Finite-temperature phase transition in a class of 4-state Potts antiferromagnets

Youjin Deng

Department of Modern Physics University of Science and Technology of China P.R.China

Cooperators

Youjin Deng

Yuan Huang

Jesper L. Jacobsen

Jesus Salas

Alan D. Sokal

References

1. Roman Kotecky[´], Jesu[´]s Salas, and Alan D. Sokal, *Phase Transition in the Three-State Potts antiferromagnet on the Diced Lattice*,

Phys. Rev. Lett 101, 030601 (2008)

2. Q. N. Chen, M. P. Qin, J. Chen, Z. C. Wei, H. H. Zhao, B. Normand, and T. Xiang, Partial order and finite-temperature phase transitions in Potts models on irregular lattices,

arXiv:1105.5030, accepted by Phys. Rev. Lett. Sept. 06, 2011

- Yuan Huang, Youjin Deng (advisor), *Phase Diagram of the Ashkin-Teller model on the Union-Jack lattice,* **bachelor degree thesis, June, 2011**
- 4. Youjin Deng, Yuan Huang, Jesper Lykke Jacobsen, Jesu's Salas, and Alan D. Sokal,

Finite-temperature phase transition in a class of 4-state Potts antiferromagnets,

arXiv:1108.1743, accepted by Phys. Rev. Lett. Sept. 02, 2011

Motivation

 Systems with non-zero entropy density could have long-range order

• Four-color theorem

four-color theorem on triangular lattice

T=0 AF Ising on triangular lattice

ground-state entropy (Wannier, 1950)

 $\lim_{N\to\infty}\frac{S(0)}{N}\approx 0.338314$

correlation function on sublattices

 $\xi(r) \propto r^{-1/2}$

Questions

We considered q-state Potts antiferromagnet

$$H = J \sum_{\langle ij \rangle} \delta_{\sigma_i,\sigma_j} \quad (J > 0, \sigma_i = 1, 2, \dots, q \forall i)$$

on 2D Eulerian (all vertices have even degree) plane
triangulations (all faces are triangles).

- Is there a phase transition at finite-temperature, of what order?
- What is the nature of the low-temperature phase(s)?
- If there is a critical point, what are the critical exponents and the universality classes?

Lattices

triangular lattice

union jack lattice

bisected hexagonal lattice

union jack lattice

$$G = (V, E)$$
$$G^* = (V^*, E^*)$$
$$\hat{G} = (V \cup V^*, \hat{E})$$
$$\tilde{G} = (V \cup V^*, \tilde{E})$$
$$G = G^* = \hat{G}$$
$$= square \ lattice$$

 \tilde{G} = union jack lattice

bisected hexagonal lattice

- G = (V, E)
- = triangular
- $G^* = (V^*, E^*)$
- = hexagonal
- $\hat{G} = (V \cup V^*, \hat{E})$
- = diced
- $\tilde{G} = (V \cup V^*, \tilde{E})$

= bisected hexagonal

• Argument 1.

Ising AF has a nonzero-temperature phase transition on union jack lattice.

F. Y. Wu and K. Y. Lin Ising Model on the union jack lattice as a free fermion model J. Phys. A: Math. Gen. 20(1987)

• Argument 2.

q=4 AF Potts T=0 \iff q=9 F Potts at $v = e^{J} - 1 = 3$ (\tilde{G}) (G or G^{*}) non-critical \Leftarrow non-critical

• union-jack lattice

G and G^* : square ----- self-dual q=9 F Potts at v=3 is at 1st-order transition point.

bisected hexagonal lattice
 G and G^{*}: triangular ----- hexagonal
 q=9 F Potts at v=3 is :
 disordered ----- hexagonal
 ordered ----- triangular

• Argument 3.

some 2D AF models T=0 \iff "height" model

height model: "smooth"(ordered) / "rough"(critical)

So these AF model must either be ordered / critical at T=0.

Phase Transition

- Based on the above arguments: 4-state AF Potts model on \tilde{G} has an order-disorder transition at finite temperature.
- Universality:
- \checkmark G is self-dual:

The symmetry is S4 \times Z2. The universality class is a 4-state Potts model plus an Ising model (decoupled).

 \checkmark G is not self-dual:

The symmetry is S4, and the universality class is that of a 4-state Potts model.

