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From Ising model to the Ginzburg-Landau model

Ising model
Uniaxial ferromagnet
One spin variable       in each cubic cell
Energy of these spins---Cell Hamiltonian

This is the simplest form to see energy is smaller if 
the spin agrees with its neighbors
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From Ising model to the Ginzburg-Landau model

Generalize the Hamiltonian slightly to

Here       is a continuous variable
is additional energy 
is large except near 
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From Ising model to the Ginzburg-Landau model

Fig.1 A sharp minimum of                 at 1 implies that the 
magnitude of       is effectively restricted to nearly 1.
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From Ising model to the Ginzburg-Landau model

The XY model and Heisenberg model
If the spins are not restricted to point along one 
axis, we need to describe each spin by a vector
For Heisenberg model

For XY model
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From Ising model to the Ginzburg-Landau model

Cell Hamiltonian
Describe interactions between cell spins
Parameters sum up the relevant effects of the 
details within a scale smaller than a unit cell

Block Hamiltonian
Describe interactions between block spins,each
block consists of       unit cells. i.e. 
Thus parameters in Block Hamiltonian sum up the 
relevant details within a scale of      lattice 
constants 
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From Ising model to the Ginzburg-Landau model

Construction of block spins
Label the blocks by the position vector x of the 
centers of the blocks
Defined as the net spin in a block

The sum in the second equation is in the first 
Brillouin zone
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From Ising model to the Ginzburg-Landau model

Construction of block spins
Block spin is simply the mean of the cell spins 
within the block labeled by x

That is to say the spatial resolution of the block 
Hamiltonian is b, whereas that of the cell 
Hamiltonian is 1



From Ising model to the Ginzburg-Landau model

Ginzburg-Landau form
Starts by assuming a simple form for the block 
Hamiltonian

The coefficients               are functions of T, and h 
is the applied magnetic field divided by T.
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From Ising model to the Ginzburg-Landau model

Ginzburg-Landau form
Fourier transformation
Relations between Fourier components       and the 
spin configuration 
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From Ising model to the Ginzburg-Landau model

Ginzburg-Landau form
Fourier transformation

Write in terms of 

The sum over y is taken over the 2nd nearest 
neighbors of the block x
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From Ising model to the Ginzburg-Landau model

Meaning of various terms
Obviously             is the external field term
If we drop the                 term and set h=0, we can 
see that 

Each of the terms depends only on       of one 
block, that means each block spin is statistically 
independent of other block spins.
Then we have a system of             non-interacting 
blocks 
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From Ising model to the Ginzburg-Landau model

Meaning of various terms
We have no information about the coefficients 
except they must be smooth functions of        and 
other parameters
It will make no sense that if       is negative 
because            would the approach           as      
and the probability distribution                             
would blow up      
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From Ising model to the Ginzburg-Landau model

Meaning of various terms
When the gradient term                 is included, then 
the block spins are no longer independent.
This term means interaction between neighboring 
blocks
For ferromagnets, this interaction will make a block 
spin parallel to its neighboring block spins.
The greater the difference among the block spins, 
the lager             becomes and hence the smaller 
the probability

2( )x x yσ σ +−

/H T



Landau Theory

Most probable value and Gaussian Approxi.
Consider a field      and it Hamiltonian
The probability of the field is
The most probable configuration       is given by

Near                   can be approximated by  

Taylor expansion with       
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Landau Theory

Most probable value and Gaussian Approxi.
The probability is approximated as

Partition sum

Free energy

Generalize to more degrees of freedom is 
straightforward
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Landau Theory

Minimum of Ginzburg-Landau Hamiltonian
At the minimum point field                 is const
That means the Fourier components

The value can be found by setting 

We get
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Landau Theory

Minimum of Ginzburg-Landau Hamiltonian
When            
When

When
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Landau Theory

Minimum of Ginzburg-Landau Hamiltonian
Here      is denoted by  0ϕ σ



Landau Theory

Minimum of Ginzburg-Landau Hamiltonian
Critical point is at
When  

Energy density

When 
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Landau Theory
Minimum of Ginzburg-Landau Hamiltonian

Calculation of critical exponents

Same as mean-field calculation
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Gaussian approximation for T>Tc

We set h=0 for simplicity, thus

Partition sum

Free enegry
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Gaussian approximation for T>Tc

Let              , thus   
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Gaussian approximation for T>Tc
Energy density and specific heat

For                                                           are 
singular!!
Let 
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Gaussian approximation for T<Tc
Hamiltonian of Ginzburg-Landau form

We expand this Hamiltonian for T<Tc near     
Let                                              use the Taylor 
expansion, note that

Then we get  
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Gaussian approximation for T<Tc
Fourier transformation and let

Thus

And free energy 

Specific heat
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Correlation length and temperature dependence

The singular temperature dependence of the 
quantities can be summarized in terms of 
correlation length

Where       and        are both constants fixed by 
previous calculatiom
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Correlation length and temperature dependence

Correlation length measures the distance over 
which spin fluctuations are correlated
Singular behavior of quantities for vanishing

and       can be viewed as a result of
.   

As far as the singular temperature 
dependence is concerned,      is the only 
relevant length.               
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Ginzburg Criterion

The importance of fluctuation
Let’s see the ratio

is the const fixed by calculation

When the temperature is close to Tc within a range 
, the fluctuation are expected to be important

The smaller       is ,the smaller this range will be

4 2 /2
0 / [ / |1 / |]d d

T cC C T Tξ ζ− −Δ −∼
0C

2/(4 )
0

1/2
0 2

[(2 ) / ]

( / ' )

d d
T

c

C

c a T

ζ πξ

ξ

− −= Δ

≡

T cTζ
Tζ



Chap. 8 
Renormalizaion group 

Youjin Deng
09.12.12



Motivation
Study of symmetry transformations are proven 
to be extremely useful
At the critical region, we want to ask under 
what S.T is a system invariant
Microscopic details seem to make very little 
difference in critical phenomena suggests 
there’s some kind of symmetry properties.
This desired transformations is know as 
renormalization group 
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Variable transformation in probability theory
Before we go to the Kadanoff transformation, first 
have a review
Probability distribution               , x and y are two 
random variables, define                         then the 
probability distribution for z

does exactly the same job as             ,as far 
as he average values involving z are concerned 
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Variable transformation in probability theory
Example:                           are identical probability 
distribution for  
Now we calculate the distribution for 
For a integer                        ,we get
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Kadanoff transformation
Transform cell Hamiltonian to block Hamiltonian

Where                   are the block spin and cell spin, 
respectively and the index c runs over all cells and 
i,j from 1 to n (number of components)
b indicates the block size is b times the cell size
Still we can construct another block Hamiltonian
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Kadanoff transformation
We can see

In general

Kadanoff transformations will play a major role in 
the construction of the renormalization group
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Definition of renormalization group
We take GL form for instance with h=0

Use the triplet of parameters                         to 
label the probability distributions
Parameter space: different values of parameters 
and every probability distribution is represented by 
a point in this parameter space
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Definition of renormalization group
We define a transformation                  by the 
following steps

1,Apply the Kadanoff transformation

This step downgrades the spatial resolution of spin 
variations to sb, note that            is the block Hamiltonian

2,Relabel the block spins         in             and 
multiply each of them by a constant       

Now the block size sb is shrink to b, back to original  
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Definition of renormalization group
These two steps can be explicitly written as

Write         in the GL form

New parameters 

Thus define 
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Definition of renormalization group
The set of transformations               is called RG
It’s a semi-group, not a group since the inverse 
transformations are not defined.
It has the property 

only if               where a is independent of s.
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