Chap. 6
 Ginzburg-Landau model and Landau theory

Youjin Deng

09.12.12

From Ising model to the Ginzburg-Landau model

- Ising model
> Uniaxial ferromagnet
> One spin variable σ_{c} in each cubic cell
> Energy of these spins---Cell Hamiltonian

$$
\hat{H}[\sigma]=\frac{1}{2} J \sum_{c} \sum_{r}^{\prime}\left(\sigma_{c}-\sigma_{c+r}\right)^{2}
$$

$>$ This is the simplest form to see energy is smaller if the spin agrees with its neighbors

From Ising model to the Ginzburg-Landau model

- Generalize the Hamiltonian slightly to

$$
\hat{H}[\sigma]=\frac{1}{2} J \sum_{c} \sum_{r}\left(\sigma_{c}-\sigma_{c+r}\right)^{2}+\sum_{c} U\left(\sigma_{c}^{2}\right)
$$

$>$ Here σ_{c} is a continuous variable
> $U\left(\sigma_{c}^{2}\right)$ is additional energy
$>U\left(\sigma_{c}^{2}\right)$ is large except near $\sigma_{c}= \pm 1$

From Ising model to the Ginzburg-Landau model

- Fig. 1 A sharp minimum of $U\left(\sigma_{c}^{2}\right) / T$ at 1 implies that the magnitude of σ_{c} is effectively restricted to nearly 1.

From Ising model to the Ginzburg-Landau model

- The XY model and Heisenberg model
$>$ If the spins are not restricted to point along one axis, we need to describe each spin by a vector
> For Heisenberg model

$$
\sigma_{c}=\left(\sigma_{1 c}, \sigma_{2 c}, \sigma_{3 c}\right)
$$

> For XY model

$$
\sigma_{c}=\left(\sigma_{1 c}, \sigma_{2 c}\right)
$$

From Ising model to the Ginzburg-Landau model

- Cell Hamiltonian
$>$ Describe interactions between cell spins
> Parameters sum up the relevant effects of the details within a scale smaller than a unit cell
- Block Hamiltonian
- Describe interactions between block spins,each block consists of b^{d} unit cells. i.e. $b=2$, or 3
\Rightarrow Thus parameters in Block Hamiltonian sum up the relevant details within a scale of b lattice constants

From Ising model to the Ginzburg-Landau model

- Construction of block spins
$>$ Label the blocks by the position vector x of the centers of the blocks
\Rightarrow Defined as the net spin in a block

$$
\begin{aligned}
& \sigma_{x}=b^{-d} \sum_{c}^{x} \sigma_{c} \\
& \sigma(x)=L^{-d / 2} \sum_{k<\Lambda} \sigma_{k} e^{i k \cdot x}
\end{aligned}
$$

\Rightarrow The sum in the second equation is in the first Brillouin zone

From Ising model to the Ginzburg-Landau model

- Construction of block spins
$>$ Block spin is simply the mean of the cell spins within the block labeled by x
> That is to say the spatial resolution of the block Hamiltonian is b, whereas that of the cell Hamiltonian is 1

From Ising model to the Ginzburg-Landau model

- Ginzburg-Landau form
> Starts by assuming a simple form for the block Hamiltonian

$$
H[\sigma] / T=\int d^{d} x\left[a_{0}+a_{2} \sigma^{2}+a_{4} \sigma^{4}+c(\nabla \sigma)^{2}-h \cdot \sigma\right]
$$

Where

$$
\begin{aligned}
& \sigma^{2} \equiv \sigma(x) \cdot \sigma(x) \equiv \sum_{i=1}^{n}\left(\sigma_{i}(x)\right)^{2} \\
& (\nabla \sigma)^{2} \equiv \sum_{\alpha=1}^{d} \sum_{i=1}^{n}\left(\frac{\partial \sigma_{i}}{\partial x_{\alpha}}\right)^{2}
\end{aligned}
$$

$>$ The coefficients a_{0}, a_{2}, a_{4}, c are functions of T , and h is the applied magnetic field divided by T .

