
Quantum Monte Carlo Methods.

There are a number of ways how quantum simulations are done. Some
directly solve the Schrodinger Eq. in imaginary time making use of the
analogy with the diffusion equation and random walks. Some work with the
Feynman diagrams, some use the path-integral (PI) representaion. I will
start from the last one.

Path-integral Monte Carlo (PIMC) for continuous models.

So, we start from the expression derived in the last Sec.

Z =
∮

DR exp
{

−
∫ β

0

[N
∑

i=1

miṙ
2
i (τ)/2+

N
∑

i=1

U(ri(τ))+
1

2

N
∑

i6=j

V (ri(τ)−rj(τ))
]

dτ
}

.

(1)
We immediately see that it is not suitable yet for the computer based solu-
tion because continuous trajectories require, by definition, and infinite set of
numbers to describe them. To deal with this, we simply go one step back in
the derivation, refuse to take the limit of dτ → 0, and keep it finite. Now each
particle trajectory is described by a finite collection of points in imaginary
time Ri

R1

R 2

0

R i

R i+1

τ i τ i+1

and system propagation between the points is approximated by staright lines.
The good news is that this description remains exact (!!) for the kinetic

part of the action. Indeed, we have a formal identity

AR1,R2(t) =
∫

dR3 AR1,R3(t3) AR3,R2(t− t3) , for any 0 < t3 < t (2)

which reads that propagation from R1 to R2 in time t over all possible paths
is identical to the propagation from R1 to R2 in time t3 over all possible paths

1

times the propagation from R3 to R2 in the remaining time t − t3 with the
integral taken over all possible points R3. This immediately follows from the
simple exponential form of A, and the fact that in both cases we talk about
the same set of paths at the end. Thus

Z =
∫

. . .
∫

(dR0 dR1 . . . dRL) δ(R0 −RL)
L−1
∏

i=0

ARi,Ri+1
(∆τ) ,

is an exact relation, no matter that L and ∆τ are finite and arbitrary. Of
course, we are not moving anywhere yet because A factors remain to be
calculated. However, we may take advantage of the small value of ∆τ and
calculate ARi,Ri+1

(∆τ) approximately, say to accuracy ∼ (∆τ)2. It turns out
that for the free particle the full path-integral expression

A0,R(τ) =
∫

DR δ(R(0) − 0) δ(R(τ) − R) exp
{

−
∫ τ

0
mṘ2(s)/2 ds

}

,

gives identically the same answer as the substitution of a linear path
Rlinear(s) = (s/τ)R into the exponent

A0,R(τ) ∼ exp
{

−
∫ τ

0
mṘ2

linear(τ)/2
}

= e−mR
2/2τ . (3)

(I remind you that I ignore all prefactors which are supposed to cancel in the
final averages). This fact can be established by direct integration, or simply
by going back to the Schrodinger Equation and noticing that in imaginary
time it is identical to the diffusion equation and thus (3) is the famous random
walk distribution.

We see, in particular, that no approximations are done when we write for
the free particle

Z(0) =
∫

. . .
∫

dR0 dR1 . . . dRL δ(R0−RL) exp
{

−
L−1
∑

i=0

m(Ri−Ri+1)
2/2∆τ

}

.

This expression is already suitable for the MC simulation because we have a
standard setup with the well-defined notion of the configuration and its pos-
itive definite weight. For interacting particles the potential energy exponent
calculated for the linear trajectory

∫ τi+1

τi
dτU [Rlinear(τ)] ,

2

is definitely an approximate answer, but for small ∆τ the particle is unlikely
to be found far from the linear path which is connecting nearby points in
space; typical |Ri − Ri+1| ∼

√
∆τ . For the single particle potential we may

then write (a and b below enumerate particles)

S(a)(i) =
∫ τi+1

τi
ds Ua[r

(a)(s)] =
∫ ∆τ/2

−∆τ/2
ds Ua[r̄

(a)
i + v̄

(a)
i s] ,

and, after expanding U in Taylor series assuming small v̄
(a)
i s, get

S(a)(i) = Ua[r̄
(a)
i]∆τ +

1

3
(v̄

(a)
i)α(v̄

(a)
i)β(Ua)

′′
αβ [r̄

(a)
i]∆τ 3 .

Here the following notations were used for the linear trajectory “center of
mass” and “velocity” in order to simplify expressions, r̄

(a)
i = (r

(a)
i+1 + r

(a)
i)/2

and v̄
(a)
i = (r

(a)
i+1 − r

(a)
i)/∆τ . Similarly, for each pairwise term of the interac-

tion potential between particles we find

S(ab)(i) =
∫ τi+1

τi
dsV [r(a)(s)−r(b)(s)] =

∫ ∆τ/2

−∆τ/2
dsV [r̄

(a)
i − r̄(b)

i +(v̄
(a)
i − v̄(b)

i)s] ,

and further on

S(ab)(i) = V [r̄
(a)
i − r̄

(b)
i]∆τ + +

1

3
(v̄

(a)
i − v̄

(b)
i)α(v̄

(a)
i − v̄

(b)
i)βV

′′
αβ[r̄

(a)
i − r̄

(b)
i]∆τ 3 .

