Chap. 6 Ginzburg-Landau model and Landau theory

Youjin Deng 09.12.12

Ising model

Uniaxial ferromagnet

- One spin variable σ_c in each cubic cell
- Energy of these spins---Cell Hamiltonian

$$\hat{H}[\sigma] = \frac{1}{2} J \sum_{c} \sum_{r} (\sigma_{c} - \sigma_{c+r})^{2}$$

This is the simplest form to see energy is smaller if the spin agrees with its neighbors

Generalize the Hamiltonian slightly to

$$\hat{H}[\sigma] = \frac{1}{2} J \sum_{c} \sum_{r} (\sigma_{c} - \sigma_{c+r})^{2} + \sum_{c} U(\sigma_{c}^{2})$$

> Here σ_c is a continuous variable > $U(\sigma_c^2)$ is additional energy

>
$$U(\sigma_c^2)$$
 is large except near $\sigma_c = \pm 1$

• Fig.1 A sharp minimum of $U(\sigma_c^2)/T$ at 1 implies that the magnitude of σ_c is effectively restricted to nearly 1.

- The XY model and Heisenberg model
 - If the spins are not restricted to point along one axis, we need to describe each spin by a vector
 For Heisenberg model

$$\sigma_c = (\sigma_{1c}, \sigma_{2c}, \sigma_{3c})$$

意識意

For XY model

$$\sigma_c = (\sigma_{1c}, \sigma_{2c})$$

- Cell Hamiltonian
 - Describe interactions between cell spins
 - Parameters sum up the relevant effects of the details within a scale smaller than a unit cell
- Block Hamiltonian
 - > Describe interactions between block spins, each block consists of b^d unit cells. i.e. b = 2, or 3

Thus parameters in Block Hamiltonian sum up the relevant details within a scale of b lattice constants

- Construction of block spins
 - Label the blocks by the position vector x of the centers of the blocks
 - Defined as the net spin in a block

$$\sigma_x = b^{-d} \sum_c^x \sigma_c$$

$$\sigma(x) = L^{-d/2} \sum_{k < \Lambda} \sigma_k e^{ik \cdot x}$$

The sum in the second equation is in the first Brillouin zone

- Construction of block spins
 - Block spin is simply the mean of the cell spins within the block labeled by x

That is to say the spatial resolution of the block Hamiltonian is b, whereas that of the cell Hamiltonian is 1

- Ginzburg-Landau form
 - Starts by assuming a simple form for the block Hamiltonian

$$H[\sigma]/T = \int d^d x [a_0 + a_2\sigma^2 + a_4\sigma^4 + c(\nabla\sigma)^2 - h \cdot \sigma]$$

Where

$$\sigma^2 \equiv \sigma(x) \cdot \sigma(x) \equiv \sum_{i=1}^n (\sigma_i(x))^2$$

$$(\nabla \sigma)^2 \equiv \sum_{\alpha=1}^d \sum_{i=1}^n \left(\frac{\partial \sigma_i}{\partial x_\alpha} \right)^2$$

> The coefficients a_0, a_2, a_4, c are functions of T, and h is the applied magnetic field divided by T.

- Ginzburg-Landau form
 - Fourier transformation
 - > Relations between Fourier components σ_k and the spin configuration $\sigma(x)$

$$\sigma_{k} = L^{-2/d} \int d^{d} x e^{-ik \cdot x} \sigma(x)$$
$$\sigma(x) = L^{-2/d} \sum_{k} e^{ik \cdot x} \sigma_{k}$$

- Ginzburg-Landau form
 - Fourier transformation

$$H[\sigma]/T = a_0 L^d + \sum_{k < \Lambda} \sigma_k \cdot \sigma_{-k} (a_2 + ck^2)$$

$$+L^{-d}\sum_{kk'k''<\Lambda}a_4(\sigma_k\cdot\sigma_{k'})(\sigma_{k''}\cdot\sigma_{-k-k'-k''})-L^{d/2}\sigma_0\cdot h$$

