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From Ising model to the Ginzburg-Landau model

= |sing model
> Uniaxial ferromagnet
» One spin variable o, in each cubic cell
> Energy of these spins---Cell Hamiltonian

I_AI[G] :%‘Jzzr (Gc _O-c+r)2

> This Is the simplest form to see energy is smaller if
the spin agrees with its neighbors



From Ising model to the Ginzburg-Landau model

= Generalize the Hamiltonian slightly to

ﬁ[a]%JZz;(m 6.+ YU (0.?)

» Here o, Is a continuous variable
> U(o.%) is additional energy
> U (c,.%)is large except near o, =+1



From Ising model to the Ginzburg-Landau model

Fig.1 A sharp minimum of U(c.*)/T at 1 implies that the
magnitude of o is effectively restricted to nearly 1.

UlaZ)/ T




From Ising model to the Ginzburg-Landau model

= The XY model and Heisenberg model

> If the spins are not restricted to point along one
axis, we need to describe each spin by a vector

> For Heisenberg model

JC — (ch ] 020 ] 030)

> For XY model

Gc — (Glc ] 020)



From Ising model to the Ginzburg-Landau model

= Cell Hamiltonian
> Describe interactions between cell spins
> Parameters sum up the relevant effects of the
details within a scale smaller than a unit cell
= Block Hamiltonian

» Describe interactions between block spins,each
block consists of b® unit cells.i.e.b=2,0r 3

» Thus parameters in Block Hamiltonian sum up the
relevant details within a scale of b lattice
constants



From Ising model to the Ginzburg-Landau model

= Construction of block spins

> Label the blocks by the position vector x of the
centers of the blocks

> Defined as the net spin in a block

X
Gx_b ZCGC

CT(X) _ L—dIZZO_keik-x

k<A

> The sum in the second equation is in the first
Brillouin zone



From Ising model to the Ginzburg-Landau model

= Construction of block spins

> Block spin is simply the mean of the cell spins
within the block labeled by x

> That is to say the spatial resolution of the block
Hamiltonian is b, whereas that of the cell
Hamiltonian is 1



From Ising model to the Ginzburg-Landau model

= Ginzburg-Landau form

> Starts by assuming a simple form for the block
Hamiltonian
H[c]/T :jddx[ao +a,02+a,0' +c(Vo): —h-o]

Where
02 = G(X) . O'(X) = i (Ui (X))2

way =33 %

> The coefficients a,,a,3,,C are functions of T, and h
IS the applied magnetic field divided by T.



From Ising model to the Ginzburg-Landau model

= Ginzburg-Landau form
» Fourier transformation

> Relations between Fourier components o, and the
spin configuration & (x)

o, =L [d*xe "o (x)

CT(X) o L—2/d Zeik-xo_k
k



From Ising model to the Ginzburg-Landau model

= Ginzburg-Landau form
» Fourier transformation

H[c]/T = a,L° +Zak .o_, (a, +ck?)

k<A

—d d/
+L Z a,(0 -0, )0y -0 i) =L a,-h
Kk 'k "<A
> Write in terms of O,

_2 .
Hlo]/T zbdZ{ao +a,0,° +a,0,° +Cb7zy(ax ~0,.. ) -h-o,

X+y
X

> The sum over y is taken over the 2"d nearest
neighbors of the block x



From Ising model to the Ginzburg-Landau model

= Meaning of various terms
> Obviously —h- o Is the external field term

> If we drop the (o, -0,,,)*term and set h=0, we can
see that

X+Yy

U(c,)=a,+a,0,°+a,0,’

> Each of the terms depends only on o, of one
block, that means each block spin is statistically
iIndependent of other block spins.

> Then we have a system of L° /b® non-interacting
blocks



From Ising model to the Ginzburg-Landau model

= Meaning of various terms

> We have no information about the coefficients
except they must be smooth functions of T and
other parameters

> It will make no sense that if 84 is negative
because U (o, ) would the approach —oco as o, -
and the probability distribution P ocexp(—H[o]/T)
would blow up



From Ising model to the Ginzburg-Landau model

= Meaning of various terms

> When the gradient term (o, - o,,,)’is included, then
the block spins are no longer independent.

> This term means interaction between neighboring
blocks

» For ferromagnets, this interaction will make a block
spin parallel to its neighboring block spins.