Sorry for so many subscripts and superscripts but I would like to be
specific about the time slice and particle index. Since velocities are of order
∆r/∆τ ∼ 1/

√
∆τ , the second term scales as ∆τ 2. We may keep expanding

potential energy in the Taylor series to calculate the contribution of the linear
path to higher order in ∆τ , but then we have to consider corrections for the
non-linear path as well. This becomes somewhat messy and in most cases
ignoring higher-order terms gives a reasonable accuracy. Thus we end up
with the configuration weight exponent

−
L−1
∑

i

N
∑

a=1

ma(v̄
(a)
i)2

2
∆τ + S(a)[r̄

(a)
i , v̄

(a)
i]

+
N
∑

a<b

S(ab)[r̄
(a)
i , r̄

(b)
i ; v̄

(a)
i , v̄

(b)
i]

.

(4)

3

which is suitable for the simulation.

Small Appendix. In the pair approximation we first transform the
path-ingtegral as (I assume, for simplicity, zero external potential, U = 0,
and skip mentioning some of the indeces, e.g. in the integral limits)

ARi,Ri+1
(∆τ) =

∫

DRe
−
∫

(

K[R(s)]+V [R(s)]

)

ds

≡ A
(0)
Ri,Ri+1

(∆τ) 〈e−
∫

dsU [R(s)]〉FP

where, by definition

A
(0)
Ri,Ri+1

(∆τ) =
∫

DR e−
∫

dsK[R(s)] = e−
∑

N

a=1
ma(v̄

(a)
i

)2/2∆τ ,

is the free particle propagator, and 〈. . .〉FP is defined as an average over
trajectories with the free particle weight

〈O[R(s)]〉FP =

∫ DR e−
∫

dsK[R(s)] O[R(s)]
∫ DR e−

∫

dsK[R(s)]
.

Next, the average of the potential energy exponent is written approxi-
mately as the product of pairwise terms

〈 e−
∫

dsU [R(s)] 〉FP ≈
∏

a<b

〈 e−
∫

dsU [r(a)(s)−r(b)(s)] 〉FP .

The advantage is that pairwise averages may be calculated either exactly
(in many cases) or very precisely numerically. They may be also reduced
to the solution of the Schrodinger equation for one particle (in the center
of mass frame) in the central potential. I refer you here to (Storer, 1968)
and (Pollock and Ceperley, 1984) for more details. These solutions are
used to make more accurate expressions for the configuration weight (4).

In the simplest PIMC scheme, just select time slice and particle at random
and suggest a new value for the point r

(a)
i , e.g. with the Gaussian distribution

function

ρ(r
(a)
i) ∼ exp

− m

∆τ

r
(a)
i − r

(a)
i−1 + r

(a)
i+1)

2

2

.

4

Then, accept the update using standard rules and the detailed balance Eq.
For the procedure I am proposing, R is given by the ratio of the potential
energy exponents in (4) only because kinetic energy terms cancel with the

ratio of probability densities used for suggesting a new value of r
(a)
i (this is

the reason why it was done this way!).
In addition, when trajectories of two particles, say a and b, are within

the specified distance, say l = #
√

∆τ/m, you may suggest two swap the

values of particle coordinates, r
(a)
i → r

(b)
i and r

(b)
i → r

(a)
i to facilitate more

efficient “entanglement” of trajectories. Now R = e−∆S where ∆S is the
action difference calculated using Eq. (4).

Still, winding numbers may not be introduced this way. If system size is
small, and no tricks are used, then winding number may be introduced by
shifting cordinates of many particles at once in the left or in the right sence
with equal probabilities. The illustration below is for the one-dimentional
case, but the idea is clear and may be implemented in a similar way (with
more programming effort) in any dimension.

τ
i

1
2

3

4

1
2

3

4
1

iτ

For the randomly selected time slice τi, and shift g = ±1 order particle coor-
dinates and perform R

(a)
i

′ = R
(a+g)
i (pay attention to the periodic boundary

conditions; for g = 1 and a = N use a + g = 1, for g = −1 and a = 1 use
a+ g = N as in figure above). This update will change the winding number
by g. The downside is that the acceptance ratio for this macro-update is
exponentially small in large systems. I believe, the solution is in performing
Worm Algorithm updates (not implemented yet, as far as I know).

Diagrammatic Monte Carlo

I will start from the particular example of quantum system which we already
discussed, and then formulate it in general terms as a problem of summing

5

series of integrals. Next, I will show how to do Metropolis type MC simu-
lation of such series without any approximations. After the general theory
is developed, I will complete the loop and go back to consider quantum al-
gorithms for the interacting many-body system on a lattice. The logic is
similar to our general discussion of the MC approach to classical systems
and its application to the Ising model.

To be specific, consider the bosonic Hubbard model introduced previously

H = −∆0

∑

<ij>

(b†i bj + h.c.) +
U

2

∑

i

n2
i +

∑

i

ξini , (5)

and, for convenience, reproduce also the typical structure of the configuration
space

imaginary time

sp
ac

e

τ0 β

and the corresponding partition function

Z =
∞
∑

K=0

∫ β

0
dτ1 . . .

∫ β

τK−1

dτK
∑

iCP (τ)

WK [iCP (τ)] (6)

with the configuration weight

WK [iCP (τ)] = (∆0)
K exp

{

−
K
∑

a=1

∫ τa

τa−1

(

U

2

∑

j

n2
j(τ) +

∑

j

ξjnj(τ)

)

.dτ
}

(7)

6

Here the sum over j goes over all lattice points, and nj(τ) are occupation
numbers on site j at time τ for the particular many-body trajectory i(τ)
with K hopping transitions between the lattice sites.