From Ising model to the Ginzburg-Landau model

- Ginzburg-Landau form
> Fourier transformation
> Relations between Fourier components σ_{k} and the spin configuration $\sigma(x)$

$$
\begin{aligned}
& \sigma_{k}=L^{-2 / d} \int d^{d} x e^{-i k \cdot x} \sigma(x) \\
& \sigma(x)=L^{-2 / d} \sum_{k} e^{i k \cdot x} \sigma_{k}
\end{aligned}
$$

From Ising model to the Ginzburg-Landau model

- Ginzburg-Landau form
$>$ Fourier transformation

$$
\begin{aligned}
H[\sigma] / T & =a_{0} L^{d}+\sum_{k<\Lambda} \sigma_{k} \cdot \sigma_{-k}\left(a_{2}+c k^{2}\right) \\
& +L^{-d} \sum_{k k^{\prime} k^{\prime \prime}<\Lambda} a_{4}\left(\sigma_{k} \cdot \sigma_{k^{\prime}}\right)\left(\sigma_{k^{\prime \prime}} \cdot \sigma_{-k-k^{\prime}-k^{\prime \prime}}\right)-L^{d / 2} \sigma_{0} \cdot h
\end{aligned}
$$

$>$ Write in terms of σ_{x}
$H[\sigma] / T=b^{d} \sum_{x}\left[a_{0}+a_{2} \sigma_{x}^{2}+a_{4} \sigma_{x}^{4}+c \frac{b^{-2}}{2} \sum_{y}^{\prime}\left(\sigma_{x}-\sigma_{x+y}\right)^{2}-h \cdot \sigma_{x}\right]$
$>$ The sum over y is taken over the $2^{\text {nd }}$ nearest neighbors of the block x

From Ising model to the Ginzburg-Landau model

- Meaning of various terms
$>$ Obviously $-h \cdot \sigma_{x}$ is the external field term
$>$ If we drop the $\left(\sigma_{x}-\sigma_{x+y}\right)^{2}$ term and set $\mathrm{h}=0$, we can see that

$$
U\left(\sigma_{x}\right)=a_{0}+a_{2} \sigma_{x}^{2}+a_{4} \sigma_{x}^{4}
$$

$>$ Each of the terms depends only on σ_{x} of one block, that means each block spin is statistically independent of other block spins.
$>$ Then we have a system of L^{d} / b^{d} non-interacting blocks

From Ising model to the Ginzburg-Landau model

- Meaning of various terms
$>$ We have no information about the coefficients except they must be smooth functions of T and other parameters
\Rightarrow It will make no sense that if a_{4} is negative because $U\left(\sigma_{x}\right)$ would the approach $-\infty$ as $\sigma_{x} \rightarrow \infty$ and the probability distribution $P \propto \exp (-H[\sigma] / T)$ would blow up

From Ising model to the Ginzburg-Landau model

- Meaning of various terms
$>$ When the gradient term $\left(\sigma_{x}-\sigma_{x+y}\right)^{2}$ is included, then the block spins are no longer independent.
$>$ This term means interaction between neighboring blocks
> For ferromagnets, this interaction will make a block spin parallel to its neighboring block spins.
> The greater the difference among the block spins, the lager H / T becomes and hence the smaller the probability

Landau Theory

- Most probable value and Gaussian Approxi.
$>$ Consider a field φ and it Hamiltonian $H(\varphi) / k T$
$>$ The probability of the field is $p \propto e^{-H / k T}$
\Rightarrow The most probable configuration φ_{0} is given by

$$
\frac{\partial H[\varphi]}{\partial \varphi}=0
$$

$>$ Near $\varphi_{0}, H / k T$ can be approximated by

$$
H[\varphi] / k T=H\left[\varphi_{0}\right] / k T+\frac{1}{2 \lambda^{2}}\left(\varphi-\varphi_{0}\right)^{2}
$$

> Taylor expansion with $\lambda^{-2}=T^{-1}\left(\frac{\partial^{2} H}{\partial \varphi^{2}}\right)_{\varphi=\varphi_{0}}$

Landau Theory

- Most probable value and Gaussian Approxi.
> The probability is approximated as

$$
e^{-H\left[\varphi_{0}\right]-\left(\varphi-\varphi_{0}\right) / 2 \lambda^{2}}
$$

\Rightarrow Partition sum $Z=\int d \varphi e^{-H\left[\varphi_{0}\right]-\left(\varphi-\varphi_{0}\right) / 2 \lambda^{2}}$

$$
=e^{-H\left[\varphi_{0}\right]}+\frac{1}{\sqrt{2 \pi} \lambda}
$$

> Free energy

$$
f=-\ln Z=H\left[\varphi_{0}\right]-\frac{1}{2} \ln \left(2 \pi \lambda^{2}\right)
$$