Transfer-matrix Method for union jack lattice

c(v)(central charge):

q=4

$$v_c = -0.944(5), c = 1.510(5)$$

 $X_{m}(v)(magnetic exponent)$ and $X_{t}(v)(thermal exponent)$: $v_{c} = -0.9488(3), X_{m} = 0.1255(6),$ $X_{t} = 0.51(2)$

Transfer-matrix Method for union jack lattice

c(q):		
$q_0 = 3$	3.63(2),	c = 1.43(1)
$q_{c} = 4$.330(5),	c = 1.63(1)
$X_m(q)$ and $X_m(q)$	$X_t(q)$:	
$q_0 = 3$.616(6),	$X_m = 0.0751(3),$
$X_t = 0$.88(2);	
$q_{c} = 4$.326(5),	$X_m = 0.134(2),$
$X_t = 0$.52(3).	

Transfer-matrix Method for bisected hexagonal lattice • T=0 ..2 c(q)c(q): $q_c = 5.395(10), c = 1.20(5)$ L=8 0.2 L=12 L=16 $X_{m}(q)$ 0.15 0.1 $X_m(q)$ and $X_t(q)$: 0.05 $q_c = 5.397(5), \quad X_m = 0.15(1),$ 6 $\mathbf{X}_{t}(\mathbf{q})$ $X_t = 0.6(1).$ 4 2

4.5

5

3.5

susceptibility observables

magnetization on sublattices:

$$M_{i,\alpha} = \sum_{x \in V_i} \delta_{\sigma(x),\alpha} \quad i = A, B, C, \quad \alpha = 1, 2, 3, 4$$

matrix of susceptibility:

$$\chi_{ij} = \frac{1}{|V|} \left[\frac{3}{4} \sum_{\alpha=1}^{4} \left\langle M_{i,\alpha} M_{j,\alpha} \right\rangle - \frac{1}{3} |V_i| |V_j| \right] \qquad i, j = A, B, C$$

and also the eigenvalues of the susceptibility matrix: $\lambda_1(\chi), \ \lambda_2(\chi), \ \lambda_3(\chi)$

• specific-heat observables

the energy on each subset of edges:

$$\mathbf{E}_{i} = \sum_{\langle xy \rangle \in E_{i}} \delta_{\sigma(x), \sigma(y)} \quad i = A, B, C$$

matrix of specific - heat - like quantities :

$$C_{ij} = \frac{1}{|E|} \left[\left\langle E_i E_j \right\rangle - \left\langle E_i \right\rangle \left\langle E_j \right\rangle \right] \quad i, j = A, B, C$$

and also the eigenvalues of the matrix:

 $\lambda_1(C), \ \lambda_2(C), \ \lambda_3(C)$

• renormalization exponents

$$y_{h1} = 1.87$$
 $y_{h2} = 1.39$ $y_{t1} = 1.50$ $y_{t2} = 0.81$

 my conjectures $y_{h1} = 15/8$ $y_{h2} = 2y_{h1} - d = 3/2$ with log correction $(b^{y_{h2}} \rightarrow b^{3/2} (\ln b)^{-1/4})$ $y_{t1} = 3/2$ $y_{t2} = 2y_{t1} - d = 1$ with log correction $(b^{y_{t^2}} \rightarrow b(\ln b)^{-3/2})$

 $\lambda_1(\chi): \quad \gamma / \upsilon = 2 - 2X_m = 7 / 4 \qquad v_c = -0.9485(1)$

 $\lambda_1(C): \alpha / \upsilon = 2 - 2X_t = 1$ $v_c = -0.9483(2)$

 $\lambda_2(\chi) \propto L^{3/2} (\ln L)^{-1/4}$ $v_c = -0.9485(2)$

MC method for q=4 on bisected hexagonal lattice

$$\lambda_1(\chi) \propto L^{7/4} (\ln L)^{-1/8}$$
 $v_c = -0.828066(4)$

MC method for q=4 on bisected hexagonal lattice

 $\lambda_1(C) \propto L(\ln L)^{-3/2}$

MC method for q=5 on bisected hexagonal lattice

preliminary MC results :

 $v_c = -0.95132(2), \qquad X_m = 0.113(4), \qquad X_t = 0.495(5)$

Conclusion

- an analytical existence argument for a finitetemperature phase transition in a class of 4-state Potts antiferromagnets;
- a prediction of the universality class;
- large-scale numerics, using two complementary techniques, to determine critical exponents;
- determination of q_0 and q_c as well as v_c ;
- the surprising prediction of a finite-temperature phase transition also for q = 5 on the BH lattice.

Future work

- General q
- Different lattices
- Different models

- Is there any phase transition at finite
- temperature, of what order?
- If so, how about the critical exponents and the universality?

