted into its visiting plan queue. Clearly,
the queue is a priority queue. In a strict priority queue, plans of low priorities
may never be accessed (and removed). Therefore, we introduced randomness as
follows: when selecting a visiting plan to remove, the node chooses a plan of
the highest priority with a probability pr, and if the plan of the highest priority
is not chosen, the node chooses the plan with the second highest priority with
probability pr, and so on, until a plan is selected.

Finally, when a node is moving, either staying in a region or moving towards
another region, the speed is randomly selected from a range of [vmin, vmax] with
a mean value as v̄.

5.2 Analysis

In this section, we prove that power-law inter-contact times exist for node pairs
under our presented model, and show that our model seamlessly integrates con-
tact processes of LCP, ICP, and GCP between node pairs.

We first consider the interval between the executions of two consecutive vis-
iting plans by a node. The interval includes the time for the node to move to the
foreign region of the first plan, the time spent by the node to stay in the foreign
region, the time for the node to return to its home region, and the time it stays
in the home region of itself, until it decides to select and remove the next visiting
plan. Mathematically, the expectation of the interval T could be expressed as

E[T ] =
Tl

(1− pF )2
+ 2

D̄

v̄
+

Tl

(1− pH)2

where Tl

(1−pH)2 and Tl

(1−pF )2 are the expected times for a node to stay in home

and foreign regions respectively, and D̄ is the mean distance between the node’s
home region and a foreign region.

Given a node, we denote the time τ a visiting plan spends in queue, i.e., the
period between the moment it is inserted and the moment it is removed. We
assume that the visiting plan queue is a strict priority queue for simplifying our
analysis. Suppose that there are M plans in the queue. Over a period sufficiently
long, the probability that a plan of priority ρ gets selected is ρM , which is the



probability that ρ is the largest value among M uniformly distributed random
variables in [0, 1). Assuming that the distributions of the priorities of the plans
in the queue at the movements of plan selection are independent, then for a plan
with priority ρ, the probability that it gets selected at the first plan selecting
time after its insertion should be ρM ; and if it is not selected, it must wait for
a time of T and gets selected with the same probability ρM , and so on, until it
is selected and removed. Therefore we could express the mean waiting time of a
visiting plan with priority ρ as

τ(ρ) =

∞∑

i=0

(i+ 1)× E[T ]× ρM × (
1− ρM

)i
=

E[T ]

ρM
(4)

Consider all the plans with their priorities in a small range of [ρ, ρ+dρ). The
probability that they are inserted into the queue can be expressed as f(ρ)dρ,
where f(ρ) is the probability density function of the priority distribution, which
is uniform in our model; and for all the plans with their waiting times in a small
range of [τ(ρ), τ(ρ) + dτ), the rate of their removals is P (τ)dτ , where P (τ) is
the probability density function of the waiting time. Applying Little’s law, it is
easy to see that

f(ρ)dρ

E[T ]
= P (τ)dτ ⇒ P (τ) =

f(ρ)

E[T ]

dρ

dτ

From Equ. (4) we know dρ
dτ = − 1

n
E[T ]1/M

τ1+1/M , and since priority is uniformly

distributed, f(ρ) is a constant. Therefore P (τ) ∼ 1
τ1+1/M , and the probability

density function is power-law with an exponent of 1 + 1
M . As priorities are

randomly selected each time when a visiting plan is inserted, under our mobility
model, the distribution of inter-visiting time to a specific foreign region by a
node is power-law, of which the slope rate under log-log scale is 2+ 1

M , which is
larger than two.