$>$ Generalize to more degrees of freedom is straightforward

Landau Theory

- Minimum of Ginzburg-Landau Hamiltonian
$>$ At the minimum point field $\varphi(x)=\varphi_{0}$ is const
$>$ That means the Fourier components

$$
\sigma_{k}=0 \quad \text { for } k \neq 0 \quad \text { and } \quad \sigma_{0}=L^{-d / 2} \varphi_{0}
$$

> The value can be found by setting

$$
\frac{\partial H\left[\varphi_{0}\right]}{\partial \varphi_{0}}=0
$$

$>$ We get

$$
2 a_{2} \varphi_{0}+4 a_{4} \varphi_{0}^{3}-h=0
$$

Landau Theory

- Minimum of Ginzburg-Landau Hamiltonian
$>$ When $a_{2}>0, \varphi_{0} \approx h / 2 a_{2}$
$>$ When $a_{2}<0$
- $h=0 \Rightarrow \varphi_{0}=m_{0}= \pm\left(-a_{2} / 2 a_{4}\right)^{1 / 2}$
(2) $h>0 \Rightarrow \varphi_{0}=\left|m_{0}\right|+h /\left(8 m_{0}^{2} a_{4}\right)$
$>$ When $a_{2}=0$

$$
\varphi_{0}=\left(\frac{h}{4 a_{4}}\right)^{1 / 3}
$$

Landau Theory

- Minimum of Ginzburg-Landau Hamiltonian
$>$ Here φ_{0} is denoted by σ

Landau Theory

- Minimum of Ginzburg-Landau Hamiltonian
$>$ Critical point is at $a_{2}=0 \Rightarrow a_{2}=a_{2}^{\prime}\left(T-T_{c}\right)+\cdots$
\Rightarrow When $h=0, a_{2}<0$

$$
H\left[\varphi_{0}\right] / T=L^{d}\left(a_{0}+a_{2} \varphi_{0}{ }^{2}+a_{4} \varphi_{0}^{4}\right)=L^{d}\left(a_{0}-\frac{a_{2}{ }^{2}}{4 a_{4}}\right)
$$

> Energy density $e=H\left[\varphi_{0}\right] / L^{d}=a_{0}{ }^{\prime}-\frac{a_{2}{ }^{\prime}}{2 a_{4}}\left(T-T_{c}\right)^{2}$
$>$ When $a_{2} \geq 0, \varphi_{0}=0 \Rightarrow e=a_{0}{ }^{\prime}$

$$
C= \begin{cases}a_{0}{ }^{\prime} & T>T_{c} \\ a_{0}{ }^{\prime}-\frac{a_{2}{ }^{\prime}}{2 a_{4}}\left(T-T_{c}\right)^{2} & T<T_{c}\end{cases}
$$

Landau Theory

- Minimum of Ginzburg-Landau Hamiltonian
$>$ Calculation of critical exponents

$$
\begin{aligned}
& h=0 \\
& \left\{\begin{array}{l}
a_{2}>0, \varphi_{0}=0 \\
a_{2}<0, \varphi_{0}=\left[\frac{a_{2}{ }^{\prime}\left(T_{c}-T\right)}{2 a_{4}}\right]^{1 / 2} \Rightarrow \beta^{\prime}=1 / 2
\end{array}\right. \\
& a_{2}=0, \varphi_{0}=\left(h / 4 a_{4}\right)^{1 / 3} \Rightarrow \delta=1 / 3 \\
& \left\{\begin{array}{l}
a_{2}>0, \varphi_{0}=h / 2 a_{2} \Rightarrow \chi=\frac{1}{2 a_{2}{ }^{\prime}\left(T-T_{c}\right)} \Rightarrow \gamma=1 \\
a_{2}<0, \varphi_{0}=\left|m_{0}\right|-h / 4 a_{2} \Rightarrow \chi=\frac{1}{4 a_{2}{ }^{\prime}\left(T-T_{c}\right)} \Rightarrow \gamma^{\prime}=1
\end{array}\right.
\end{aligned}
$$