The generic formulation of what we are doing is as follows:
Suppose one is interested in the quantity A(y) defined as

A(y) = Z−1
∞
∑

K=0

∫

dx1 . . .
∫

dxK
∑

ξK

A(K, ξK ; x1, . . . , xK ; y)W (K, ξK; x1, . . . , xK ; y)

(8)

Z =
∞
∑

K=0

∫

dx1 . . .
∫

dxK
∑

ξK

W (K, ξK; x1, . . . , xK ; y) (9)

where y stands for some external (continuous or discrete) parameters, K
is the series index equal to the number of integrals over parameters xi [in

general, xi are multidimensional, i.e. xi = (x
(1)
i , x

(2)
i , . . .)], ξK enumerates

different terms which have the same series index. The collection of numbers
(K, ξK; x1, x2, . . . , xN ; y) specifies a particular configuration, or diagram, ν.
Notice, that configurations=diagrams with different K have different number
of continuous parameters to characterize them. In our example above, K is
the number of transitions between the lattice sites (”kinks”) in the many-
body trajectory, xi are imaginary times of these transitions, ξK is specify-
ing exact locations in space for all kinks, their direction (in which direction
the particle has moved between the sites), and initial occupation numbers
on all sites—literally, we simply mention everything necessary to draw the
trajectory evolution from some initial state. y parameters may refer, for ex-
ample, to the Hamitonian parameters. I call configurations “diagrams” after
Feynman, and because we have nice graphical diagrams (previous page) to
visualize (K, ξK ; x1, x2, . . . , xN).

If we want to do the MC simulation of this series, we have to suggest
a set of updates which allow to transform arbitrary configuration into each
other. Updates which conserve the series index K, lets call them ”type-A”
updates, can be implemented using standard classical rules. For example,
one can select at random any of the integration variables xk and propose a
new value for it. The acceptance ratio will be proportional to

R ∼ W (K, ξK; x1, . . . , x
′
k, . . . , xK ; y)(dx)K

W (K, ξK; x1, . . . , xk, . . . , xK ; y)(dx)K
,

7

or

R ∼ W (K, ξK; x1, . . . , x
′
k, . . . , xK ; y)

W (K, ξK; x1, . . . , xk, . . . , xK ; y)
.

All differential measures cancel out because we do not change the integral
multiplicity. Similarly, one may suggest to modify y parameter, or to go from
ξK to ξ′K . As long as we do not change K our job is no different from the
standard classical simulation of the multidimensional integral.

”Type-B” updates suggest to change the value of K. We can not avoid
them altogether because the answer has meaning only as a sum of many
terms in the series, and a priori we do not know which terms in the series
are dominating in the answer. In any case, ergodicity requires that all terms
must be accounted for in the long run. If we pretend that dx are finite,
then we may simply suggest to increase K by n by adding new variables
{x}new = xK+1, . . . xK+n (by going backwards we suggest to decrease K by
n by removing {x}new variables). The acceptance ratio for B-updates

R ∼ W (K + n, ξK+n; x1, . . . , xK , xK+1, . . . xK+n; y)(dx)
K+n

W (K, ξK; x1, . . . , xK ; y)(dx)K
∼ (dx)n ,

contains now uncompensated differential measures. Of course, if dx is very
small the acceptance ratio is small and the algorithm is inefficient. But what
else can we do? Taking the limit dx → 0 explicitly would result in R = 0
and impossibility to perform B-updates. For many years people believed that
making dx finite is the only way to proceed.

The solution to the problem becomes clear if we ask the following ques-
tion: What is the relative weight of the diagram νK = (K, ξK; x1, . . . , xK ; y)
versus all diagrams of higher order ν ′K+n = (K+n, ξK+n; x1, . . . , xK , xK+1, . . . xK+n; y)
with {x}new ∈(a certain n-dimensional volume)=V (n)

new. The integrated
weight of new diagrams (I will not mention all arguments of W below for
brevity)

∫

. . .
∫

V
(n)
new

W (x1, . . . xK+n)(dx)
K+n = W (int)(x1, . . . , xK)(dx)K , (10)

has the same number of differential measures as the original diagram. The
acceptance ratio for the update suggesting to transform νK into any of the
ν ′K+n with {x}new ∈ V (n)

new is then finite

R ∼ W (int)(K + n, ξK+n; x1, . . . , xK ; y)

W (K, ξK; x1, . . . , xk, . . . , xK ; y)
. (11)

8

Well, if this update is accepted, and we have to increase K by n then we
may select the values of new variables {x}new within the volume V (n)

new using
normalized(!!) probability density

W (K + n, ξK+n; x1, . . . , xK , xK+1, . . . xK+n; y)

W (int)(K + n, ξK+n; x1, . . . , xK ; y)
. (12)

The net result is a finite acceptance ratio for transforming νK into νK+n.
So, what is the ”miracle” here? It is a simple twist of imagination that

we perform B-updates not as (K-diagram) vs (K+n-diagram) comparison,
but as (K-diagram) vs locally integrated (K+n-diagrams). You may say, ”A-
ha!, one needs to perform horrible integrals (10) to make this scheme work,
and in addition to seed new variables {x}new with the horrible distribution
function (12). This is where all the trouble is now!” Since I am assuming that
W functions are arbitrary, it may be a problem indeed to perform integrals
numerically in each update. However, there is a simple trick around this
problem based on re-weighing ideas, or the hibrid method discussed in the
RNDM Section.