Clearly, time between two visits of a node to another node’s home region
is not strictly the inter-contact time. Nonetheless, if we properly configure the
model parameters, inter-visit time should be a good approximation of inter-
contact time between two nodes. In other words, our mobility model contains
the contact process of ICP, i.e., the contact process with power-law inter-contact
times in Section 4. Moreover, as the minimum interval between two consecutive
visits to a foreign region by a node is T , T actually is the characteristic time
of the first knob. In other words, for the ICP’s inter-contact time distribution
function F2(t), tm = E[T ] and α = 2 + 1

M .
We also show that our mobility model integrates the contact processes of

LCP and GCP as well. Recall that when two nodes are in the same region, as
they move independently and the region size is small, they will make frequent
contacts. That corresponds to LCP where contacts are frequent and inter-contact
times are exponential distributed. More specifically, at any time the probability
that two devices in a same region meet with a probability of Pl =

2rδv̄
l2 , where

2rδv̄ is the area covered by a device in unit time when moving with the relative
average speed of the device to the other device δv̄. From [20], it is known that



δ ≈ 1.27. It is well-known that when the unit time is small, the geometric
distribution could be approximated as an exponential distribution, therefore for
the inter-contact time distribution of the LCP contact process F1(t), λl =

2rδv̄
l2 .

The GCP process is also taken care of. As nodes are moving back and forth
between its home region and a number of foreign regions, which are randomly
located over the entire network area, when there are many foreign regions, trav-
eling between them can be viewed as a global random movement. Therefore
the proposed mobility model also contains the contact process of GCP with
long inter-contact times exponentially distributed. Similarly, for the inter-contact
time distribution of the GCP contact process F3(t), we have λg = 2rδv̄

L2 .

5.3 Validation

102 10410-310-210-1100
Inter-contact time

CCDF Node pair 2-8Node pair 2-11Node pair 8-9
(a)

0 1 2 3x 10410-310-210-1100
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Fig. 4. Inter-contact time distributions of node pairs in mobility model

In this section, we show that our mobility model captures the complexity
of the contact behaviors, especially the inter-contact times, of human-carried
devices. We implement a simulator of wireless mobile networks, in which nodes
move according to the proposed mobility model. In our simulation, we create a
network containing 20 nodes that move within a global area of size 800×800, the
home/foreign reign size is 50×50, the communication range is r = 10, the length
of the interval is Tl = 20, the minimum and the maximum speeds are vmin = 3
and vmax = 5, and transition probabilities of the two-state Markov chain are
pH = 0.8 and pF = 0.6, and the probability pr is set as 0.8. Furthermore, in the
simulation we divide the 20 nodes into two groups, each of 10 nodes. A node in
our simulation only visits the home regions of the nodes in the same group. In
this way we have two relationships between nodes: nodes in a same group and
nodes in different groups.

We investigate the inter-contact time of different node pairs. In particular,
three representative node pairs are studied: the pair of node 2 and node 8, the
pair of node 8 and node 9, and the pair of node 2 and node 11. The nodes in the



pair of pair 2-8, and 8-9, are respectively in the same group, and they visit each
other’s home region according to their priority queues to make contacts. While
the nodes in pair 2-11 are in different groups, so they do not make such con-
tacts. Fig. 4 plots the inter-contact time distributions of the three node pairs.
From the figure one can see that for the pairs in the same group, the curves
of the inter-contact time distributions closely resemble the distributions in Fig.
1, as there are two power-law segments followed by an exponential tail on the
distribution curve. The inter-contact times of the node pair 2-11 are exponen-
tially distributed. This observation showed that our model can reproduce the
inter-contact time distributions very similar to the distributions of frequently
and infrequently contacting device pairs observed in Section 3.

6 Conclusion

In this paper, we focused on examining and interpreting the inter-contact times
between mobile human-carried devices. By investigating a number of real-world
datasets, we found that the inter-contact time distributions of frequently-contacting
percentile groups have three segments on their distribution curves. Based on ex-
isting knowledge of random movements and human activities, we conjectured
that there are two reasons causing device contacts: the device’s independent
movement and the human’s intention. We used superposition of three stochastic
contact processes, i.e., the temporal local contact process, the intentional con-
tact process, and the global contact process to explain the inter-contact time
distributions observed. Based on our analysis, we proposed a mobility model
for human-carried devices, and showed that the mobility model seamlessly inte-
grates the three contact processes. Especially, we theoretically proved that the
priority queue in our model generates power-law inter-visiting times. Finally,
simulation experiment showed that our mobility model reproduces the contacts
between node pairs with their inter-contact time distributions highly similar to
the ones observed in real-world datasets, suggesting that the model could be
applied in designing and evaluating realistic wireless mobile networks composed
of human-carried devices.
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