$>$ Same as mean-field calculation

Chap. 7

Gaussian approximation for the Ginzburg-Landau model

Youjin Deng
09.12.12

Gaussian approximation for T>Tc

- We set h=0 for simplicity, thus

$$
\varphi_{0}=0 \quad H\left[\varphi_{0}\right] / T=a_{0} L^{d}
$$

$$
H[\varphi] / T \approx H\left[\varphi_{0}\right] / T+\sum_{k<\Lambda}\left(a_{2}+c k^{2}\right) \sigma_{k} \cdot \sigma_{-k}
$$

> Partition sum

$$
Z=e^{-H\left[\varphi_{0}\right] / T} \int d \sigma_{k} e^{\sum_{k}\left(a_{2}+c k^{2}\right)\left|\sigma_{k}\right|^{2}}
$$

$$
=e^{-a_{0} L^{d}} \prod_{k}\left(\frac{\pi}{a_{2}+c k^{2}}\right)^{1 / 2}
$$

$$
f=a_{0}-\frac{1}{2} L^{-d} \sum_{k} \ln \left[\pi /\left(a_{2}+c k^{2}\right)\right]
$$

Gaussian approximation for T>Tc

$$
\left.G(k)=\left.\langle | \sigma_{k}\right|^{2}\right\rangle=\frac{1}{2}\left(a_{2}+c k^{2}\right)
$$

\Rightarrow Let $T=T_{c}$, thus $a_{2}=0$

$$
\begin{aligned}
& G(k) \propto k^{-2} \Rightarrow \eta=0 \\
& \chi \propto \lim _{k \rightarrow 0} G(k) \propto\left(T-T_{c}\right)^{-1} \propto \gamma=1
\end{aligned}
$$

Gaussian approximation for T>Tc

> Energy density and specific heat

$$
\begin{aligned}
& e \propto \frac{\partial f}{\partial a_{2}} \propto \int d^{d} k\left(a_{2}+c k^{2}\right)^{-1} \\
& C \propto \frac{\partial e}{\partial a_{2}} \propto \int d^{d} k\left(a_{2}+c k^{2}\right)^{-2}
\end{aligned}
$$

> For $a_{2}, k \rightarrow 0,\left(a_{2}+c k^{2}\right)^{-1},\left(a_{2}+c k^{2}\right)^{-2}$ are singular!!

$$
\begin{aligned}
& \text { Let } k=k^{\prime} / \xi, \xi^{-1} \equiv\left(a_{2} / c\right)^{1 / 2} \rightarrow 0 \text { if } a_{2} \rightarrow 0 \\
& C \propto\left[\int d^{d} k^{\prime}\left(1+k^{\prime 2}\right)^{-2}\right] \xi^{4-d} \propto \xi^{4-d} \propto\left(T-T_{c}\right)^{-(2-d / 2)} \\
& \quad \Rightarrow \alpha=2-d / 2
\end{aligned}
$$

Gaussian approximation for T<Tc

> Hamiltonian of Ginzburg-Landau form

$$
H[\varphi] / T=\int d^{d} x\left[a_{0}+a_{2} \varphi^{2}+a_{4} \varphi^{4}-h \varphi-c(\nabla \varphi)^{2}\right]
$$

$>$ We expand this Hamiltonian for T<Tc near φ_{0}
$>$ Let $f(\varphi)=a_{0}+a_{2} \varphi^{2}+a_{4} \varphi^{4}-h \varphi$ use the Taylor expansion, note that

$$
\varphi_{0}=m_{0}-h / 4 a_{2}, m_{0}=\left(\frac{-a_{2}}{2 a_{4}}\right)^{1 / 2}
$$

$>$ Then we get

$$
\begin{aligned}
H[\varphi] / T & \approx H\left[\varphi_{0}\right] / T \\
& +\int d^{d} x\left[\left(-2 a_{2}+\frac{3}{2} \sqrt{\frac{2 a_{4}}{-a_{2}}} \cdot h\right)\left(\varphi-\varphi_{0}\right)^{2}-c(\nabla \varphi)^{2}\right]
\end{aligned}
$$

Gaussian approximation for T<Tc

\Rightarrow Fourier transformation and let $b=-2 a_{2}+\frac{3}{2} \sqrt{\frac{2 a_{4}}{-a_{2}}} \cdot h$

$$
H[\varphi] / T \approx H\left[\varphi_{0}\right] / T+\int d^{d} k\left(b+c k^{2}\right)\left|\sigma_{k}\right|^{2}
$$