I will go directly to the detailed balance Eq. for the B-update to derive
the final expression for the acceptance ratio. As before, pu is the probability
to apply a particular B-update transforming νK to ν ′K+n by adding n new
variables, and pū is the probability of going backwards and simply removing n
variables from the diagram. To perform the B-update, a simple distribution
function P (K + n, ξK+n; x1, . . . , xK , xK+1, . . . xK+n; y) is introduced to seed
variables xK+1, . . . xK+n. This function should allow the possibility of using
the transformation method in a closed analytic form, so that no CPU time
is wasted on the normalization integral

∫

. . .
∫

V
(n)
new

P (x1, . . . xK+n)(dx)
K+n = P (int)(x1, . . . , xK)(dx)K , (13)

and the seeding process (again, not arguments are mentioned; I will suppress
arguments in the P -functions below as well for simplicity). The detailed
balance Eq. then reads

9

W (K, ξK; x1, . . . , xK ; y)(dx)K pu
P (xK+1, . . . xK+n)(dx)

n

P (int)
P acc
u (νK → ν ′K+n) =

W (K + n, ξK+n; x1, . . . , xK , xK+1, . . . xK+n; y)(dx)
K+n pū P

acc
ū (ν ′K+n → νK) ,

where factor-by-factor we mention the configuration weight, the update prob-
ability, the probability of suggesting a particular set of new variables, and
the probability of accepting the update. All differential measures cancel in
the balance Eq. and we get the acceptance ratio as

R =
pū
pu

W (K + n, ξK+n; x1, . . . , xK , xK+1, . . . xK+n; y) P
(int)

W (K, ξK; x1, . . . , xK ; y) P (xK+1, . . . xK+n)
. (14)

Of course, when P = W (K + n, ξK+n; x1, . . . , xK , xK+1, . . . xK+n; y) we
reproduce our previous result (11). Formally, P is arbitrary (the final result
may not depend on the choice), but the algorithm efficiency strongly depends
on it. On one hand we want it to be simple enough to use the transformation
method, on the other hand, we want it to be as close as possible to theW (K+
n, ξK+n; x1, . . . , xK , xK+1, . . . xK+n; y) function to maximize the acceptance
ratio.

We have essentially completed the theory of Diagrammatic MC because
we know now how perform an ergodic set of updates on the series of integrals.
An amazing result is that in the final scheme we keep summing numbers Aν
and pay no attention whatsoever to the fact that different diagrams have
different number of continuous variables and the ratio of their weights is
typically 0 or ∞ ! In a way, we sum series of integrals without taking any of
the integrals explicitly!

Using many-body lattice path-integral as an example of
Diagrammatic MC.

This subsection is a simple illustration of how Diagrammatic MC can be
applied to the lattice path-integral. I will describe the most straightforward
scheme first, and postpone the discussion of the Worm-Algorithm for the
same model.

So, let’s go back to the bosonic Hubbard model, and consider its parti-
tion function as a particular case of the diagrammatic series. By looking at
the trajectory below Eq. (5) one may suggest three updates: A-type time

10

shift, B-type kink-antikink creation and its counterpart kink-antikink
annihilation.

Time shift (Type A). In this update one suggests to select at random any
kink in the configuration and to change its imaginary time coordinate. In the
picture below the selected kink is at time τk and connects sites i and i + 1.
It changes site occupation numbers from n1 to n3 = n1 + 1 on site i+ 1, and
from n2 to n4 = n2 −1 on site i. Without changing the nature of other kinks
in the system it can be placed anywhere between times τmin and τmax (which
are times of other kinks in the system).

i

i+1
τmin

maxτ
τ k

n1 n

nn

3

42

τ min

4

τ max
τ k

/

n1

n2 n

n3

We may propose the new position in time for the kink k using simple uniform
probability density

τ ′k = τmin + rndm()(τmax − τmin) .

The acceptance ratio for this choice will be given by the change of the po-
tential energy only (the matrix element for the kink 〈 n1, n2| −K| n3, n4〉 =
∆0

√
n3n2 remains the same)

R = exp
{

−
∫ τ ′

k

τk
dτ

1

2

∑

jj′
Ujj′

[

n′
j(τ)n

′
j′(τ) − nj(τ)nj′(τ)

]

+
∑

j

ξj

[

n′
j(τ) − nj(τ)

]

}

,

where occupation numbers in the final diagram are exactly same as in the
initial one except sites i and i+ 1 where n′

i+1 = n1, n
′
i = n2, and ni+1 = n3,

ni = n4, It is written in the general form assuming arbitrary interaction po-
tential between particles. For the Hubbard model with the on-site interaction
potential it simplifies to

R = exp
{

−(τ ′k−τk)
(

1

2
U(n2

1 + n2
2 − n2

3 − n2
4) + ξi+1(n1 − n3) + ξi(n2 − n4)

)}

,

At this point you would probably immediately say “Not uniform prob-
ability density! Use the heat bath idea and generate the new value of τ ′k

11

according to u(τ) = Ee−τE/(e−τminE − e−τmaxE) defined on τ ∈ (τmin, τmax)
where E = U(n2

1 +n2
2−n2

3−n2
4)/2−ξi+1(n1−n3)−ξi(n2−n4) is the potential

energy change due to kink k. Your acceptance ratio will become unity!”. I
certainly agree with this approach.

