
COMMON SENSE RULES IN PROBABILITY THEORY

The probability of event A is

PA =
How many times A happened

Number of events
=

NA
N

.

In fact, to avoid “luck”/“misfortune” fluctuations, one has to take the limit
of NA, N → ∞:

PA = lim
N→∞

NA
N

.

In practice N = ∞ is not possible,
but we will see later that N ∼ 1023

is often the case, and FAPP

(For All Practical Purposes) this is
a sufficiently large number.

Probability that something will happen is 1, i.e.,
∑

A
PA = 1 . − Normalization condition .

Just like in computing, parallel measurements are faster; instead of re-
peating the same measurement many times we may try to do the same mea-
surement on many identical systems simultaneously and then count out-
comes. These systems are called an ensemble.

We may also invert the definition of the probability to say that if PA is the
probability of A to happen, then in N events A will happen approximately
NA ≈ PA N times, or

< NA >= PA N , −The expectation value

of A to happen in N events.
If A and B are completely independent events (mathematically we may

say so, but in physics one may always complain (rightly) that everything
depends on everything; however in most cases this dependence can be ne-
glected). Given PA and PB , the probability of the event to be either A or

B is the sum :
PA orB = PA + PB

since NA orB = NA + NB . Also, the probability of having A in the first
measurement and B in the second independent measurement is

PA &B = PA ∗ PB ,
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i.e., probabilities multiply (“guessing” all the time is harder)
These are simple rules, but starting from “bricks”, a complicated building

may be constructed. Other rules are also simple (although we will not need
them), like given PA and PB and joint probabilities for dependent events

PA (B ) − The prob. of A to happen if B happened ;

PB (A ) − The prob. of B to happen if A happened ;

the probability of A to happen if B did not happen is just

PA (Not B ) = [PA − PB PA (B )]/PNot B ,

(it reads: subtract from NA those cases when A happened after B ).
Let us apply these rules to calculate what is the probability that A hap-

pens exactly NA times in N events. We need this to understand how good
is our expectation that NA =< NA > (as an example imagine tossing coins
and asking for the probability of having NA heads in N attempts). If we
specify some sequence of outcomes, like

NotA , A , A , NotA , NotA , NotA A . . .

then assuming that all events happen independently from each other, the
probability of the sequence will be

P sequence(NA ) = PA
NA (1 − PA )N−NA − Product

But there are many sequences giving NA - one has to count the number
of ways of placing NA characters A in N boxes

| |A| |A|A| | | |A|
︸ ︷︷ ︸

Nevents

To place the first one we have N places, then only N − 1 left for the second
one, etc. , i.e., N !/(N −NA )! combinations. But NA ! of them are identical
since all A are the same, thus we have ( N

NA
) different combinations, and (to

simplify notations lets use p = PA and k = NA )

P (k) = pk(1 − p)N−k( N
k ) ≡ pk(1 − p)N−k N !

(N − k)!k!
.
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This is binomial distribution.
We are ready to see the difference between our expectations < k >= pN

and the actual statistics of possible outcomes. For large N and k one may
use the Stirling’s expression for the factorial function N ! ≈

√
2πNNNe−N ,

to get

( N
k ) ≈ 1√

2πN

(
N

k

)k+1/2( N

N − k

)N−k+1/2

.

Substituting this into P (k), we find

P (k) ≈ 1
√

2πNp(1 − p)
exp

{

(k+1/2) ln[pN/k]−(N−k+1/2) ln[(N−k)/(N−pN)]
}

this function is strongly peaked when N and k are large and the maximum
is at the expectation value pN .

P(k)

k

δ

pN

We can actually find the form of P (k) by assuming that |k − pN | � pN .
We simply substitute k = pN + δ into the exponent and keep only terms of
order δ (there will be none) and δ2/N , neglecting δ/N and (δ/N)2 (we will
see shortly that typical fluctuations are of order N 1/2, and thus δ2/N ∼ 1,
but δ/N ∼ N−1/2 � 1. This calculation takes time but is straightforward:

P (k) ≈ 1√
2πσ

e−(k−pN)2/2σ2

,
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where σ =
√

Np(1 − p). This is Gaussian distribution. The parameter σ
which measures the typical spread, or variance, of the k values is called the

mean-square-root-deviation (m.s.r.d.). Since σ ∼
√

k(1 − p) the peak is very
narrow for large k.

Narrow? Well, relatively narrow, because the absolute value of σ increases
with k as k1/2, but the ratio σ/k tends to zero as k−1/2.