> Write in terms of σ_x

$$H[\sigma]/T = b^{d} \sum_{x} \left[a_{0} + a_{2} \sigma_{x}^{2} + a_{4} \sigma_{x}^{4} + c \frac{b^{-2}}{2} \sum_{y} (\sigma_{x} - \sigma_{x+y})^{2} - h \cdot \sigma_{x} \right]$$

The sum over y is taken over the 2nd nearest neighbors of the block x

- Meaning of various terms
 - > Obviously $-h \cdot \sigma_r$ is the external field term
 - ▶ If we drop the $(\sigma_x \sigma_{x+y})^2$ term and set h=0, we can see that

$$U(\sigma_{x}) = a_{0} + a_{2}\sigma_{x}^{2} + a_{4}\sigma_{x}^{4}$$

Each of the terms depends only on σ_x of one block, that means each block spin is statistically independent of other block spins.

Then we have a system of L^d / b^d non-interacting blocks

- Meaning of various terms
 - We have no information about the coefficients except they must be smooth functions of T and other parameters
 - > It will make no sense that if a_4 is negative because $U(\sigma_x)$ would the approach $-\infty$ as $\sigma_x \to \infty$ and the probability distribution $P \propto \exp(-H[\sigma]/T)$ would blow up

- Meaning of various terms
 - > When the gradient term $(\sigma_x \sigma_{x+y})^2$ is included, then the block spins are no longer independent.
 - This term means interaction between neighboring blocks
 - For ferromagnets, this interaction will make a block spin parallel to its neighboring block spins.

The greater the difference among the block spins, the lager H / T becomes and hence the smaller the probability

- Approxi.
- Most probable value and Gaussian Approxi.
 Consider a field *φ* and it Hamiltonian *H*(*φ*)/*kT* The probability of the field is *p* ∝ *e*^{-*H*/*kT*}
 The most probable configuration *φ*₀ is given by [∂]*H*[*φ*]/∂*φ* = 0

- > Near $\varphi_0, H / kT$ can be approximated by
- $H[\varphi]/kT = H[\varphi_0]/kT + \frac{1}{2\lambda^2}(\varphi \varphi_0)^2$ > Taylor expansion with $\lambda^{-2} = T^{-1} \left(\frac{\partial^2 H}{\partial \varphi^2}\right)_{\varphi=0}$

- Most probable value and Gaussian Approxi.
 The probability is approximated as

$$e^{-H[\varphi_0]-(\varphi-\varphi_0)/2\lambda^2}$$

Partition sum
$$Z = \int d\varphi e^{-H[\varphi_0] - (\varphi - \varphi_0)/2\lambda^2}$$

$$=e^{-H[\varphi_0]}+\frac{1}{\sqrt{2\pi\lambda}}$$

Free energy
$$f = -\ln Z = H[\varphi_0] - \frac{1}{2}\ln(2\pi\lambda^2)$$

Generalize to more degrees of freedom is straightforward

- Minimum of Ginzburg-Landau Hamiltonian
 - ≻ At the minimum point field φ(x) = φ₀ is const
 ≻ That means the Fourier components

$$\sigma_k = 0$$
 for $k \neq 0$ and $\sigma_0 = L^{-d/2} \varphi_0$

The value can be found by setting

$$\frac{\partial H[\varphi_0]}{\partial \varphi_0} = 0$$

$$2a_2\varphi_0 + 4a_4\varphi_0^3 - h = 0$$

- Minimum of Ginzburg-Landau Hamiltonian When $a_2 > 0$, $\varphi_0 \approx h/2a_2$ When $a_2 < 0$
 - $h = 0 \Longrightarrow \varphi_0 = m_0 = \pm (-a_2 / 2a_4)^{1/2}$
 - $h > 0 \Longrightarrow \varphi_0 = |m_0| + h / (8m_0^2 a_4)$