> The greater the difference among the block spins,
the lager H /T becomes and hence the smaller
the probability



Landau Theory

= Most probable value and Gaussian Approxi.
» Consider a field ¥ and it Hamiltonian H (@) /KT
> The probability of the fieldis poce <
» The most probable configuration @, is given by
dHlel _,
Op
> Near @,, H /KT can be approximated by
1
27°
. . 2
» Taylor expansion with ;-2 :Tl[a H )
P=P

H[@]/ KT = H[p 1/ KT +—— (- ;)"

8(p2



Landau Theory

= Most probable value and Gaussian Approxi.
> The probability is approximated as

e H [0 1-(9—5)/ 247

> Partition sum Z = _[ d e w122’
1

N2wA

~InZ = H[goo]—%ln(zmz)

— e_H[¢O] +

> Free energy ¢

> Generalize to more degrees of freedom is
straightforward



Landau Theory

= Minimum of Ginzburg-Landau Hamiltonian
> At the minimum point field ¢(x) = ¢, is const
> That means the Fourier components

o, =0 for k#0 and o,=L""¢,

> The value can be found by setting

aH [¢O] — O
0@,

> We get

2a,0, +4a,p,° —h =0



Landau Theory

= Minimum of Ginzburg-Landau Hamiltonian
> When & >0, ¢,~h/2a,
> When &, <0

"h=0=¢,=m, =+(-a,/2a,)"

“h>0= ¢, =|m,|+h/(8m,°a,)

> When a, =0



Landau Theory

= Minimum of Ginzburg-Landau Hamiltonian
> Here % is denoted by o

Hla] Hl&]

a,>0 a,<0



Landau Theory

= Minimum of Ginzburg-Landau Hamiltonian

> Critical pointisat &, =0=a, =a,'(T =T,)+---

> When h=0,a,<0
2
i)
4a,
> Energy density e=H[gp,]/L’ =a, '—2a—2(T -T.)’
a

4

Hlp, ]/ T = L (8, + az(”o2 + a4¢)o4) =L (8, —

> When a,20,p,=0=>e=a,’
EN T>T,
C =

a I
8, - (T-T,)" T<T
0 23.4( c) c




Landau Theory

= Minimum of Ginzburg-Landau Hamiltonian
> Calculation of critical exponents

h=0
(a,>0,¢0,=0
1/2
< a,'T.-T)| =>p'=1/2
a2<0,(00={2(2; )}
L 4

a,=0,0,=(h/4a,)" =5=1/3
( 1

a,>0p,=h/2a, = y= — =1
<
1
a <0,0.=lm,|-h/4a, = y = =y'=1
2 Dy | o| 2 X 4a2.(.|._.|.c) Y

» Same as mean-field calculation



Chap. 7
Gaussian approximation
for the Ginzburg-Landau
model

Youjin Deng
09.12.12




Gaussian approximation for T>Tc

= We set h=0 for simplicity, thus
9, =0 Hlpl/T=3L
Hlp]/T ~H[p,]/T + > (a, +ck*)o, -0,

1. k<A
» Partition sum S (8 + 0k o

1/2
=e*"[] - ]

o\ @, +ck”

> Free enegry

f =a0—%LdZ|n[7z/(a2+Ck2)]
k



Gaussian approximation for T>Tc
2 1 2
G(k) =l [') =~ (3, + k")

> Let T :TC thus A, =0

Gk)ock®=n=0
¥ o LirTgG(k) oc (T-T,) ocy=1



Gaussian approximation for T>Tc

> Energy density and specific heat

eoc—ocjd k(a, +ck?)™

Cma—mjd k(a, +ck?)™

> For a,,k > 0,(a, +ck*) ™, (a, +ck®)? are
singular!!

~Let k=kY¢ Eh=(a,/c)* >0ifa, >0
C o [Iddk'(l+k'2)_2]§4_d b 54—(1 oo (T _-I-C)—(z—d/z)
=>a=2-d/2



Gaussian approximation for T<Tc

> Hamiltonian of Ginzburg-Landau form
HIp]/T = [d*X[a, +a,¢” +a,0* ~hp-c(Vp)’]
» We expand this Hamiltonian for T<Tc near ¢,

> Let f(p)=a,+a,0° +a,0" —he use the Taylor
expansion, note that

1/2
¢, =m,—h/4a,,m, =[—j
> Then we get
Hlp]l/T = H[p,]/T

F[dxl(-2a, + 22 h)(p—g,) ~c(Vo)]
2\ —a,



Gaussian approximation for T<Tc
» Fourier transformation and let b =-2a, +% /2a4 -h
_a2

Hpl/T ~ Hlp, 1/ T + [dk(b+ck?) | o [
> Thus
G(k)=( o, [") o (b+ck*)™
whenh=0, G(k)oc[2a,(T,-T)+ck]"
> And free energy

f = H[p]/T _% LS In[z / (b -+ ck?)]

