Worm algorithms for fully-packed loops

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

= nar

Worm Algorithms

Youjin Deng

Department of Modern Physics University of Science and Technology of China P.R.China

November 6 Hefei

Outline	Worm algorithms for Ising high-temperature graphs
•0	000000 0000 00000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

Outline

References/Collaborators

- 1. Youjin Deng, Timothy M. Garoni, and Alan D. Sokal, Dynamic Critical Behavior of the Worm Algorithm for the Ising Model, Phys. Rev. Lett. 99, 110601 (2007).
- 2. Wei Zhang, Timothy M. Garoni, and Youjin Deng, Simulating the fully-packed loop model on the honeycomb lattice with a worm algorithm, preprint.

Outline	Worm algorithms for Ising high-temperature graphs
0.	000000 0000 00000

▲□▶▲□▶▲□▶▲□▶ □ のQで

Outline

How do we efficiently simulate models near criticality?

Problem: critical slowing-down

ISTRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems

Outline ○●	Worm algorithms for Ising high-temperature graphs
	00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Outline

How do we efficiently simulate models near criticality?

- Problem: critical slowing-down
- The current state-of-the-art: cluster algorithms
 - Swendsen & Wang PRL 1987
 - Use global moves in clever way

WETRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Outline	Worm algorithms for Ising high-temperature graphs
0●	000000 0000 00000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Outline

How do we efficiently simulate models near criticality?

- Problem: critical slowing-down
- The current state-of-the-art: cluster algorithms
 - Swendsen & Wang PRL 1987
 - Use global moves in clever way
- More recent idea: worm algorithms
 - Prokof'ev & Svistunov PRL 2001
 - Enlarge an Eulerian configuration space to include defects
 - Move the defects via random walk

High-temperature expansions, state spaces, worm dynamics ...

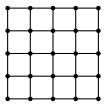
Eulerian subgraphs

Fix a finite graph G = (V, E)

Worm algorithms for fully-packed loops

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary



ISTRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems

Outline	Worm algorithms for Ising high-temperature graphs
00	•00000 0000 00000

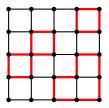
▲□▶▲□▶▲□▶▲□▶ □ のQで

Summary

High-temperature expansions, state spaces, worm dynamics ...

Eulerian subgraphs

- Fix a finite graph G = (V, E)
- ► $A \subseteq E$ is Eulerian if every vertex in (*V*, *A*) has even degree



INTRALIAN RESEARCH COUNCIL Ientre of Excellence for Mathematics nd Statistics of Complex Systems

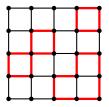
Outline	Worm algorithms for Ising high-temperature graphs
00	•00000 0000 00000

Summary

High-temperature expansions, state spaces, worm dynamics ...

Eulerian subgraphs

- Fix a finite graph G = (V, E)
- ► $A \subseteq E$ is Eulerian if every vertex in (*V*, *A*) has even degree
- The cycle space $C(G) = \{A \subseteq E : A \text{ is Eulerian}\}$



ISTRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems

▲□▶▲圖▶▲≣▶▲≣▶ ■ 少�?

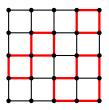
Outline	Worm algorithms for Ising high-temperature graphs
00	•00000 0000 00000

Summary

High-temperature expansions, state spaces, worm dynamics ...

Eulerian subgraphs

- Fix a finite graph G = (V, E)
- $A \subseteq E$ is Eulerian if every vertex in (V, A) has even degree
- The cycle space $C(G) = \{A \subseteq E : A \text{ is Eulerian}\}$



Consider the Ising model on G

$$Z_{\text{Ising}} = \sum_{\sigma \in \{-1,+1\}^{V}} \prod_{ij \in E} e^{\beta \sigma_i \sigma_j}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

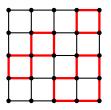
USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Outline	Worm algorithms for Ising high-temperature graphs
00	••••••• ••••• •••••

High-temperature expansions, state spaces, worm dynamics ...

Eulerian subgraphs

- Fix a finite graph G = (V, E)
- $A \subseteq E$ is Eulerian if every vertex in (*V*, *A*) has even degree
- The cycle space $C(G) = \{A \subseteq E : A \text{ is Eulerian}\}$



Consider the Ising model on G

$$Z_{\text{Ising}} = \sum_{\sigma \in \{-1,+1\}^V} \prod_{ij \in E} e^{\beta \sigma_i \sigma_j}$$

The high-temperature expansion is

$$Z_{ ext{Ising}} = \left(2^{|V|} \cosh^{|E|} eta
ight) \sum_{A \in \mathcal{C}(G)} (ext{tanh} eta)^{|A|}$$

RTRALIAN RESEARCH COUNCIL Intre of Excellence for Mathematics d Statistics of Complex Systems

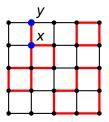
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Worm algorithms for fully-packed loops

High-temperature expansions, state spaces, worm dynamics ...

State space for worm dynamics

• Let ∂A be the set of all vertices with odd degree in (V, A)



For distinct $x, y \in V$ define

$$S_{\mathbf{x},\mathbf{y}} = \{ \mathbf{A} \subseteq \mathbf{E} : \partial \mathbf{A} = \{\mathbf{x},\mathbf{y}\} \}$$
$$S_{\mathbf{x},\mathbf{x}} = \{ \mathbf{A} \subseteq \mathbf{E} : \partial \mathbf{A} = \emptyset \}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• In this notation $S_{x,x} = C(G)$

WETRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

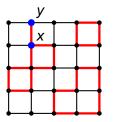
Worm algorithms for fully-packed loops

Summary

High-temperature expansions, state spaces, worm dynamics ...