When
$$a_2 = 0$$

 $\varphi_0 = \left(\frac{h}{4a_4}\right)^{1/3}$

Minimum of Ginzburg-Landau Hamiltonian

 \succ Here φ_0 is denoted by σ

- Minimum of Ginzburg-Landau Hamiltonian
 - > Critical point is at $a_2 = 0 \Rightarrow a_2 = a_2 '(T T_c) + \cdots$ > When $h = 0, a_2 < 0$

$$H[\varphi_0]/T = L^d (a_0 + a_2 \varphi_0^2 + a_4 \varphi_0^4) = L^d (a_0 - \frac{a_2^2}{4a_4})$$

Energy density
$$e = H[\varphi_0] / L^d = a_0' - \frac{a_2'}{2a_4} (T - T_c)^2$$

When
$$a_2 \ge 0, \varphi_0 = 0 \Longrightarrow e = a_0'$$

 $C = \begin{cases} a_0' & T > T \\ a_0' - \frac{a_2'}{2a_4} (T - T_c)^2 & T < T \end{cases}$

- Minimum of Ginzburg-Landau Hamiltonian
 Calculation of critical exponents
- h=0 $a_2 > 0, \varphi_0 = 0$ $\begin{cases} a_2 < 0, \varphi_0 = \left[\frac{a_2'(T_c - T)}{2a_4}\right]^{1/2} \Rightarrow \beta' = 1/2 \end{cases}$ $a_2 = 0, \varphi_0 = (h / 4a_4)^{1/3} \Longrightarrow \delta = 1/3$ $|a_2 > 0, \varphi_0 = h / 2a_2 \Rightarrow \chi = \frac{1}{2a_2'(T - T_2)} \Rightarrow \gamma = 1$ $|a_2 < 0, \varphi_0 = |m_0| - h / 4a_2 \Rightarrow \chi = \frac{1}{4a_2'(T - T_2)} \Rightarrow \gamma' = 1$ Same as mean-field calculation

Chap. 7 Gaussian approximation for the Ginzburg-Landau model

Youjin Deng 09.12.12

Gaussian approximation for T>Tc We set h=0 for simplicity, thus $\varphi_0 = 0 \qquad H[\varphi_0]/T = a_0 L^d$ $H[\varphi]/T \approx H[\varphi_0]/T + \sum (a_2 + ck^2)\sigma_k \cdot \sigma_{-k}$ Partition sum $Z = e^{-H[\varphi_0]/T} \int d\sigma_k e^{\sum_k (a_2 + ck^2) |\sigma_k|^2}$ $= e^{-a_0 L^d} \prod_{k} \left(\frac{\pi}{a_2 + ck^2} \right)^{1/2}$ Free enegry $f = a_0 - \frac{1}{2}L^{-d} \sum_{k} \ln[\pi / (a_2 + ck^2)]$

Gaussian approximation for T>Tc

$$G(k) = \left\langle |\sigma_k|^2 \right\rangle = \frac{1}{2} (a_2 + ck^2)$$

1

> Let
$$T = T_c$$
, thus $a_2 = 0$

$$G(k) \propto k^{-2} \Longrightarrow \eta = 0$$

$$\chi \propto \lim_{k \to 0} G(k) \propto (T - T_c)^{-1} \propto \gamma = 1$$

Gaussian approximation for T>Tc

Energy density and specific heat

 $\mathcal{A}f$

$$e \propto \frac{\partial g}{\partial a_2} \propto \int d^d k (a_2 + ck^2)^{-1}$$
$$C \propto \frac{\partial e}{\partial a_2} \propto \int d^d k (a_2 + ck^2)^{-2}$$

For $a_2, k \to 0, (a_2 + ck^2)^{-1}, (a_2 + ck^2)^{-2}$ are singular!!

