Non-ergodicity in Wang–Swenden–Kotecký Monte Carlo dynamics

Jesús Salas

Instituto Gregorio Millán Barbany

Grupo de Modelización, Simulación Numérica y Matemática Industrial

Universidad Carlos III de Madrid

Alan Sokal (NYU)

Bojan Mohar (SFU) [arXiv:0901.1010]

Non-ergodicity of WSK – p. 1/31

Summary

"A new Kempe invariant and the (non)-ergodicity of the Wang-Swendsen-Kotecký algorithm" [for the *q*-state antiferromagnetic Potts model]

- 1. The *q*-state Potts model
- 2. Markov Chain Monte Carlo methods: Ergodicity
- 3. The Wang-Swendsen-Kotecký algorithm for the *q*-state Potts antiferromagnet
- 4. The proof of non-ergodicity of WSK(q = 4) at zero temperature for the triangular lattice on a torus
 - Kempe changes
 - Algebraic topology (Fisk)

• *G* = Finite subset of a regular lattice with some boundary conditions

• $\forall i \in V, \quad \sigma_i \in \{1, \dots, q\} \qquad q = 2, 3, \dots \in \mathbb{Z}_+$

•
$$\mathcal{H}(\sigma) = -J \sum_{\langle ij \rangle \in E} \delta_{\sigma_i, \sigma_j}$$

with toroidal bc's

 4×4 triangular lattice

$$\delta_{\sigma_i,\sigma_j} = \begin{cases} 1 & \sigma_i = \sigma_j \\ 0 & \sigma_i \neq \sigma_j \end{cases}$$

•
$$J \in \mathbb{R}$$
 with $|J| \sim T^{-1}$
 $\begin{cases} J > 0 & \text{Ferromagnetic} \\ J < 0 & \text{Antiferromagnetic} \end{cases}$

Non-ergodicity of WSK - p. 3/31

The *standard q*-state Potts model (2)

• Partition function
$$Z_G(q, J) = \sum_{\sigma} e^{-\mathcal{H}(\sigma)}$$

• Free Energy
$$f_G(q; J) = \frac{1}{|V|} \log Z_G(q, J)$$

V = # spins ("Volume")

- Main goal: To obtain an explicit expression for $Z_G(q, J)$ or $f_G(q; J)$ for finite G, or ...
- To obtain an explicit expression for the infinite-volume free energy

$$f_{G_{\infty}}(q;J) = \lim_{n \to \infty} \frac{1}{|V_n|} \log Z_{G_n}(q;J)$$

The Infinite-volume free energy is important

$$f_{G_{\infty}}(q;J) = \lim_{n \to \infty} \frac{1}{|V_n|} \log Z_{G_n}(q;J)$$

Phase transition (= singularities in the free energy) cannot occur for finite systems if *J* ∈ ℝ

$$Z_G(q,J) \;=\; \sum_{\sigma} e^{J \sum \limits_{\langle ij
angle} \delta_{\sigma_i,\sigma_j}} > \; 0$$

- $f_{G_{\infty}}(q; J)$ exists and is continuous in J for $J \in \mathbb{R}$
- The limit $J \to +\infty$ is not problematic: q ordered states.
- What about $J \rightarrow -\infty???$ [T = 0 limit in the AF regime]

Non-ergodicity of WSK - p. 5/31

The $J ightarrow -\infty$ limit on a triangular lattice

• If *q* = 2: The allowed spin configurations (ground states) have on every triangle the following configuration

- If q ≥ 3: The allowed spin configurations correspond to proper colorings of G: σ_i ≠ σ_j if i ~ j
 - q = 3: 3! ground states (~ ferromagnet at T = 0)
 - $q \ge 4$: Many ground states with no frustration
 - The system is critical if q = 4
 - The system is disordered if $q \ge 5$

Triangular-lattice Potts-model phase diagram

Non-ergodicity of WSK - p. 7/31

Markov-chain Monte Carlo simulations (1)

- We can use Monte Carlo simulations when we don't know how to obtain an explicit expression for the partition function/free energy.
- Important warning: This is Equilibrium Statistical Mechanics ⇒ No time!!!
- Idea: Invent a stochastic process such that it converges to the probability measure of the Potts model

$$\pi_{G,q,J}(\sigma) = \frac{1}{Z_G(q;J)} e^{-\mathcal{H}(\sigma)}$$

• Problem: We ignore $Z_G(q; J)$!!!!