State space for worm dynamics

• Let ∂A be the set of all vertices with odd degree in (V, A)



For distinct $x, y \in V$ define

$$S_{\mathbf{x},\mathbf{y}} = \{ \mathbf{A} \subseteq \mathbf{E} : \partial \mathbf{A} = \{\mathbf{x},\mathbf{y}\} \}$$
$$S_{\mathbf{x},\mathbf{x}} = \{ \mathbf{A} \subseteq \mathbf{E} : \partial \mathbf{A} = \emptyset \}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

• In this notation $S_{x,x} = C(G)$

State space of worm algorithm is
S = {(A, x, y) : x, y ∈ V and A ∈ S_{x,y}}

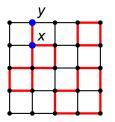
Worm algorithms for fully-packed loops

Summary

High-temperature expansions, state spaces, worm dynamics ...

State space for worm dynamics

• Let ∂A be the set of all vertices with odd degree in (V, A)



For distinct $x, y \in V$ define

$$S_{\mathbf{x},\mathbf{y}} = \{ \mathbf{A} \subseteq \mathbf{E} : \partial \mathbf{A} = \{\mathbf{x},\mathbf{y}\} \}$$
$$S_{\mathbf{x},\mathbf{x}} = \{ \mathbf{A} \subseteq \mathbf{E} : \partial \mathbf{A} = \emptyset \}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

• In this notation $S_{x,x} = C(G)$

 $\pi(A, x, y) \propto d_x d_y (\tanh \beta)^{|A|}$

► State space of worm algorithm is $\mathcal{S} = \{ (A, x, y) : x, y \in V \text{ and } A \in \mathcal{S}_{x,y} \}$

• Assign $(A, x, y) \in S$ probability

USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

High-temperature expansions, state spaces, worm dynamics ...

$$\begin{aligned} \text{Ising susceptibility} \\ \blacktriangleright \text{ If } Z := \sum_{A \in \mathcal{C}(G)} w^{|A|} \text{ and } w := \tanh \beta \\ Z_{\text{Ising}} &= \left(2^{|V|} \cosh^{|E|} \beta \right) Z \quad \text{Partition function} \\ Z \langle \sigma_x \sigma_y \rangle_{\text{Ising}} &= \sum_{A \in \mathcal{S}_{x,y}} w^{|A|} \quad \text{Two-point function} \\ Z \langle \mathcal{M}^2 \rangle_{\text{Ising}} &= \sum_{A \in \mathcal{S}} w^{|A|} \quad \text{Magnetization} \end{aligned}$$

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems Worm algorithms for fully-packed loops

Summary

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Worm algorithms for fully-packed loops

High-temperature expansions, state spaces, worm dynamics ...

$$\begin{aligned} \text{Ising susceptibility} \\ \blacktriangleright \text{ If } Z &:= \sum_{A \in \mathcal{C}(G)} w^{|A|} \text{ and } w := \tanh \beta \end{aligned}$$

$$\begin{aligned} Z_{\text{Ising}} &= \left(2^{|V|} \cosh^{|E|} \beta \right) Z & \text{Partition function} \\ Z &\langle \sigma_x \sigma_y \rangle_{\text{Ising}} = \sum_{A \in \mathcal{S}_{x,y}} w^{|A|} & \text{Two-point function} \\ Z &\langle \mathcal{M}^2 \rangle_{\text{Ising}} = \sum_{A \in \mathcal{S}} w^{|A|} & \text{Magnetization} \end{aligned}$$

▶ If G is translationally invariant then

$$\pi({m{A}},{m{x}},{m{y}})={m{w}}^{|{m{A}}|}/{m{Z}}\,{m{V}}\,\chi$$

ISTRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Worm algorithms for fully-packed loops

High-temperature expansions, state spaces, worm dynamics ...

$$\begin{aligned} \text{Ising susceptibility} \\ \blacktriangleright \text{ If } Z &:= \sum_{A \in \mathcal{C}(G)} w^{|A|} \text{ and } w := \tanh \beta \end{aligned}$$

$$\begin{aligned} Z_{\text{Ising}} &= \left(2^{|V|} \cosh^{|E|} \beta \right) Z & \text{Partition function} \\ Z &\langle \sigma_x \sigma_y \rangle_{\text{Ising}} = \sum_{A \in \mathcal{S}_{x,y}} w^{|A|} & \text{Two-point function} \\ Z &\langle \mathcal{M}^2 \rangle_{\text{Ising}} = \sum_{A \in \mathcal{S}} w^{|A|} & \text{Magnetization} \end{aligned}$$

If G is translationally invariant then

$$\pi({m{A}},{m{x}},{m{y}})={m{w}}^{|{m{A}}|}/{m{Z}}\,{m{V}}\,\chi$$

• Therefore the observable $\mathcal{D}_0(A, x, y) = \delta_{x,y}$ satisfies

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

$$\langle \mathcal{D}_0 \rangle_{\pi} = \mathbf{1}/\chi$$

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ④ ● ●

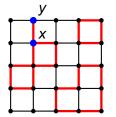
High-temperature expansions, state spaces, worm dynamics ...

Worm dynamics

Worm algorithms for fully-packed loops

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary



► Start in configuration (*A*, *x*, *y*)

ISTRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems

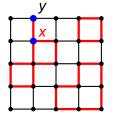
High-temperature expansions, state spaces, worm dynamics ...