Let
$$k = k'/\xi, \xi^{-1} \equiv (a_2/c)^{1/2} \to 0$$
 if $a_2 \to 0$
 $C \propto \left[\int d^d k' (1+k'^2)^{-2} \right] \xi^{4-d} \propto \xi^{4-d} \propto (T-T_c)^{-(2-d/2)}$
 $\Rightarrow \alpha - 2 - d/2$

Gaussian approximation for T<Tc

Hamiltonian of Ginzburg-Landau form $H[\varphi]/T = \int d^{d} x [a_{0} + a_{2}\varphi^{2} + a_{4}\varphi^{4} - h\varphi - c(\nabla\varphi)^{2}]$ > We expand this Hamiltonian for T<Tc near φ_0 > Let $f(\varphi) = a_0 + a_2 \varphi^2 + a_4 \varphi^4 - h\varphi$ use the Taylor expansion, note that $\varphi_0 = m_0 - h / 4a_2, m_0 = \left(\frac{-a_2}{2a_1}\right)^{1/2}$ Then we get $H[\varphi]/T \approx H[\varphi_0]/T$ + $\int d^d x [(-2a_2 + \frac{3}{2}\sqrt{\frac{2a_4}{-a_2}} \cdot h)(\varphi - \varphi_0)^2 - c(\nabla \varphi)^2]$

Correlation length and temperature dependence

> The singular temperature dependence of the quantities can be summarized in terms of correlation length $\xi = \sqrt{c/a_2}$

$$T > T_c \qquad G(k) = \frac{c\xi^2}{2(1+k^2\xi^2)}$$
$$C = C_0\xi^{4-d} + \cdots$$
$$T < T_c \qquad G(k) = \frac{c\xi^2}{4(1+k^2\xi^2/2)}$$

Where C_0 and C_0 ' are both constants fixed by previous calculatiom

 $C = C_0' \xi^{4-d} + \cdots$

Correlation length and temperature dependence

- Correlation length measures the distance over which spin fluctuations are correlated
- Singular behavior of quantities for vanishing
 - $|T-T_c|$ and k can be viewed as a result of $\xi \rightarrow \infty$.
- 就意

As far as the singular temperature dependence is concerned, ξ is the only relevant length.

Ginzburg Criterion

The importance of fluctuation

- Let's see the ratio
 - $C_0 \xi^{4-d} / \Delta C \sim [\zeta_T / |1 T / T_c|]^{2-d/2}$

 \succ C₀ is the const fixed by calculation

$$\zeta_T = \left[(2\pi\xi_0)^{-d} / \Delta C \right]^{2/(4-d)}$$

$$\xi_0 \equiv \left(c / a_2 \,' T_c \right)^{1/2}$$

When the temperature is close to Tc within a range $\zeta_T T_c$, the fluctuation are expected to be important. The smaller ζ_T is ,the smaller this range will be

Chap. 8 Renormalizaion group

Youjin Deng 09.12.12

Motivation

- Study of symmetry transformations are proven to be extremely useful
- At the critical region, we want to ask under what S.T is a system invariant
- Microscopic details seem to make very little difference in critical phenomena suggests there's some kind of symmetry properties.
- This desired transformations is know as
- renormalization group

Motivation

- Study of symmetry transformations are proven to be extremely useful
- At the critical region, we want to ask under what S.T is a system invariant
- Microscopic details seem to make very little difference in critical phenomena suggests there's some kind of symmetry properties.
- This desired transformations is know as
- renormalization group

Variable transformation in probability theory

- Before we go to the Kadanoff transformation, first have a review
- > Probability distribution P(x, y), x and y are two random variables, define z = 1/2(x + y) then the probability distribution for z

$$P'(z) = \int dx dy \delta(z - \frac{1}{2}(x+y))P(x,y)$$

 $=\left\langle \delta(z-\frac{1}{2}(x+y))\right\rangle_{\mathbf{r}}$

ADDRONOM A ADDRONOM A

P'(z) does exactly the same job as P(x, y), as far as he average values involving z are concerned