All this applies to large N and k only. In “finance”,
out of 1000 brokers one will almost certainly (by pure luck,
not knowledge) guess correctly stocks variations up/down 10
times in a row. But the whole population of Earth is not
enough to find a lucky one who will guess correctly
100 times in a row.

So far we have been discussing discrete variables, and defined PA =
limN→∞ NA /N . If events A form a continuum of possibilities, then we have
to use probability densities:

Probability of A = dA ρ(A ) = lim
N→∞

dNA /N ,

and dNA will be proportional to dA . One may also use an identical definition
of the probability density as:

Prob.of A 1 < A < A 2 =
∫ A 2

A 1

dA ρ(A ) = lim
N→∞

∫ A 2

A 1
dNA
N

.

The continuous version of the Gaussian probability density is very similar

ρ(x) =
1√
2πσ

e−(x−<x>)2/2σ2

,

and we will see shortly how it derives for the large ensemble of independent
variables. < x > is the expectation value, or average

< x >=
∫

dxxρ(x)

and σ=r.m.s.d.

σ =< (x− < x >)2 >=
∫

dx(x− < x >)2ρ(x) =< x2 > − < x >2 .
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In statistical analysis of errors (e.g., in Monte Carlo
simulations) when the final result is not deterministic,
but rather probabalistic with Gaussian density distribution,
one is usually giving error bars in terms of σ to
specify how confident one is about the answer

Error bar = σ =⇒







The answer is within the
limits specified with probability

∫ <x>+σ
<x>−σ dxρ(x) = 0.683

Error bar = 3σ =⇒







The answer is within the
limits specified with probability

∫ <x>+3σ
<x>−3σ dxρ(x) = 0.998

< x > and σ are related to the first moments of the distribution. In
general the n-th moment is defined as

< xn >=
∫

dxxnρ(x)

For Gaussian distribution

< (x− < x >)2n >=
2nσ2n

√
π

Γ(n +
1

2
) ; [Γ(x) = Gamma function]

Higher moments are sometimes used to distinguish between the distributions;
e.g., the third moment in < (x− < x >)3 >≡< x3 > −3 < x2 >< x > +2 <
x >3 tells us how asymmetric is the distribution function.

Another important distribution arises when we study random processes.
In radioactive decay we have the probability of decay in time dt to be

dt/τ OR γdt

where τ is the decay time, and γ = 1/τ the decay rate. Then

(1 − dt/τ) is the prob. not to decay in time dt

(1 − dt/τ)t/dt ≡ e−γt the prob. not to decay in time t

Suppose now that we ”repair” the decaying system (e.g., if it is a bulb
burning out)
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t treplace replace replace

ttt1 2 3

What is the probability of having done m repairs in time t? We have to
sum/integrate over all possibilities for the m events to happen:

P (m) =
∫ t

0
γdtm

∫ tm

0
γdtm−1 . . .

∫ t2

0
γdt1 e−γt1e−γ(t2−t1) . . . e−γ(t−tm)

This expression is nothing but the sum/integral of product probabilities for
the particular sequence of events. All exponents collect into e−γt independent
of the set of {ti}, and the integral then is just (γt)m/m!. Thus we find

P (m) =
(γt)m

m!
e−γt The Poisson distribution

Also, if we have an ensemble of N � 1 decaying systems and select
small ∆t such that (γ∆t)N = a ∼ 1, where a is the average number of
events/decays happening in N systems in time ∆t, then the probability of
m decays to happen in time ∆t is

( N
m)(γ∆t)m(1 − γ∆t)N−m ≈ Nm(γ∆t)me−(γ∆t)N

m!
=

ame−a

m!

also a Poisson distribution. We have seen already that if a is large, then the
Poisson distribution goes to Gaussian.

Characteristic functions and sums of random variables

There is a very useful trick to deal with probability densities of indepen-
dent variables. Define:

FOURIER TRANSFORM : φ(k) =
∫

dxeikxρ(x) ≡ 〈eikx〉

INVERSE TRANSFORM : ρ(x) =
1

2π

∫

dke−ikxφ(k)
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Moments are very easy with φ(k) - they are simply related to the Taylor
expansion of φ(k)

φ(k) =
∞∑

n=0

knRn

n!

but also

〈eikx〉 =
∞∑

n=0

(ik)n〈xn〉
n!

i.e., Rn = in〈xn〉. Finally

〈xn〉 =
φ(n)(k)

in
at k = 0

For example,

〈x〉 = −idφ/dk|k=0 ; 〈x2〉 = −d2φ/dk2|k=0 ; etc.