Worm dynamics

Worm algorithms for fully-packed loops

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary



- Start in configuration (A, x, y)
- Pick x or y

ISTRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems

High-temperature expansions, state spaces, worm dynamics ...

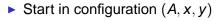
Worm dynamics

 $x \mid x$

Worm algorithms for fully-packed loops

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary



- Pick x or y
- Pick x' ~ x

USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

High-temperature expansions, state spaces, worm dynamics ...

Worm dynamics

х

Worm algorithms for fully-packed loops

Summary

- Start in configuration (A, x, y)
- Pick x or y
- ▶ Pick x' ~ x
- Propose $(A, x, y) \rightarrow (A \triangle xx', x', y)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

If transition removes an edge accept with probability 1

WSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

High-temperature expansions, state spaces, worm dynamics ...

Worm dynamics

X

Worm algorithms for fully-packed loops

Summary

- Start in configuration (A, x, y)
- Pick x or y
- ▶ Pick x' ~ x
- Propose $(A, x, y) \rightarrow (A \triangle xx', x', y)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

- If transition removes an edge accept with probability 1
- If transition adds an edge accept with probability w

High-temperature expansions, state spaces, worm dynamics ...

Worm dynamics

Worm algorithms for fully-packed loops

- Start in configuration (A, x, y)
- Pick x or y
- ▶ Pick x' ~ x
- Propose $(A, x, y) \rightarrow (A \triangle xx', x', y)$
- If transition removes an edge accept with probability 1
- If transition adds an edge accept with probability w

High-temperature expansions, state spaces, worm dynamics ...

Worm dynamics

Worm algorithms for fully-packed loops

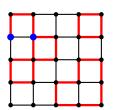
- Start in configuration (A, x, y)
- Pick x or y
- ▶ Pick x' ~ x
- Propose $(A, x, y) \rightarrow (A \triangle xx', x', y)$
- If transition removes an edge accept with probability 1
- If transition adds an edge accept with probability w

High-temperature expansions, state spaces, worm dynamics ...

Worm dynamics

Worm algorithms for fully-packed loops

- Start in configuration (A, x, y)
- Pick x or y
- ▶ Pick x' ~ x
- Propose $(A, x, y) \rightarrow (A \triangle xx', x', y)$
- If transition removes an edge accept with probability 1
- If transition adds an edge accept with probability w



High-temperature expansions, state spaces, worm dynamics ...

Worm dynamics

Worm algorithms for fully-packed loops

- Start in configuration (A, x, y)
- Pick x or y
- ▶ Pick x' ~ x
- Propose $(A, x, y) \rightarrow (A \triangle xx', x', y)$
- If transition removes an edge accept with probability 1
- If transition adds an edge accept with probability w

High-temperature expansions, state spaces, worm dynamics ...

Worm dynamics

Worm algorithms for fully-packed loops

- Start in configuration (A, x, y)
- Pick x or y
- ▶ Pick x' ~ x
- Propose $(A, x, y) \rightarrow (A \triangle xx', x', y)$
- If transition removes an edge accept with probability 1
- If transition adds an edge accept with probability w

High-temperature expansions, state spaces, worm dynamics ...

Worm dynamics

Worm algorithms for fully-packed loops

- Start in configuration (A, x, y)
- Pick x or y
- ▶ Pick x' ~ x
- Propose $(A, x, y) \rightarrow (A \triangle xx', x', y)$
- If transition removes an edge accept with probability 1
- If transition adds an edge accept with probability w

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

High-temperature expansions, state spaces, worm dynamics ...

Transition matrix

- Let G be translationally invariant with degree z
- Worm dynamics corresponds to transition matrix P on S

$$P[(A, x, y)
ightarrow (A riangle xx', x', y)] = rac{1}{2} rac{1}{z} egin{cases} 1, & xx' \in A, \ w, & xx'
otin A, \ w, & xy'
otin A, \ w, & y
o$$

- And similarly for y moves...
- All other non-diagonal elements of P are zero

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

High-temperature expansions, state spaces, worm dynamics ...

Transition matrix

- Let G be translationally invariant with degree z
- Worm dynamics corresponds to transition matrix P on S

$$P[(A, x, y)
ightarrow (A riangle xx', x', y)] = rac{1}{2} rac{1}{z} egin{cases} 1, & xx' \in A, \ w, & xx'
otin A, \ w, & xy'
otin A, \ w, & y
o$$

- And similarly for y moves...
- All other non-diagonal elements of P are zero

Lemma

P is in detailed balance with $\pi(A, x, y) = w^{|A|}/Z V \chi$

• Can estimate χ by running the worm dynamics

High-temperature expansions, state spaces, worm dynamics ...

Efficiency

Worm algorithms for fully-packed loops

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary

• Worm dynamics provide a valid way to compute χ

INTRALIAN RESEARCH COUNCIL Ientre of Excellence for Mathematics nd Statistics of Complex Systems

High-temperature expansions, state spaces, worm dynamics ...

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

- Worm dynamics provide a valid way to compute χ
- But how efficient is the worm algorithm?

USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

High-temperature expansions, state spaces, worm dynamics ...

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

- Worm dynamics provide a valid way to compute χ
- But how efficient is the worm algorithm?
- How do we measure efficiency anyway?

High-temperature expansions, state spaces, worm dynamics ...