Markov-chain Monte Carlo simulations (2)

Goal: We want to obtain a discrete-time Markov chain $X_0, X_1, \ldots, X_t, \ldots$, such that:

- Each X_t takes values on the finite configuration space $\mathcal{S} = \{1, \dots, q\}^V \ni \sigma$
- Is defined by an invented probability transition matrix *P*:

 $p_{\sigma,\sigma'} = P(\sigma \to \sigma') = \Pr(X_{t+1} = \sigma' \mid X_t = \sigma)$

The k-step transition probabilities are

$$p_{\sigma,\sigma'}^{(k)} = (P^k)_{\sigma,\sigma'} = \Pr(X_{t+k} = \sigma' \mid X_t = \sigma)$$

• Has the right unique stationary distribution limit:

$$\lim_{t \to \infty} p_{\sigma,\sigma'}^{(t)} = \pi_{G,q,J}(\sigma')$$

Non-ergodicity of WSK - p. 9/31

Markov-chain Monte Carlo simulations (3)

Probability transition matrix P:

$$p_{\sigma,\sigma'} = P(\sigma \to \sigma') = \Pr(X_{t+1} = \sigma' \mid X_t = \sigma)$$

(A) *P* is stationary w.r.t. $\pi_{G,q,J}$:

$$\sum_{\sigma} \pi_{G,q,J}(\sigma) p_{\sigma,\sigma'} = \pi_{G,q,J}(\sigma')$$

(A') Detailed balance:

$$\pi_{G,q,J}(\sigma)p_{\sigma,\sigma'} = \pi_{G,q,J}(\sigma')p_{\sigma',\sigma}$$

(B) *P* is irreducible (or ergodic): For all σ, σ' , there exists a $n \in \mathbb{N}$ such that $p_{\sigma,\sigma'}^{(n)} > 0$

(C) *P* is aperiodic (period one, D = 1): *P* has period *D* if $D = \text{gcd}(\{k \ge 1 \mid p_{\sigma,\sigma}^{(k)} > 0\})$ *P* is ergodic and $p_{\sigma,\sigma} > 0$ for some $\sigma \Rightarrow P$ aperiodic

Markov-chain Monte Carlo simulations (4)

Theorem 1 Consider an aperiodic irrducible Markov chain with finite state space S. Then, for every $\sigma, \sigma' \in S$, the limit

$$\lim_{k \to \infty} p_{\sigma,\sigma'}^{(k)} = \pi(\sigma')$$

exists and it is independent of σ . In addition,

$$\sum_{\sigma} \pi(\sigma) = 1, \quad \text{and} \quad \sum_{\sigma} \pi(\sigma) p_{\sigma,\sigma'} = \pi(\sigma') \quad \text{for all } \sigma' \in \mathcal{S}.$$

Moreover, $v = \pi$ is the only solution of

$$\sum_{\sigma} v(\sigma) p_{\sigma,\sigma'} = v(\sigma'), \qquad v(\sigma) \ge 0, \qquad \sum_{\sigma} v(\sigma) = 1.$$

Non-ergodicity of WSK - p. 11/31

Markov-chain Monte Carlo simulations (5)

- $\pi(\sigma) \approx \Pr(X_t = \sigma)$ for $t \gg 1$, and independently of X_0 .
- The system is essentially in equilibrium after τ_{exp} MC steps
- Once in equilibrium, samples are correlated because X_{t+1} depends on X_t
- We obtain two statistically independent samples after τ_{int} MC steps
- The bad news: Close to a second-order phase transition

$$\tau_{\text{exp}} \approx \min(L,\xi)^{\boldsymbol{z}_{\text{exp}}}, \quad \tau_{\text{int}} \approx \min(L,\xi)^{\boldsymbol{z}_{\text{int}}}$$

The Wang–Swendsen–Kotecký algorithm, 1989 (1)

Antiferromagnetic *q*-state Potts model

- Step 1 Pick up uniformly at random two distinct colors $\mu \neq \nu \in \{1, 2, ..., q\}$
- **Step 2** Freeze all spins σ_i taking colors $\neq \mu, \nu$.
- Step 3 Allow the remaining spins to take the values μ, ν

We induce an AF Ising model and simulate it using the Anti-Swendsen-Wang algoritm (ASW)

 \downarrow

Non-ergodicity of WSK - p. 13/31

The Wang–Swendsen–Kotecký algorithm, 1989 (2)

$$Z_{G}(q;J) = \sum_{\sigma} \prod_{\langle ij \rangle} e^{-|J|\delta_{\sigma_{i},\sigma_{j}}} = \sum_{\sigma} \prod_{\langle ij \rangle} \left[(1-p) + p(1-\delta_{\sigma_{i},\sigma_{j}}) \right]$$
$$p = 1 - e^{-|J|} \in [0,1] \quad \text{for } J \le 0$$
$$\mu_{G,q,J}(\sigma) = \frac{1}{Z_{G}(q;J)} \prod_{\langle ij \rangle} \left[(1-p) + p(1-\delta_{\sigma_{i},\sigma_{j}}) \right]$$