> Specific heat _
p C o é;4 d



Correlation length and temperature dependence

> The singular temperature dependence of the
guantities can be summarized in terms of

correlation length £=/c/a,

T>T  GK)= 2(1?1@52)

C :C0§4_d _|_...

T<T GK=—¢
A1+ K22 [ 2)

C:CO'§4_d _|_...

> Where C,and C," are both constants fixed by
previous calculatiom




Correlation length and temperature dependence

= Correlation length measures the distance over
which spin fluctuations are correlated

= Singular behavior of quantities for vanishing
IT-T.| and K can be viewed as a result of
>0

= As far as the singular temperature
dependence is concerned, £ Is the only
relevant length.



Ginzburg Criterion

= The importance of fluctuation
> Let's see the ratio

Col* I AC ~[¢4 1 11-T /T, [P*"
> C, Is the const fixed by calculation

¢y =[@rg) " | AC*)
Go = (c/a, 'Tc:)ll2

> When the temperature is close to Tc within a range
¢ T, » the fluctuation are expected to be important
> The smaller &7 is ,the smaller this range will be
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Motivation

= Study of symmetry transformations are proven
to be extremely useful

= At the critical region, we want to ask under
what S.T Is a system invariant

= Microscopic details seem to make very little
difference in critical phenomena suggests
there’s some kind of symmetry properties.

= This desired transformations iIs know as
renormalization group
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Variable transformation in probabillity theory

> Before we go to the Kadanoff transformation, first
have a review

> Probability distribution P(X,y) , x andy are two
random variables, define z =1/2(x+ y) then the
probabillity distribution for z

P'(z) = | dxdys(z —%(x +Y)P(X, y)

=<5(z—%<x+ y»>P

> P'(z) does exactly the same job as P(X,Y),as far
as he average values involving z are concerned



Variable transformation in probabillity theory

» Example: P(X) and P(y) are identical probability
distribution for x,y=12,3,4,5,6,7,8,9,10
> Now we calculate the distribution for Z

> Forainteger z, €[2,20] ,we get

P(z=12,) =) 6(2,x+Y)P(X)P(y)

VA 213|456 |7 8]9]10
P(z)x100 1123|4567 8|9
VA 1111213141516 17 18|19 |20
P(z)x100110| 9 |8 | 7|6 |5|4|3|2]1




Kadanoff transformation

» Transform cell Hamiltonian to block Hamiltonian

Hlo]/T =K, H[a]/T
g "ol :je‘H[a]’Tnﬁ(Gix ~b> o) [do.
i, X J.c

> Where 0, and o_are the block spin and cell spin,
respectively and the index c runs over all cells and
I,] from 1 to n (hnumber of components)

> b indicates the block size is b times the cell size
» Still we can construct another block Hamiltonian

H"[o]/T =K H[c]/T



Kadanoff transformation

» We can see

KH[ol/T =K.K, H[o]/T =K, H[co]/T
> In general

KK, =K.

> Kadanoff transformations will play a major role in
the construction of the renormalization group



Definition of renormalization group
> We take GL form for instance with h=0

Poce™
1. .
H :bd;[uzgx2 +U4O-x4 +§b 2Zyc(ax _GX+y)2]

» Use the triplet of parameters x4 = (u,,u,,C) to
label the probability distributions

> Parameter space: different values of parameters
and every probabillity distribution is represented by
a point in this parameter space



Definition of renormalization group

= We define a transformation u'=R.u« by the
following steps

> 1,Apply the Kadanoff transformation
H"[o]=KH[o]

= This step downgrades the spatial resolution of spin
variations to sb, note that H[o] is the block Hamiltonian

> 2,Relabel the block spins o, in H'le]l and
multiply each of them by a constant A,

H'lo]=(H"[o])

where Xx'=x/s
= Now the block size sb is shrink to b, back to original

oy A0y



Definition of renormalization group

> These two steps can be explicitly written as

“H'To _HIlo" - X n "
g el :je T 1640, -5 dzyay )| [do,
X' y

» Write H ' in the GL form
H'[o]=b" ;[%C'bzz:y,(ax. —0y,y) U, 0,°+U,'0,"]
» New parameters
pu'=(U,u,’c’)
> Thus define R,



Definition of renormalization group

> The set of transformations {R.,s >1} called RG

> It's a semi-group, not a group since the inverse
transformations are not defined.

> It has the property
RR.=R,

only if A, =S” where a is independent of s.