Kink-antikink creation/annihilation (Type B). In this update we select
some “flat” part of the trajectory, i.e. the one which has no kinks on it, and
suggest to modify it by creating a kink-antikink pair as shown in the figure
below.

i

i+
τmin

maxτ
selected "flat" interval

µ n

1

min

max

n

τ
τ

2

τ

τ1 2

2

n n

2n

1

n

1n3

n4

The selection process requires some care. We may enumerate, or count, all
“flat” parts of the trajectory and select any of them at random. Let the
number of ”flat” be Nfl. In a well developed trajectory with many kinks
between all sites we have Nfl = 2K, however, if there are sites which are
not connected by kinks to any other site, then we have Nfl < 2K. One has
to be careful in properly counting this number in type-B updates because it
is part of the detailed balance Eq. below. So, we select the “flat” interval
using rndm() ∗ Nfl + 1. Next, we may select at random the direction in
space to determine the n.n. site we are going to make a hopping transition,
µ̂ = rndm() ∗ 2d + 1, and determine the imaginary time boundaries within
which we will place a new kink-antikink pair. For simplicity of calculating
the acceptance ratio, I suggest to determine τmin and τmax from the condition
that the new kink-antikink pair does not interfere with any of the existing
kinks. This is not obligatory though; other choices are possible too but
they will require a laborous examination of how occupation numbers and
the corresponding matrix elements for other kinks have changed. The stage
for the update is ready now. I will no longer do, or mention, heat-bath
improvements which can be easily done on top of simple updates.

We select at random τ1 = τmin + rndm() ∗ (τmax − τmin) and τ2 = τmin +
rndm() ∗ (τmax − τmin), and order them so that τ1 < τ2. In other words, we
select imaginary time positions for the kink-antikink pair with the uniform

12

probability density u(τ1, τ2) = 2/(τmax − τmin)
2. The corresponding changes

in the occupation numbers are n3 = n1 − 1 and n4 = n2 + 1; the product of
matrix elements for the kink and for the antikink is t2n1(n2 + 1). Note, that
the number of flat intervals has increased, and is now N ′

fl > Nfl.
When going backwards, we select at random a flat interval (out of N ′

fl),
verify that its imaginary time boundaries are due to the kink-antikink pair,
i.e. due to the particle hopping to some site and and coming back from
exactly same site (in the figure above the n2, n4 intervals do not qualify for
the kink-antikink removal according to my rules), and if the removal of the
kink-antikink pair is not interfering with other kinks, then we suggest to
erase the pair. It is easy to write these rules, and make a plot explaning
what they mean, but it takes some time to program everything carefully and
make sure that every single exception is mentioned, to have the right data
structure of kinks and connected sites, proper handling of the β − periodic
time variables, etc.

The detailed balance Eq. for the type-B update discussed above is

(Case)ν
1

Nfl
u(τ1, τ2)(dτ)

2 Wν(dτ)
K P (acc)(ν → ν ′)

= (Case)ν′
1

N ′
fl

Wν′(dτ)
K+2 P (acc)(ν ′ → ν) ,

which gives

R =
(Case)ν′

(Case)ν

Nfl

N ′
fl

(τmax − τmin)
2Wν′

2Wν

.

For the Hubbard model the ratio of configuration weights is

Wν′

Wν
= t2n1(n2 + 1) e−(τ2−τ1) [U(n2

3+n
2
4−n

2
1−n

2
2)/2+ξi(n3−n1)+ξi+1(n4−n2)] .

The (Case) factor takes care of special cases when kink-antikink pairs are
inserted on intervals which have no other kinks. In the picture below I show
an example. It is clear, that there is no way of telling by looking at the final
configuration whether the kink-antikink pair was created starting from the
flat interval n1 with τ2 < τ1 or interval n2. (on the β-periodic circle τ2 < τ1
is allowed, which means that u(τ1, τ2) = 1/β2). Thus, (Case)ν = 2/2 = 1.
Correspondingly the pair can be deleted if either n3 or n2 interval is selected,

13

and thus (Case)ν′ = 2.

i

i+ µ
n

3n

τ

4

0 τ12

4

n n

4n

3

n

3n1

n2

β

The last question I would like to discuss in connection with the lattice
path-integral approach is an estimator for the kinetic energy. The estimator
for the potential energy is easy and self evident

Uν = β−1
∫

dτ
1

2

∑

jj′
Ujj′nj(τ)nj′(τ)

The average kinetic energy Ekin = −∆0
∑

<ij>(b†i bj+h.c.) can be obtained
from

〈Ekin〉 = Z−1
∑

a

Ekine
−β(K+U) ≡

(

−∆0

β

)

Z−1 ∂Z

∂∆0
.

From Eqs. (6) and (7) we know that

Z =
∞
∑

K=0

∑

νK

WνK
,

with WνK
∝ ∆K

0 where νK are all possible trajectories with K kinks. Thus

∆0
∂Z

∂∆0
=

∞
∑

K=0

∑

νK

K WνK
,

and the estimator for the kinetic energy is simply

〈Ekin〉 = − < K > /β .

This concludes a simple MC scheme which samples lattice trajectories
in a given winding number sector. Changing winding numbers can not be
achieved in the local scheme. The WA scheme discussed next solves the
problem of winding numbers. Also, WA has virtually no critical slowing down
problem, can simulate grand canonical ensembles, disordered systems, etc,

14

and, for no price at all, gives us the single particle propagator in imaginary
time

G(j, τ) = 〈b̂i+j(t+ τ) b̂†i (t)〉 ,
where, by definition, the meaning of b̂†i (t) is to create a particle on site i at

time t with the matrix element
√

ni(t) + 1, and the meaning of b̂i+j(t + τ)
is to delete a particle on site i + j at time t + τ with the matrix element
√

ni+j(t+ τ). The only difference between the configurations contributing
to the partition function Z and those contributing to G is that one of the
trajectories starts at (i, t) and terminates at (i+ j, t+ τ).