We augment the state space by adding a variable $n_{ij} = 0, 1$ on every edge:

$$\mu(\sigma, n) = \frac{1}{Z_G(q; J)} \prod_{\langle ij \rangle} \left[(1-p)\delta_{n_{ij}, 0} + p(1-\delta_{\sigma_i, \sigma_j})\delta_{n_{ij}, 1} \right]$$

 $n_{ij} = 1 \implies \text{edge } \langle ij \rangle \text{ is occupied}$

$$\mu(\sigma, n) = \frac{1}{Z_G(q; J)} \prod_{\langle ij \rangle} \left[(1-p)\delta_{n_{ij}, 0} + p(1-\delta_{\sigma_i, \sigma_j})\delta_{n_{ij}, 1} \right]$$

Step 4 Simulate $P_{\text{bond}} = \mu(n \mid \sigma)$ Independently for each edge $\langle ij \rangle$, take $n_{ij} = 0$ if $\sigma_i = \sigma_j$, and take $n_{ij} = 0, 1$ with probabilities (1 - p), p if $\sigma_i \neq \sigma_j$.

Step 5 Identify the clusters of sites connected with bonds $n_{ij} = 1$.

Step 6 Simulate $P_{spin} = \mu(\sigma \mid n)$ Independently for each connected cluster, either keep the original spin value or flip it ($\mu \leftrightarrow \nu$) with probability 1/2.

Non-ergodicity of WSK - p. 15/31

The Wang–Swendsen–Kotecký algorithm, 1989 (4)

- The transition probability matrix $P = P_{\text{bonds}} \cdot P_{\text{spin}}$ leaves invariant $\mu_{G,q,J}$.
- It is ergodic for any $T \neq 0$: $J \in (-\infty, 0)$
- At T = 0 the ergodicity is a non-trivial question:
 - For bipartite lattices it is always ergodic for $q \ge 2$ [Burton-Henley, Ferreira-Sokal, Mohar]
 - For planar three-colorable lattices it is always ergodic for q ≥ 3 [Mohar]

A practical situation

- Lattices are non-planar: we use periodic boundary conditions to minimize finite-size-effects (Torus)
- There are interesting models at T = 0 in the AF regime:
 - q = 4 on the triangular lattice (Non-bipartite)
- We want to consider a triangular lattice of linear size $(3L) \times (3N)$ with fully periodic boundary conditions
 - \Rightarrow Regular triangulation of the torus = T(3L, 3N)
 - Linear sizes multiples of 3 to ensure 3-colorability, and tripartiteness (physically important)
 - Regular graph with degree 6
 - In most applications, L = N

Non-ergodicity of WSK - p. 17/31

Autocorrelation time for q = 4

Kempe changes = Basic WSK moves at T = 0

- S is the space of proper q-colorings of G
- $\mu_{G,q,-\infty}$ is the uniform measure on S

Algorithm:

- Step 1 Pick up two distinct colors $\mu \neq \nu \in \{1, 2, \dots, q\}$
- Step 2 Occupy all bonds $\langle ij \rangle$ with $\sigma_i = \mu$ and $\sigma_j = \nu$. Identify connected clusters of sites joined by occupied bonds.
- Step 3 For each connected cluster, either flip it or leave it unchanged with p = 1/2.

Note: Kempe moves contain single-spin-flip moves (Metropolis)

Non-ergodicity of WSK - p. 19/31

Degree of a 4–coloring (1)

Vector representation of the spin states:

$$\vec{e}^{(\alpha)} \in \mathbb{R}^{q-1}, \quad \alpha = 1, 2, \dots, q$$

 $\vec{e}^{(\alpha)} \cdot \vec{e}^{(\beta)} = \frac{q\delta_{\alpha,\beta} - 1}{q - 1}$

For q = 4:

We have the surface of a tetrahedron in \mathbb{R}^3

 $\Rightarrow \partial \Delta^3 =$ Triangulation of the sphere S^2

A proper 4–coloring f of a triangulation T is a non-degenerate simplicial map

Si *T* is a closed orientable surface in \mathbb{R}^3 , we can define an integer-valued function $\deg(f)$ (unique up to a sign)

Non-ergodicity of WSK - p. 21/31

Degree of a 4–coloring (3)

- We first choose orientations for T and $\partial \Delta^3$ (e.g. clockwise)
- Given any triangular face t of $\partial \Delta^3$

we compute the number p (resp. n) of triangular faces of T mappring to t which have their orientation preserved (resp. reversed) by f

- $\deg(f) = p n$
- $\deg(f)$ does NOT depend on the choice of t!!!