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

- Worm dynamics provide a valid way to compute χ
- But how efficient is the worm algorithm?
- How do we measure efficiency anyway?
- Empirically measuring autocorrelations

Worm algorithms for fully-packed loops

Summary

Autocorrelations, critical slowing down

Markov-chain Monte Carlo

- Markov chain
 - State space *S*, with $|S| < \infty$
 - Transition matrix P
 - Stationary distribution π

Worm algorithms for fully-packed loops

(日)

Summary

Autocorrelations, critical slowing down

Markov-chain Monte Carlo

- Markov chain
 - State space S, with $|S| < \infty$
 - Transition matrix P
 - Stationary distribution π
- Observables (random variables) X, Y, …

Worm algorithms for fully-packed loops

Summary

Autocorrelations, critical slowing down

Markov-chain Monte Carlo

- Markov chain
 - State space *S*, with $|S| < \infty$
 - Transition matrix P
 - Stationary distribution π
- Observables (random variables) X, Y, ...
- Simulate Markov chain $s_0 \xrightarrow{P} s_1 \xrightarrow{P} s_2 \xrightarrow{P} \dots$ with $s_t \in S$

Worm algorithms for fully-packed loops

Summary

Autocorrelations, critical slowing down ...

Markov-chain Monte Carlo

- Markov chain
 - State space S, with $|S| < \infty$
 - Transition matrix P
 - Stationary distribution π
- Observables (random variables) X, Y, …
- ▶ Simulate Markov chain $s_0 \xrightarrow{P} s_1 \xrightarrow{P} s_2 \xrightarrow{P} \dots$ with $s_t \in S$
- Get time series X_0, X_1, X_2, \ldots with $X_t = X(s_t)$

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

Autocorrelations, critical slowing down ...

Markov-chain Monte Carlo

- Markov chain
 - State space S, with $|S| < \infty$
 - Transition matrix P
 - Stationary distribution π
- Observables (random variables) X, Y, ...
- ▶ Simulate Markov chain $s_0 \xrightarrow{P} s_1 \xrightarrow{P} s_2 \xrightarrow{P} \dots$ with $s_t \in S$
- Get time series X_0, X_1, X_2, \ldots with $X_t = X(s_t)$
- Define the autocorrelation function

$$ho_X(t) := rac{\langle X_s X_{s+t}
angle_\pi - \langle X
angle_\pi^2}{\operatorname{var}_\pi(X)}$$

stralian Research council entre of Excellence for Mathematics id Statistics of Complex Systems

Worm algorithms for Ising high-temperature graphs Outline 000

Worm algorithms for fully-packed loops

Summary

Autocorrelations, critical slowing down

Markov-chain Monte Carlo

- Markov chain
 - State space S, with $|S| < \infty$
 - Transition matrix P
 - Stationary distribution π
- Observables (random variables) X, Y, ...
- Simulate Markov chain $s_0 \xrightarrow{P} s_1 \xrightarrow{P} s_2 \xrightarrow{P} \dots$ with $s_t \in S$
- Get time series X_0, X_1, X_2, \ldots with $X_t = X(s_t)$
- Define the autocorrelation function

$$ho_{X}(t) := rac{\langle X_{s}X_{s+t}
angle_{\pi} - \langle X
angle_{\pi}^{2}}{\operatorname{var}_{\pi}(X)}$$

Stationary process - start "in equilibrium"

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Worm algorithms for fully-packed loops

(日)

Summary

Autocorrelations, critical slowing down ...

Integrated autocorrelation times

The integrated autocorrelation time

$$au_{\mathrm{int},X} := rac{1}{2} \sum_{t=-\infty}^{\infty}
ho_X(t)$$

WETRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

Autocorrelations, critical slowing down

Integrated autocorrelation times

The integrated autocorrelation time

$$au_{\mathrm{int},X} := rac{1}{2} \sum_{t=-\infty}^{\infty}
ho_X(t)$$

► If \hat{X} is the sample mean of $\{X_t\}_{t=1}^T$ then we have

$$\operatorname{var}(\widehat{X}) \sim 2 \, \tau_{\operatorname{int},X} \frac{\operatorname{var}(X)}{T}, \qquad T \to \infty$$

USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

Summary

Autocorrelations, critical slowing down

Integrated autocorrelation times

The integrated autocorrelation time

$$\tau_{\mathsf{int},X} := \frac{1}{2} \sum_{t=-\infty}^{\infty} \rho_X(t)$$

► If \widehat{X} is the sample mean of $\{X_t\}_{t=1}^T$ then we have

$$\operatorname{var}(\widehat{X}) \sim 2 \tau_{\operatorname{int},X} \frac{\operatorname{var}(X)}{T}, \qquad T \to \infty$$

▶ 1 "effectively independent" observation every $2 \tau_{int,X}$ steps

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

Autocorrelations, critical slowing down

Exponential autocorrelation times

- ▶ $\rho_X(t)$ typically decays exponentially as $t \to \infty$
- The exponential autocorrelation time

$$au_{\exp,X} := \limsup_{t o \infty} rac{t}{-\log |
ho_X(t)|} \quad ext{and} \quad au_{\exp} := \sup_X au_{\exp,X}$$

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

Autocorrelations, critical slowing down

Exponential autocorrelation times

- ▶ $\rho_X(t)$ typically decays exponentially as $t \to \infty$
- The exponential autocorrelation time

$$\tau_{\exp,X} := \limsup_{t \to \infty} \frac{t}{-\log |\rho_X(t)|} \quad \text{and} \quad \tau_{\exp} := \sup_X \tau_{\exp,X}$$