$>$ Thus

$$
\begin{aligned}
& \left.G(k)=\left.\langle | \sigma_{k}\right|^{2}\right\rangle \propto\left(b+c k^{2}\right)^{-1} \\
& \text { when } h=0, \quad G(k) \propto\left[2 a_{2}\left(T_{c}-T\right)+c k^{2}\right]^{-1}
\end{aligned}
$$

$>$ And free energy

$$
f=H\left[\varphi_{0}\right] / T-\frac{1}{2} L^{-d} \sum_{k} \ln \left[\pi /\left(b+c k^{2}\right)\right]
$$

> Specific heat

$$
C \propto \xi^{4-d}
$$

Correlation length and temperature dependence

> The singular temperature dependence of the quantities can be summarized in terms of correlation length $\xi=\sqrt{c / a_{2}}$

$$
\begin{array}{ll}
T>T_{c} & G(k)=\frac{c \xi^{2}}{2\left(1+k^{2} \xi^{2}\right)} \\
& C=C_{0} \xi^{4-d}+\cdots \\
T<T_{c} & G(k)=\frac{c \xi^{2}}{4\left(1+k^{2} \xi^{2} / 2\right)} \\
& C=C_{0}{ }^{\prime} \xi^{4-d}+\cdots
\end{array}
$$

$>$ Where C_{0} and $C_{0}{ }^{\prime}$ are both constants fixed by previous calculatiom

Correlation length and temperature dependence

- Correlation length measures the distance over which spin fluctuations are correlated
- Singular behavior of quantities for vanishing $\left|T-T_{c}\right|$ and k can be viewed as a result of $\xi \rightarrow \infty$.
- As far as the singular temperature dependence is concerned, ξ is the only relevant length.

Ginzburg Criterion

- The importance of fluctuation
> Let's see the ratio

$$
C_{0} \xi^{4-d} / \Delta C \sim\left[\zeta_{T} /\left|1-T / T_{c}\right|\right]^{2-d / 2}
$$

$>C_{0}$ is the const fixed by calculation

$$
\begin{aligned}
& \zeta_{T}=\left[\left(2 \pi \xi_{0}\right)^{-d} / \Delta C\right]^{2 /(4-d)} \\
& \xi_{0} \equiv\left(c / a_{2}{ }^{\prime} T_{c}\right)^{1 / 2}
\end{aligned}
$$

> When the temperature is close to Tc within a range
$\zeta_{T} T_{c}$, the fluctuation are expected to be important
\Rightarrow The smaller ζ_{T} is ,the smaller this range will be

Chap. 8
 Renormalizaion group

Youjin Deng
09.12.12

Motivation

- Study of symmetry transformations are proven to be extremely useful
- At the critical region, we want to ask under what S.T is a system invariant
- Microscopic details seem to make very little difference in critical phenomena suggests there's some kind of symmetry properties.
- This desired transformations is know as renormalization group

Motivation

- Study of symmetry transformations are proven to be extremely useful
- At the critical region, we want to ask under what S.T is a system invariant
- Microscopic details seem to make very little difference in critical phenomena suggests there's some kind of symmetry properties.
- This desired transformations is know as renormalization group

Variable transformation in probability theory

$>$ Before we go to the Kadanoff transformation, first have a review
> Probability distribution $P(x, y)$, x and y are two random variables, define $z=1 / 2(x+y)$ then the probability distribution for z

$$
\begin{aligned}
P^{\prime}(z) & =\int d x d y \delta\left(z-\frac{1}{2}(x+y)\right) P(x, y) \\
& =\left\langle\delta\left(z-\frac{1}{2}(x+y)\right)\right\rangle_{P}
\end{aligned}
$$

> $P^{\prime}(z)$ does exactly the same job as $P(x, y)$,as far as he average values involving z are concerned

Variable transformation in probability theory

> Example: $P(x)$ and $P(y)$ are identical probability distribution for $x, y=1,2,3,4,5,6,7,8,9,10$
$>$ Now we calculate the distribution for Z
\Rightarrow For a integer $Z_{0} \in[2,20]$, we get

$$
P\left(z=z_{0}\right)=\sum_{x, y} \delta\left(z_{0}, x+y\right) P(x) P(y)
$$

Z		2	3	4	5	6	7	8	9	10
$P(z) \times 100$		1	2	3	4	5	6	7	8	9
Z	11	12	13	14	15	16	17	18	19	20
$P(z) \times 100$	10	9	8	7	6	5	4	3	2	1