Properties of the degree of a 4–coloring

- Tutte's lemma: $\deg(f) \equiv \sum_{f(x)=a} d_x \pmod{2}$ for a = 1, 2, 3, 4
- Corollary: The parity of a 4–coloring is a Kempe invariant

Tutte's lemma implies that any 4-coloring on T(3L, 3N) has even degree!!! \Rightarrow The invariant is useless

- Fisk's lemma: If T admits a 3–coloring, then deg(f) ≡ 0 (mod 6) for any 4-coloring f
 - $\deg(f) = 0, \pm 6, \pm 12, \pm 18$, etc
 - If g is a 3-coloring of T, $\deg(g) = 0$.

Non-ergodicity of WSK - p. 23/31

A new Kempe invariant

Theorem 2 Let T be a 3–colorable triangulation of a closed orientable surface. If f and g are two 4–colorings of T related by a Kempe change, then

 $\deg(g) \equiv \deg(f) \pmod{12}.$

This is a useful Kempe invariant: there might be two ergodicity classes:

- Class #1: $\deg(f) \equiv 0 \pmod{12}$, which contains the 3-coloring of T
- Class #2: $\deg(f) \equiv 6 \pmod{12}$, which may be empty!!!

Note: T(3L, 3N) is 3-colorable, and the torus is a closed and orientable surface

Theorem 3 (Fisk) Suppose the T is a triangulation of the sphere or torus. If T has a 3–coloring, then all 4–colorings with degree divisible by 12 are Kempe equivalent.

Corollary 4 Suppose the *T* is a triangulation of a 3–colorable torus. Then WSK for q = 4 is non-ergodic if and only of there exists a 4–coloring *f* with $\deg(f) \equiv 6 \pmod{12}$.

But how can we prove that such 4–coloring exists for any triangulation T(3L, 3N)????

Non-ergodicity of WSK - p. 25/31

Existence of degree $\equiv 6 \pmod{12}$ **4-colorings**

Theorem 5 For any triangulation T(3L, 3L) with $L \ge 2$, there exists a 4-coloring f with $\deg(f) \equiv 6 \pmod{12}$. Hence, the WSK dynamics for q = 4 on T(3L, 3L) is non-ergodic.

Proof.

- Technically involved
- We have four cases: L = 4k 2, L = 4k 1, L = 4k, and L = 4k + 1 with $k \ge 1$
- Easiest case is L = 4k 2: the sought 4-coloring is "trivial"
- For the other cases, we have an algorithmic proof that explicitly builds the 4–coloring.

Case L = 4k - 2

Smallest example T(6, 6): $|\deg(f)| = 18 \equiv 6 \pmod{12}$

For T(3(4k-2), 3(4k-2)) = T(6(2k-1), 6(2k-1)), the periodical extension of the above 4-coloring has degree

$$\deg(f_{\text{extended}}) = (2k-1)^2 \deg(f) \equiv 6 \pmod{12} \blacksquare$$

Non-ergodicity of WSK - p. 27/31

What happens with T(3, 3N)?

Proposition 6 The degree of any 4-coloring on any triangulation T(3, 3L) or T(3L, 3) with $L \ge 1$ is zero. PROOF. Look for t = 123. Focus on sites colored 3:

The 9 different and compatible 4-colorings have zero degree. ■

Theorem 7 For any triangulation T(3L, 3N) with $L \ge 3$ and $N \ge L$ there exists a 4-coloring f with $\deg(f) \equiv 6 \pmod{12}$. Hence, the WSK dynamics for q = 4 on T(3L, 3N) is non-ergodic.

Proof.

- By induction on $N \ge L$.
- The base case corresponds to T(3L, 3L)
- Given a "degree-6" 4-coloring on T(3L, 3N) we can build a "degree-6" 4-coloring on T(3L, 3(N + 1)) by gluing a "degree-0" 4-coloring on T(3L, 3) with the same top-row coloring
- The 4-coloring on T(3L, 3) is obtained algorithmically

Non-ergodicity of WSK - p. 29/31

Existence of degree $\equiv 6 \pmod{12}$ **4-colorings** (3)

What happens for T(6, 3N) with $N \ge 2???$

Proposition 8 For any triangulation T(6, 6k) with odd $k \ge 1$ there exists a 4-coloring f with $\deg(f) \equiv 6 \pmod{12}$. Hence, the WSK dynamics for q = 4 on T(6, 6k) is non-ergodic.

Proposition 9 For the triangulation T(6,9) all 4-colorings have zero degree. Hence, the WSK dynamics for q = 4 on T(6,9) is ergodic.

Conclusions

- Monte Carlo simulations are a great tool to investigate Statistical Mechanical systems; but one has to ensure its applicability.
- The WSK algorithm for the 4-state Potts antiferromagnet is not ergodic at T = 0 on most triangulations T(3L, 3N) of the torus
- Open problems
 - 1. Find a procedure to test non-ergodicity in practice
 - 2. Invent a legal (and hopefully efficient) algorithm
 - 3. What happens for q = 5, 6 on the triangular lattice???

Non-ergodicity of WSK - p. 31/31