Path-integral Monte Carlo for lattice models. Worm Algorithm.

So, our configuration space is now

imaginary time

sp
ac

e

=b

=bIRA

+MASHA

For historical reasons the b̂†-point is called “Masha”, and the b̂-point is called
“Ira” (Ira and Masha are the names of Boris Svistunov’s sisters and integers
in Fortran). The WA strategy is exactly same as before: draw trajectories
using space-time moves of ira exclusively, and count each move as a contribu-
tion to the Green function G(jira− jmasha, τira− τmasha) histogram. I will be
short in describing all the details of updates and their obvious improvements

15

(they are very much the same as discussed above), and underline only new
features.

To switch between the Z and G configuration spaces we use a compli-
mentary pair of updates which create/delete ira−masha pair on the same
flat interval.
• In create (this update is used only if we are in the Z-configuration space;
you may introduce a logical variable present = .false. to tell you if this is the
case) we select at random one of the flat intervals, and in terms of the figure
below we suggest to place ira at time τ1 = τmin+ rndm()∗ (tmax− τmin), and
masha at time τ2 = τmin + rndm() ∗ (tmax − τmin).

i
τ

τ
OR

1n ira masha

min

iramasha

τ 1 τ 2

1ττ 2

n2

n2

max

• In delete (this update is used only if we are in the G-configuration space,
i.e. present = .true. and ira and masha are the ends of the same flat
interval) we suggest to erase ira−masha pair from the configuration. Just
read the figure above backwards. Notice, that other updates are possible
when ira and masha are present, so the delete-update is applied with some
probability pd. The detailed balance Eq. for the create/delete updates reads

(Case)ν
1

Nfl
Wν (tmax − τmin)

−2 P(acc)
c = (Case)ν′ pd ωG Wν′ P

(acc)
d ,

(as before, ωG is a free parameter ∼ 〈1/Nfl〉).
To develop the configuration and update its structure we need updates

shifting ira in time and in space.
• In the time shift update we perform an action similar to the kink shift
update discussed above. Just a figure is enough to explain it. This update

16

is used only if present = .true. and its probability is pts.

i ✖

ira

τ
✖ ✖

τ
✖

iraτ τmin max

• In the space shift updates we suggest to create/delete a kink to left or
to the right (forward or backward in time) of ira. The probability of calling
any of the space shift updates is pss. Again, I will simply show a figure of
what space shift updates do (the τmin and τmax limits are decided on the
basis of the current ira position in time and the requirement that the kink
to be created/deleted does not interfere with any of the existing kinks)

i

i+ µ

✖

✖

τmaxτ

Space Shift (left)

min

ira
✖

✖

τmin

τ max

ira

i

i+ µ

✖

✖

τmax

τ

Space Shift (right)

min

✖✖

ira
✖

✖ τ
minτ

maxira

This is a complete set of updates which do all the necessary job. You can
draw any line, erase any line, and jump between the lines, see ”Space Shift
(right)” figure. Winding numbers in space and time are not a problem at
all. Green’s function is the “by-product” of the algorithm, but its space-
time histogram allows you to get correlations in the system, spectrum of
elemenraty exitations, etc.

17

Optimization problems and Variational MC.

This is a sudden change in the line of approach to the quantum sys-
tem. In fact, I would like to discuss first how one can do optimization prob-
lem using random numbers. Suppose we have a function of many variables
f(c1, c2, . . . , cN) which is so complex that there is no simple way of finding
its global minimum. Moreover, it may have many local minima, so that a
simple speepest-descent method = “go in the direction of ∇f” does not work,
because it will stuck at some local minimum. Optimization using random
numbers may go as follows:
1. Initialize the calculation by setting fmin = 1.d200, i.e. as large as possible.
2. Choose at random a set of parameters (c1, c2, . . . , cN), e.g. by suggesting
ci at random on some interval (ai, bi) or using some probability distribution
ui(ci).
3. Calculate fset = f(c1, c2, . . . , cN). If (fset < fmin) then assign a new value
for the minimum fmin = fset and store the corresponding set in the memory
{ci}best = {ci}. Continue from point 2.

After many attempts, you will find the smallest value of f when points
are selected at random in wide range. Next, you may refine your search by
making the selection of sets {ci} in the close vicinity of point {ci}best. Then
refine more if not satisfied, etc. There is no guarantee that you will find the
global minimum if the number of attempts is limited, but you have very good
chances to get it if the global minimum valley is relatively wide.

Problem. Find the minimum of the function f = 1.2 − 3.3c1 +
2c21 + 2c2 − c22 + 4c32 + 0.5c42 − 1.5c3 + 0.44c23 where ci ∈ (−∞,∞) using
random numbers with accuracy up to 5 meaningful digits.

The variational principle for the search of the ground state may be for-
mulated as follows. Let |α〉 is the set of eigenvalue states of the Hamiltonian
H , i.e. H|α〉 = Eα|α〉. Since the set is complete, we write an arbitrary state
ψ as

ψ =
∑

α

pα| α〉 ,
∑

α

|pα|2 = 1 ,

18

and use it to calculate the average energy

〈E〉ψ =
〈 ψ|H| ψ〉
〈 ψ| ψ〉 =

∑

α |pα|2Eα
∑

α |pα|2
. ≡ EG +

∑

α |pα|2(Eα − EG)
∑

α |pα|2
≥ EG .