The second expression may be also used to compute the dispersion as

〈x2〉 − 〈x〉2 = −d2φ/dk2 + (dφ/dk)2 = − d

dk

[
dφ/dk

φ

]

k=0

since φ(0) = 1 (normalization condition for ρ(x)). Thus

σ = − d2

dk2

[

ln φ
]

k=0

Taylor expansion coefficients of ln φ(k) are known as commulants:

ln φ(k) =
∞∑

n=0

(ik)nCn

n!

C3 = 〈(x − 〈x〉)3〉 − The distribution asymmetry

The real advantage of φ(k) is found when one has to deal with independent
events. Let’s consider two independent variables described by ρx(x) and
ρy(y). No assumptions about their form is made here except that they have
Fourier transforms. What is the probability density of the sum z = x + y?
As before we count all possibilities
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ρz(z) =
∫

dxρ(x)
︸ ︷︷ ︸

∫

dyρ(y)
︸ ︷︷ ︸

δ(x + y − z)
︸ ︷︷ ︸

Let x Let y Count only when x + y = z

or
ρz(z) =

∫

dxρ(x)ρy(z − x) − Convolution

Fourier transform:

φ(k) =
∫

dzeikz
∫

dxρx(x)ρy(z − x)

=
∫

d(z − x)eik(z−x)ρy(z − x)
︸ ︷︷ ︸

∫

dxeikxρx(x)

Shift

= φx(k)φy(k) − Fourier transforms multiply

More generally, if x1, x2, . . . , xN are independent, then

φz=
∑

xi
=

N∏

i=1

φi(k)

and

ln φz =
N∑

i=1

ln φi − Logarithms add

Since logarithms of the Fourier transforms add, their Taylor expansions also
add:

C(z)
n =

N∑

i=1

C(i)
n − Commulants add

Our previous result can be easily reproduced now - if all variables are
identical (i.e., they are just outcomes of an ensemble measurement) then
〈z〉 = N〈x〉 and σz =

√
Nσx. This rule applies for any distribution ρx

provided N is large. It is not just that average values and mean square
deviations add, but also the functional form of ρ(z) becomes universal! We
can prove that it is Gaussian for large N - this result is called
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The Central Limit Theorem, or CLT.
Proof:

Let’s z =







N∑

j=1

[xj − 〈xj〉]





/
√

N

Then: φz(k) = 〈eik[
∑N

j=1
(xj−〈xj〉)]/

√
N〉

= e
−ik

∑N

j=1
〈xj〉/

√
N〈eik

∑N

j=1
xj/

√
N〉

= e−ik
∑N

j=1
〈xj〉/

√
N

N∏

j=1

φj(k/
√

N)

Take ln: ln[φz(k)] = −ik
N∑

j=1

〈xj〉/
√

N +
N∑

j=1

ln φj(k/
√

N)

Expand in k: = −ik
N∑

j=1

〈xj〉/
√

N +
N∑

j=1

(k/
√

N)φ′
j(0) − k2

2N

N∑

j=1

σ2
j

+(terms ∼ 1√
N

→ 0)

Thus: φz(k) = e−k2σ2/2

Inverse transform ρz(z) =
1√
2πσ

e−z2/2σ2 − Gaussian

Random Walks Let’s apply CLT to the problem of random walks (or
lattice diffusion if you like). Random walk means that each step we make is
decided with equal probability (1/2) to be to the left or to the right. The
displacement is then ±l, i.e., each time ρ(∆x) = 1/2(δ(∆x− l) + δ(∆x + l)).

Question: How far one may go in N steps, and what is the distribution
of distances R =

∑N
j=1 ∆xj? CLT says :







〈R〉 = N〈x〉 = 0
〈R2〉 = N〈x2〉 = Nl2

and ρ(R) is Gaussian: ρ(R) −→ exp{−R2/2〈R2〉}/(
√

2π〈R2〉)
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ρ(  )

Rl

R

Discretization is not too important because σR � l

I.e., we are still around the origin (in one dimension, in fact, we keep
coming back!) and diffusively spread out as a square-root in the number
of steps, or time, if 1 step is a unit of time, R ∼

√
t. Apart from lattice

diffusion, where particles hop between lattice sites, random walks also apply
to the Brownian motion of molecules in solutions.
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