Variable transformation in probability theory

 $P(z = z_0) = \sum \delta(z_0, x + y) P(x) P(y)$

> Example: P(x) and P(y) are identical probability distribution for x, y = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

> Now we calculate the distribution for Z

> For a integer $z_0 \in [2, 20]$, we get

RUS			<i>x</i> , <i>y</i>					10	20	
	000	2	3	4	5	6	7	8	9	10
$P(z) \times 100$	1000000		2	3	4	5	6	7	8	9
	11	12	13	14	15	16	17	18	19	20
$P(z) \times 100$	10	9	8	7	6	5	4	3	2	1
				-		100000000000000000000000000000000000000			50 000 000 000 000 000 000	

Kadanoff transformation

Transform cell Hamiltonian to block Hamiltonian

Λ

$$H[\sigma]/T = K_b H[\sigma]/T$$
$$e^{-H[\sigma]/T} = \int e^{\hat{H}[\sigma]/T} \prod_{i,x} \delta(\sigma_{ix} - b^{-d} \sum_{c}^{x} \sigma_{ic}) \prod_{i,c} d\sigma_{j,c}$$

Where σ_x and σ_c are the block spin and cell spin, respectively and the index c runs over all cells and i,j from 1 to n (number of components)
 b indicates the block size is b times the cell size
 Still we can construct another block Hamiltonian
 H"[σ]/T = K_s H[σ]/T

Kadanoff transformation

➤ We can see

 $K_{s}H[\sigma]/T = K_{s}K_{b}\hat{H}[\sigma]/T = K_{sb}\hat{H}[\sigma]/T$ > In general

$$K_{s}K_{s'} = K_{ss'}$$

Kadanoff transformations will play a major role in the construction of the renormalization group

 $P \propto e^{-H}$

We take GL form for instance with h=0

$$H = b^{d} \sum_{x} \left[u_{2} \sigma_{x}^{2} + u_{4} \sigma_{x}^{4} + \frac{1}{2} b^{-2} \sum_{y} c (\sigma_{x} - \sigma_{x+y})^{2} \right]$$

Use the triplet of parameters $\mu = (u_2, u_4, c)$ to label the probability distributions

Parameter space: different values of parameters and every probability distribution is represented by a point in this parameter space

• We define a transformation $\mu' = R_s \mu$ by the following steps

> 1, Apply the Kadanoff transformation

 $H''[\sigma] = K_s H[\sigma]$

This step downgrades the spatial resolution of spin variations to sb, note that *H*[σ] is the block Hamiltonian
 2,Relabel the block spins σ_x in *H*"[σ] and multiply each of them by a constant λ_s

就愛

 $H'[\sigma] = (H''[\sigma])_{\sigma_x \to \lambda_s \sigma_x}$ where x' = x / s

Now the block size sb is shrink to b, back to original

These two steps can be explicitly written as

$$e^{-H'[\sigma]/T} = \int e^{-H[\sigma'']/T} \prod_{x'} \delta(\lambda_s \sigma_x - s^{-d} \sum_y^x \sigma_y'') \prod_y d\sigma_y''$$

> Write *H*' in the GL form

$$H'[\sigma] = b^{d} \sum_{x'} \left[\frac{1}{2}c'b^{-2} \sum_{y'} (\sigma_{x'} - \sigma_{x'+y'})^{2} + u_{2}'\sigma_{x'}^{2} + u_{4}'\sigma_{x'}^{4}\right]$$

New parameters

$$\mu' = (u_2', u_4', c')$$

> Thus define R_{i}

- > The set of transformations $\{R_s, s \ge 1\}$ called RG
- > It's a semi-group, not a group since the inverse transformations are not defined.
- It has the property

$$R_s R_{s'} = R_{ss}$$

nly if
$$\lambda_s = s^a$$
 where a is independent of s.

О