Kadanoff transformation

> Transform cell Hamiltonian to block Hamiltonian

$$
\begin{aligned}
& H[\sigma] / T=K_{b} \hat{H}[\sigma] / T \\
& e^{-H[\sigma] / T}=\int e^{-\hat{H}[\sigma] / T} \prod_{i, x} \delta\left(\sigma_{i x}-b^{-d} \sum_{c}^{x} \sigma_{i c}\right) \prod_{j, c} d \sigma_{j, c}
\end{aligned}
$$

$>$ Where σ_{x} and σ_{c} are the block spin and cell spin, respectively and the index c runs over all cells and i, j from 1 to n (number of components)
> b indicates the block size is b times the cell size
> Still we can construct another block Hamiltonian

$$
H \text { " }[\sigma] / T=K_{s} H[\sigma] / T
$$

Kadanoff transformation

> We can see

$$
K_{s} H[\sigma] / T=K_{s} K_{b} H[\sigma] / T=K_{s b} H[\sigma] / T
$$

$>$ In general

$$
K_{s} K_{s^{\prime}}=K_{s s^{\prime}}
$$

> Kadanoff transformations will play a major role in the construction of the renormalization group

Definition of renormalization group

> We take GL form for instance with $\mathrm{h}=0$

$$
\begin{aligned}
& P \propto e^{-H} \\
& H=b^{d} \sum_{x}\left[u_{2} \sigma_{x}^{2}+u_{4} \sigma_{x}^{4}+\frac{1}{2} b^{-2} \sum_{y} c\left(\sigma_{x}-\sigma_{x+y}\right)^{2}\right]
\end{aligned}
$$

> Use the triplet of parameters $\mu=\left(u_{2}, u_{4}, c\right)$ to label the probability distributions
> Parameter space: different values of parameters and every probability distribution is represented by a point in this parameter space

Definition of renormalization group

- We define a transformation $\mu^{\prime}=R_{s} \mu$ by the following steps
> 1,Apply the Kadanoff transformation

$$
H^{\prime \prime}[\sigma]=K_{s} H[\sigma]
$$

- This step downgrades the spatial resolution of spin variations to sb, note that $H[\sigma]$ is the block Hamiltonian
>2, Relabel the block spins σ_{x} in $H^{\prime \prime}[\sigma]$ and multiply each of them by a constant λ_{s}

$$
\begin{aligned}
& H^{\prime}[\sigma]=\left(H^{\prime \prime}[\sigma]\right)_{\sigma_{x} \rightarrow \lambda_{s} \sigma_{x}} \\
& \text { where } \quad x^{\prime}=x / s
\end{aligned}
$$

- Now the block size sb is shrink to b, back to original

Definition of renormalization group

> These two steps can be explicitly written as

$$
e^{-H^{H}[\sigma] / T}=\int e^{-H\left[\sigma^{\prime \prime}\right] / T} \prod_{x^{\prime}} \delta\left(\lambda_{s} \sigma_{x}-s^{-d} \sum_{y}^{x} \sigma_{y} "\right) \prod_{y} d \sigma_{y} "
$$

> Write H^{\prime} in the GL form

$$
H^{\prime}[\sigma]=b^{d} \sum_{x^{\prime}}\left[\frac{1}{2} c^{\prime} b^{-2} \sum_{y^{\prime}}\left(\sigma_{x^{\prime}}-\sigma_{x^{\prime}+y^{\prime}}\right)^{2}+u_{2}{ }^{\prime} \sigma_{x^{\prime}}{ }^{2}+u_{4}{ }^{\prime} \sigma_{x^{\prime}}{ }^{4}\right]
$$

> New parameters

$$
\mu^{\prime}=\left(u_{2}{ }^{\prime}, u_{4}{ }^{\prime}, c^{\prime}\right)
$$

\Rightarrow Thus define R_{s}

Definition of renormalization group

$>$ The set of transformations $\left\{R_{s}, s \geq \$\right.$ called RG
$>$ It's a semi-group, not a group since the inverse transformations are not defined.
> It has the property

$$
R_{s} R_{s^{\prime}}=R_{s s^{\prime}}
$$

only if $\lambda_{s}=s^{a}$ where a is independent of s.