Unless all coefficients except pG are zero the average energy of the state ψ
is larger than EG. If we use a set of parameters {ci} to write down the trial
wavefunction ψ, then optimization procedures looking for the best minimum
of function f(c1, c2, . . . , cK) = 〈E〉ψ can be used to determine the best ap-
proximation to the ground state within a given parameterization ψ[{ci};R)],
where, as usual, R = {rj} denotes all particle coordinates.

Easy to say what the f -function is, but hard to get it if the number of
particles is enormous. If we write

f = 〈E〉ψ ≡
∫

dRψ∗(R)Hψ(R)
∫

dRψ∗(R)ψ(R)
≡
∫

dR|ψ(R)|2Hψ(R)
ψ(R)

∫

dR|ψ(R)|2 ,

then we recover a familiar Monte Carlo setup: just change notations

ν = R , Wν = |ψ(R)|2 , and Aν =
Hψ(R)

ψ(R)
,

It means that the value of f should itself be found from the MC simulation!
It can be done using standard rules—generate R configurations according
to the probability density |ψ(R)|2 (e.g. by making local shifts of one of the
coordinates (. . . , ri, . . .) → (. . . , r′i = ri + ∆ri, . . .), and accepting them with
the acceptance ratio |ψ(R′)|2/|ψ(R)|2) and collect statistics of Hψ(R)/ψ(R).
Once the value of f is determined with some reasonable accuracy we use it as
an input for the optimization procedure. This is the essence of the variational
MC approach.

There is another way to form a function f which has the smallest possible
value for the system eigenvalue state. Note, that for the eigenvalue state (and
only for the eigenvalue state) the quantity A, also called a local energy, is
R independent! It means that the variance

f̃ = 〈 (A− 〈A〉ψ)2 〉ψ = 〈 A2 〉ψ − f 2 ,

is a measure of how well ψ is approximating an eigenstate. At this point one
may choose to optimize f̃ instead of f . Since any eigenstate is a minimum
of f̃ with f̃min = 0, one still has to check which f̃ minimum has the lowest

19

energy f . It is not a problem since the calculation f̃ necessarily involves the
calculation of f .

The most important part of the variational MC approach is a good
choice of the trial wavefunction. In many cases other approximate numerical
schemes and experimental observations are used to motivate the choice and
range of parameters for ψ. It is all about better convergence—if you have
an infinite time to run the code and an exponential number of parameters
to optimize (in practice, the {ci} sets do not involve more than several hun-
dred parameters) then almost any guess will do the job. For example, in
simulations of 4He a popular choice is the Jastrow wavefunction

ψ = exp

−
N
∑

i<j

g2(ri − rj)

,

which is the product of pairwise correlations between particles. One may
use several parameters to characterize the g2(r) function. If not happy, add
terms which involve three-particle correlations, g3(ri−rj, ri−rk), four-particle
correlations, g4, etc.

20

Other methods: Stochastic Series Expansion (SSE) and Diffusion
MC (DMC)

There many other quantum Monte Carlo methods such as Stochas-
tic Series Expansion method, Diffusion Monte Carlo (with or with-
out the fixed-node approach), cluster methods, determinant MC,
etc. We have no time to review them all in detail, but I will try to give you
an idea of what some of them do (I will cover only SSE and DMC methods
below).

The Stochastic Series Expansion (SSE) method starts from conven-
tional decomposition (using previously introduced notations)

H = K + U , U | α〉 = Uα| α〉 , 〈 α|K| α〉 = 0 ,

Z =
∑

α

〈 α| e−βH | α〉 .

The next step is simple in principle (Handscomb, 1962), but took a lot of time
to figure out how to manage it efficiently in simulations (Sandvik 1991-97)
[moreover, it was the first exact, i.e. no systematic errors, QMC method]

Z =
∑

α

〈 α|
∞
∑

n=0

(−β)n

n!
Hn| α〉 =

∞
∑

n=0

(−β)n

n!

∑

α

〈 α| (K + U)n| α〉 . .

The (K +U)n expression can be written as a sum over all possible strings of
n operators

(K + U)n =
1
∑

σ1=0

. . .
1
∑

σn=0

Oσ1Oσ2 . . . Oσn
≡
∑

{σi}

Oσ1 . . . Oσn
,

where O0 = U and O1 = K. Thus

Z =
∞
∑

n=0

∑

{σi}

(−β)n

n!

∑

α

〈 α|Oσ1 . . . Oσn
| α〉 .

=
∞
∑

n=0

∑

{σi}

∑

α1,α2...αn

(

(−β)n

n!
(Oσ1)α1α2(Oσ2)α2α3 . . . (Oσn

)αnα1

)

.

At this point we notice that the sequence of basis states αi unambigously
determines the sequence of Oσi

operators because if αi = αi+1 then only

21

U has a nonzero matrix element, if αi 6= αi+1 then only K has a nonzero
matrix element. Thus, we may drop the summation over {σi} as redundant.
Furthermore, both U and K are sums of many terms. Since U is diago-
nal, it is not a problem to deal with all of them at once, e.g. if | α〉 is a
collection of occupation numbers on lattice sites, | α〉 = | n1, n2, . . .〉, then
Uα =

∑

ij Vijninj − c
∑

i ni. The non-diagonal terms typically, i.e. in most
models, change only one or two indeces in the many body set {n1, n2, . . . nN},
and it is clear from the structure of αi and αi+1 which term in K was respon-
sible for the transition. For example, if the two states are different only by
the value of the occupation number on sites j and j′ which have changed from
nj , nj′ to nj + 1, nj′ − 1 in the bosonic system with K = −∆0

∑

<kk′> b
†
k′bk

then we know that the term −∆0b
†
jbj′ was responsible for the transition and

its matrix element is −∆0

√

(nj + 1)nj′. It means that for any sequence of

{αi} one can easily calculate the corresponding matrix elements. Putting
everything together

Z =
∞
∑

n=0

∑

{αi}

Wν ,

where

Wν=n,{αi} =
(−β)n

n!
Hα1α2 . . .Hαnα1 .

This expression is obvious from the very beginning; the purpose of the decom-
position H = K + U was to show that diagonal and non-diagonal elements
are treated differently.

In a way, one may consider the sequence of states in the string α1, α2, . . . , αn
as a “trajectory” evolving from left to the right, though there is no true time
variable in this method. This analogy turns out to be very useful in under-
standing of how to handle the data structure efficiently. The stochastic series
expansion method samples α-“trajectories” of different length n, or, due to
the unambiguous relation between the α-“trajectory” and the operator string
in the expression Hn, all possible operator sequencies originating from Hn.
I will stop short on the algorithmic details, and simply note that the most
efficient way of updating operator strings is based on adding and moving
“worms”=(b†j1 = masha and bj2 = ira operators) around.

The Diffusion Monte Carlo (DMC) method closely resembles the
solution of kinetic equiations using random walkers (Meyers, 1956; Kalos,

22

1974; Ceperley, 1980-86). Indeed, Schrödinger Eq. in imaginary time

∂Ψ(τ, R)

∂τ
= (E −H)Ψ(τ, R) = D∇2Ψ(τ, R) + [E − V (R)]Ψ(τ, R)

where D = 1/2m and E is some constant, is identical to the equation describ-
ing a random walker in the 3N -dimensional dangerous wonderland which has
the property of duplicating the walker with the rate Γ = E − V (R) if Γ > 0
or making him die with the rate V (R) − E if Γ < 0. Obviously, the number
of walkers is not conserved in this problem, and in the long run their num-
ber may grow to infinity or shink to zero. To understand properties of the
solution, we use the egenvalue set of H (see paragraph on Variational MC)
to write identically

Ψ(0, R) =
∑

α

pα| α〉 ,

Ψ(τ, R) =
∑

α

eτ(E−H)pα| α〉 =
∑

α

eτ(E−Eα)pα| α〉 .

In the limit τ → ∞ all terms with E − Eα < 0 will decay to zero and the
ground state will be dominating in Ψ(τ, R) because it has the smallest decay
rate or the largest inflation rate. If E, which is arbitrary so far, is smaller
than EG then all terms decay to zero. This is unfortunate: though |G〉 is the
largest term in the sum it has a vanishing amplitude. If E > EG the solution
goes to infinity and may be unstable numerically. The best choice is then to
have E = EG—this will correspond to all terms decaying to zero except the
ground state which remains finite.

The MC procedure is then to perform conventional random walks in the
coordinate space R using many (say several thousand) walkers with addi-
tional feature that the number of walkers may increase/decrease with the
rate E − V (R) depending on the point in space. The value of E must be
adjusted so that in the long run the total number of random walkers is stable
and nearly constant in time. Once this quasistatic regime has been reached,
one may collect space histograms hist(R) counting the number of visits to R-
bins. This procedure should give us the ground state energy and the ground
state wavefunction.

There is one useful trick to improve the performance of the method. Let
φ(R) is the best we can do to approximate the ground state, e.g. it can be
the result of the variational MC method. We write ψ(τ, R) = f(τ, R)/φ(R)
and substitute this into the Schrödinger Eq.

ḟ/φ = (D∇2f)/φ+ 2D(∇(1/φ))(∇f) +D∇2(1/φ)f + [E − V]f/φ ,

23

or

ḟ(τ, R) = D∇
(

∇f(τ, R) − F (R)f(τ, R)
)

+
[

E − A(R)
]

f(τ, R) ,

where the “drift force” is

F (R) = ∇ lnφ2(R) ,

and A is the local energy introduced previously

A(R) =
−D∇2φ(R) + V φ(R)

φ(R)
=

Hφ(R)

φ(R)
=

φ∗(R)Hφ(R)

φ∗(R)φ(R)
.

The idea is to minimize local fluctuations of the increase/decrease rates and
make the whole scheme as close as possible to the conventional random walk
in external field, i.e. we improve on top of the known approximation φ(R).
This technique is nothing but another “face” of the importance sampling, or
reweighing method in MC.

Random walks in the presence of external field are performed as updates
(in time ∆τ)

Rτ+∆τ = R(τ) + ξ +DF (R)∆τ ,

where ξ = 9ξ1, . . . , ξN) is the Gaussian random variable distributed according
to the diffusion propagator

N
∏

i=1

(

4πD∆τ
)−3/2

e−ξ
2
i
/2D∆τ .

This formula derives from the solution of the diffusion Eq. in Fourier space
(with constant force F)

G(τ, k) = e−Dk
2τ−ikDFτ −→

G(τ, R) =
∫

dkeikRG(τ, k) =
∫

dkeik(R−DFτ)e−Dk
2τ = G(0)(τ, R−DFτ) ,

where G(0) is the diffusion propagator in the absence of the force.

24