• Typically
$$au_{\exp,X} = au_{\exp} < \infty$$
 and $au_{\inf,X} \le au_{\exp}$ for all X

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

Autocorrelations, critical slowing down

Exponential autocorrelation times

- ▶ $\rho_X(t)$ typically decays exponentially as $t \to \infty$
- The exponential autocorrelation time

$$au_{\exp,X} := \limsup_{t o \infty} rac{t}{-\log |
ho_X(t)|} \quad ext{and} \quad au_{\exp} := \sup_X au_{\exp,X}$$

▶ Typically $\tau_{exp,X} = \tau_{exp} < \infty$ and $\tau_{int,X} \leq \tau_{exp}$ for all X

Start the chain with arbitrary distribution α

• Distribution at time t is αP^t

Worm algorithms for fully-packed loops

Summary

Autocorrelations, critical slowing down

Exponential autocorrelation times

- ▶ $\rho_X(t)$ typically decays exponentially as $t \to \infty$
- The exponential autocorrelation time

$$au_{\exp,X} := \limsup_{t o \infty} rac{t}{-\log |
ho_X(t)|} \quad ext{and} \quad au_{\exp} := \sup_X au_{\exp,X}$$

▶ Typically $au_{exp,X} = au_{exp} < \infty$ and $au_{int,X} \leq au_{exp}$ for all X

• Start the chain with arbitrary distribution α

• Distribution at time t is αP^t

Lemma αP^t tends to π with rate bounded by $e^{-t/\tau_{exp}}$

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary

Autocorrelations, critical slowing down

Critical slowing-down

 Near a critical point the autocorrelation times typically diverge like

USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

Autocorrelations, critical slowing down

Critical slowing-down

 Near a critical point the autocorrelation times typically diverge like

 $\tau \sim \xi^{z}$

More precisely, we have a family of exponents: z_{exp}, and z_{int,X} for each observable X.

Worm algorithms for fully-packed loops

Summary

Autocorrelations, critical slowing down ...

Critical slowing-down

 Near a critical point the autocorrelation times typically diverge like

 $\tau \sim \xi^{z}$

- ► More precisely, we have a family of exponents: z_{exp}, and z_{int,X} for each observable X.
- Different algorithms for the same model can have very different z
- E.g. d = 2 Ising model
 - Glauber (Metropolis) algorithm $z \approx 2$
 - Swendsen-Wang algorithm $z \approx 0.2$

Worm algorithms for Ising high-temperature graphs

Worm algorithms for fully-packed loops

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary

Numerical results

Worm simulations

Simulated the critical square-lattice Ising model

ISTRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems

Worm algorithms for Ising high-temperature graphs

Worm algorithms for fully-packed loops

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Summary

= 900

Numerical results

Worm simulations

- Simulated the critical square-lattice Ising model
- Focus on two observables:

•
$$\mathcal{N}(A, \mathbf{x}, \mathbf{y}) = |A|$$

$$\mathcal{D}_0(\boldsymbol{A}, \boldsymbol{x}, \boldsymbol{y}) = \delta_{\boldsymbol{x}, \boldsymbol{y}}$$

 $\blacktriangleright \langle \mathcal{N} \rangle$ is "energy-like"

$$\blacktriangleright \langle \mathcal{D}_0 \rangle = \mathbf{1}/\chi$$

Worm algorithms for Ising high-temperature graphs

Worm algorithms for fully-packed loops

Summary

Numerical results

Worm simulations

- Simulated the critical square-lattice Ising model
- Focus on two observables:

•
$$\mathcal{N}(A, x, y) = |A|$$

$$\mathcal{D}_0(\boldsymbol{A}, \boldsymbol{x}, \boldsymbol{y}) = \delta_{\boldsymbol{x}, \boldsymbol{y}}$$

 $\blacktriangleright \langle \mathcal{N} \rangle$ is "energy-like"

$$\blacktriangleright \langle \mathcal{D}_0 \rangle = \mathbf{1}/\chi$$

- Measured observables after every hit (worm update)
- Natural unit of time is one sweep (L^d hits)

Worm algorithms for Ising high-temperature graphs

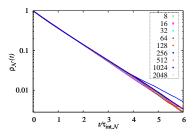
Worm algorithms for fully-packed loops

Summary

Numerical results

Dynamics of $\ensuremath{\mathcal{N}}$

• $\rho_{\mathcal{N}}(t)$ is almost a perfect exponential



- Scaled time by \(\tau_{\text{int},N}\)
- Good data collapse suggests

 $z_{\text{exp}} pprox z_{\text{int},\mathcal{N}}$

• Fitting $\tau_{int,\mathcal{N}}$ gives $z_{int,\mathcal{N}} \approx 0.379$

► Li-Sokal bound $z_{exp}, z_{int,N} \ge \alpha/\nu$ applies to worm dynamics

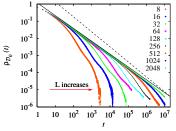
Worm algorithms for Ising high-temperature graphs

Worm algorithms for fully-packed loops

Summary

Numerical results

Dynamics of \mathcal{D}_0



•
$$ho_{\mathcal{D}_0}(t) \sim t^{-s}$$
 with $s \approx 0.75$

< ロ > < 同 > < 回 > < 回 >

D₀ decorrelates on a totally different time scale to N

USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for Ising high-temperature graphs

Worm algorithms for fully-packed loops

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary

Numerical results

Three dimensions

• Qualitatively similar behavior when d = 3:

ISTRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems

Worm algorithms for Ising high-temperature graphs

Worm algorithms for fully-packed loops

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary

Numerical results

Three dimensions

• Qualitatively similar behavior when d = 3:

►
$$\rho_{\mathcal{D}_0}(t) \sim t^{-s}$$

s ≈ 0.66

INTRALIAN RESEARCH COUNCIL Ientre of Excellence for Mathematics nd Statistics of Complex Systems

Worm algorithms for Ising high-temperature graphs

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

Numerical results

Three dimensions

- Qualitatively similar behavior when d = 3:
- ▶ $\rho_{\mathcal{D}_0}(t) \sim t^{-s}$
- s ≈ 0.66
- $\rho_{\mathcal{N}}(t)$ roughly exponential
- $z_{exp} \approx z_{int,N} \approx \alpha/\nu \approx 0.174$
- Li-Sokal bound may be sharp for d = 3 worm algorithm

Worm algorithms for Ising high-temperature graphs

Worm algorithms for fully-packed loops

Summary

Numerical results

Three dimensions

- Qualitatively similar behavior when d = 3:
- ► $\rho_{\mathcal{D}_0}(t) \sim t^{-s}$
- s ≈ 0.66
- $\rho_{\mathcal{N}}(t)$ roughly exponential
- $z_{exp} \approx z_{int,\mathcal{N}} \approx \alpha/\nu \approx 0.174$
- Li-Sokal bound may be sharp for d = 3 worm algorithm
- Compare Swendsen-Wang $z_{SW} \approx 0.46$

Outline	Worm algorithms for Ising high-temperature graphs
00	000000
	00000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Numerical results

Practical efficiency for square/cubic lattice critical Ising

Swendsen-Wang seems to outperform worm when d = 2

Outline	Worm algorithms for Ising high-temperature graphs
00	000000
	00000

Summary

- Swendsen-Wang seems to outperform worm when d = 2
- Efficiency depends on observable, X

Numerical results

- ▶ Swendsen-Wang seems to outperform worm when *d* = 2
- Efficiency depends on observable, X
- A simple way to compare worm and SW is to compute $\kappa = T_{CPU} \operatorname{var} \widehat{X}$ for both algorithms

Summary

- Swendsen-Wang seems to outperform worm when d = 2
- Efficiency depends on observable, X
- A simple way to compare worm and SW is to compute $\kappa = T_{CPU} \operatorname{var} \widehat{X}$ for both algorithms
- When d = 3 and $X = D_0$ we find $\kappa_{worm}/\kappa_{SW} \approx L^{-0.33}$
 - With the crossover $\kappa_{\it worm}/\kappa_{\it SW} pprox$ 1 at around L pprox 20

Numerical results

- Swendsen-Wang seems to outperform worm when d = 2
- Efficiency depends on observable, X
- A simple way to compare worm and SW is to compute $\kappa = T_{CPU} \operatorname{var} \widehat{X}$ for both algorithms
- When d = 3 and $X = D_0$ we find $\kappa_{worm}/\kappa_{SW} \approx L^{-0.33}$
 - With the crossover $\kappa_{worm}/\kappa_{SW} \approx$ 1 at around $L \approx$ 20
- There is also a natural worm estimator for ξ

Summary

- Swendsen-Wang seems to outperform worm when d = 2
- Efficiency depends on observable, X
- A simple way to compare worm and SW is to compute $\kappa = T_{CPU} \operatorname{var} \widehat{X}$ for both algorithms
- When d = 3 and $X = D_0$ we find $\kappa_{worm}/\kappa_{SW} \approx L^{-0.33}$
 - With the crossover $\kappa_{\it worm}/\kappa_{\it SW} pprox$ 1 at around L pprox 20
- There is also a natural worm estimator for ξ
- Again SW outperforms worm when d = 2

- Swendsen-Wang seems to outperform worm when d = 2
- Efficiency depends on observable, X
- A simple way to compare worm and SW is to compute $\kappa = T_{CPU} \operatorname{var} \widehat{X}$ for both algorithms
- When d = 3 and $X = D_0$ we find $\kappa_{worm}/\kappa_{SW} \approx L^{-0.33}$
 - With the crossover $\kappa_{\it worm}/\kappa_{\it SW} pprox$ 1 at around L pprox 20
- There is also a natural worm estimator for ξ
- Again SW outperforms worm when d = 2
- For d = 3 we find $\kappa_{worm}/\kappa_{SW} \approx L^{-0.32}$
 - $\blacktriangleright\,$ With the crossover $\kappa_{\it worm}/\kappa_{\it SW}\approx$ 1 at around ${\it L}\approx$ 45

Worm algorithms for fully-packed loops

(日)

An alternate perspective on worm dynamics

An alternative perspective on worm dynamics

Our perspective so far:

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

An alternative perspective on worm dynamics

- Our perspective so far:
 - Worm algorithm \iff simulate Ising high-temperature graphs
- Eulerian-subgraph model

Worm algorithms for fully-packed loops

(日)

An alternate perspective on worm dynamics

An alternative perspective on worm dynamics

Our perspective so far:

- Eulerian-subgraph model
 - ▶ State space C(G)

Worm algorithms for fully-packed loops

(日)

An alternate perspective on worm dynamics

An alternative perspective on worm dynamics

Our perspective so far:

Worm algorithm \iff simulate Ising high-temperature graphs

- Eulerian-subgraph model
 - ► State space C(G)
 - $\mathbb{P}(A) \propto w^{|A|}$

USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

(日)

An alternate perspective on worm dynamics

An alternative perspective on worm dynamics

Our perspective so far:

- Eulerian-subgraph model
 - ► State space C(G)
 - $\mathbb{P}(A) \propto w^{|A|}$
- Run a worm simulation

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

An alternative perspective on worm dynamics

Our perspective so far:

- Eulerian-subgraph model
 - ► State space C(G)
 - $\mathbb{P}(A) \propto w^{|A|}$
- Run a worm simulation
- ▶ Only observe the chain when $A \in C(G)$, i.e. when x = y

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

An alternative perspective on worm dynamics

Our perspective so far:

- Eulerian-subgraph model
 - ► State space C(G)
 - $\mathbb{P}(A) \propto w^{|A|}$
- Run a worm simulation
- ▶ Only observe the chain when $A \in C(G)$, i.e. when x = y
- Obtain a new Markov chain P
- Stationary distribution $\overline{\pi}(A, x, x) \propto f(x) w^{|A|}$

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

An alternative perspective on worm dynamics

Our perspective so far:

Worm algorithm \iff simulate Ising high-temperature graphs

- Eulerian-subgraph model
 - ► State space C(G)
 - $\mathbb{P}(A) \propto w^{|A|}$
- Run a worm simulation
- Only observe the chain when $A \in C(G)$, i.e. when x = y
- Obtain a new Markov chain P
- Stationary distribution $\overline{\pi}(A, x, x) \propto f(x) w^{|A|}$
- New perspective:

Worm algorithm \iff simulate Eulerian-subgraph model

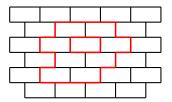
Worm algorithms for fully-packed loops

▲□▶▲□▶▲□▶▲□▶ □ のQ@

An alternate perspective on worm dynamics

Loop models

- Honeycomb lattice Eulerian subgraphs = disjoint cycles
- Nienhuis loop model



USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

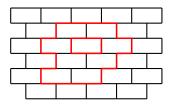
Summary

An alternate perspective on worm dynamics

Loop models

- Honeycomb lattice Eulerian subgraphs = disjoint cycles
- Nienhuis loop model
 - $0 < w < w_c$ Disordered phase
 - $w_c < w < \infty$ Critical densely-packed phase

 $w = +\infty$ Critical fully-packed phase



USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

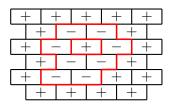
Summary

An alternate perspective on worm dynamics

Loop models

- Honeycomb lattice Eulerian subgraphs = disjoint cycles
- Nienhuis loop model
 - $0 < w < w_c$ Disordered phase
 - $w_c < w < \infty$ Critical densely-packed phase

 $w = +\infty$ Critical fully-packed phase



 \blacktriangleright 1 loop config \leftrightarrow 2 dual spin configs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Ising spin domains

PETRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems

Worm algorithms for fully-packed loops

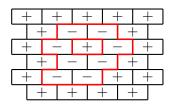
Summary

An alternate perspective on worm dynamics

Loop models

- Honeycomb lattice Eulerian subgraphs = disjoint cycles
- Nienhuis loop model
 - $0 < w < w_c$ Disordered phase
 - $w_c < w < \infty$ Critical densely-packed phase

 $w = +\infty$ Critical fully-packed phase



- \blacktriangleright 1 loop config \leftrightarrow 2 dual spin configs
- Ising spin domains

•
$$w = e^{-2\beta}$$

USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

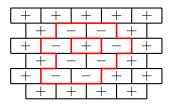
Summary

An alternate perspective on worm dynamics

Loop models

- Honeycomb lattice Eulerian subgraphs = disjoint cycles
- Nienhuis loop model
 - $0 < w < w_c$ Disordered phase
 - $w_c < w < \infty$ Critical densely-packed phase

 $w = +\infty$ Critical fully-packed phase



- \blacktriangleright 1 loop config \leftrightarrow 2 dual spin configs
- Ising spin domains

•
$$w = e^{-2\beta}$$

• $w > 1 \implies$ antiferromagnetic β

WISTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

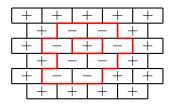
Summary

An alternate perspective on worm dynamics

Loop models

- Honeycomb lattice Eulerian subgraphs = disjoint cycles
- Nienhuis loop model
 - $0 < w < w_c$ Disordered phase
 - $w_c < w < \infty$ Critical densely-packed phase

 $w = +\infty$ Critical fully-packed phase



- \blacktriangleright 1 loop config \leftrightarrow 2 dual spin configs
- Ising spin domains

•
$$w = e^{-2\beta}$$

• $w > 1 \implies$ antiferromagnetic β

• Worm \iff simulate dual Ising domain boundaries

USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics Ind Statistics of Complex Systems

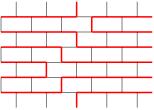
Worm algorithms for fully-packed loops

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Summary

An alternate perspective on worm dynamics

Fully-packed loop model (FPL)



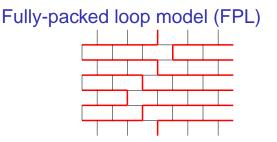
ISTRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems

Worm algorithms for fully-packed loops

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary

An alternate perspective on worm dynamics

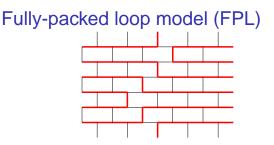


▶ FPL \leftrightarrow triangular-lattice Ising antiferromagnet at T = 0

NUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics



Frustration

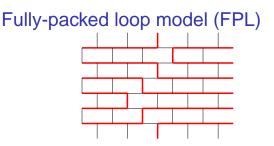
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- ▶ FPL \leftrightarrow triangular-lattice Ising antiferromagnet at T = 0
- Frustrated systems hard to simulate

ISTRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

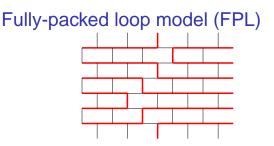


Frustration

- ► FPL \leftrightarrow triangular-lattice Ising antiferromagnet at T = 0
- Frustrated systems hard to simulate
- Cluster algorithms for frustrated Ising models thought to be non-ergodic at T = 0

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics



Frustration

- ► FPL \leftrightarrow triangular-lattice Ising antiferromagnet at T = 0
- Frustrated systems hard to simulate
- Cluster algorithms for frustrated Ising models thought to be non-ergodic at T = 0
- Can we use worm instead?

Worm algorithms for fully-packed loops

(日)

Summary

An alternate perspective on worm dynamics

P_{∞} has absorbing states

Standard worm transitions for $w \ge 1$ on *z*-regular graph:

$$P_w[(A, x, y) \to (A \triangle xx', x', y)] = \frac{1}{2z} \begin{cases} 1/w & xx' \in A \\ 1 & xx' \notin A \end{cases}$$

INTRALIAN RESEARCH COUNCIL Ientre of Excellence for Mathematics nd Statistics of Complex Systems

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

An alternate perspective on worm dynamics

P_{∞} has absorbing states

Standard worm transitions for $w \ge 1$ on *z*-regular graph:

$$P_w[(A, x, y) \rightarrow (A \triangle xx', x', y)] = rac{1}{2z} egin{cases} 1/w & xx' \in A \ 1 & xx'
otin A \end{pmatrix}$$

Identity transitions are fixed by normalization:

$$P_w[(A, x, y) \to (A, x, y)] = (1 - 1/w) \frac{d_x(A) + d_y(A)}{2z}$$

WISTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for Ising high-temperature graphs Outline

Worm algorithms for fully-packed loops 0000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

An alternate perspective on worm dynamics

P_{∞} has absorbing states

Standard worm transitions for $w \ge 1$ on z-regular graph:

$$P_w[(A, x, y) \to (A \triangle xx', x', y)] = \frac{1}{2z} \begin{cases} 1/w & xx' \in A \\ 1 & xx' \notin A \end{cases}$$

Identity transitions are fixed by normalization:

$$P_w[(A, x, y) \to (A, x, y)] = (1 - 1/w) \frac{d_x(A) + d_y(A)}{2z}$$

▶ $P_{\infty}[(A, x, y) \rightarrow (A, x, y)] = 1$ whenever $d_x(A) = d_y(A) = z$

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

P_{∞} has absorbing states

Standard worm transitions for $w \ge 1$ on *z*-regular graph:

$$P_w[(A, x, y) \to (A \triangle xx', x', y)] = \frac{1}{2z} \begin{cases} 1/w & xx' \in A \\ 1 & xx' \notin A \end{cases}$$

Identity transitions are fixed by normalization:

$$P_w[(A, x, y) \to (A, x, y)] = (1 - 1/w) \frac{d_x(A) + d_y(A)}{2z}$$

P_∞[(A, x, y) → (A, x, y)] = 1 whenever d_x(A) = d_y(A) = z
 Cannot use standard worm algorithm when w = +∞

Worm algorithms for fully-packed loops

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary

An alternate perspective on worm dynamics

How do we solve the problem?

▶ $P_{\infty}[(A, x, y) \rightarrow (A, x, y)] = 1$ whenever $d_x(A) = d_y(A) = z$

USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

An alternate perspective on worm dynamics

How do we solve the problem?

▶ $P_{\infty}[(A, x, y) \rightarrow (A, x, y)] = 1$ whenever $d_x(A) = d_y(A) = z$

• But on the honeycomb lattice z = 3

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

An alternate perspective on worm dynamics

How do we solve the problem?

- ▶ $P_{\infty}[(A, x, y) \rightarrow (A, x, y)] = 1$ whenever $d_x(A) = d_y(A) = z$
- But on the honeycomb lattice z = 3
- So states with Eulerian A never get stuck

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

An alternate perspective on worm dynamics

How do we solve the problem?

- ▶ $P_{\infty}[(A, x, y) \rightarrow (A, x, y)] = 1$ whenever $d_x(A) = d_y(A) = z$
- But on the honeycomb lattice z = 3
- So states with Eulerian A never get stuck
- To simulate loop models, we only observe the chain when A is Eulerian...

NUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

An alternate perspective on worm dynamics

How do we solve the problem?

- ▶ $P_{\infty}[(A, x, y) \rightarrow (A, x, y)] = 1$ whenever $d_x(A) = d_y(A) = z$
- But on the honeycomb lattice z = 3
- So states with Eulerian A never get stuck
- To simulate loop models, we only observe the chain when A is Eulerian...
- Try defining new transition matrix P'_{∞} such that:

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

An alternate perspective on worm dynamics

How do we solve the problem?

- ▶ $P_{\infty}[(A, x, y) \rightarrow (A, x, y)] = 1$ whenever $d_x(A) = d_y(A) = z$
- But on the honeycomb lattice z = 3
- So states with Eulerian A never get stuck
- To simulate loop models, we only observe the chain when A is Eulerian...
- Try defining new transition matrix P'_{∞} such that:

$$P'_{\infty}[(A, x, x) \to \cdot] = \lim_{w \to \infty} P_w[(A, x, x) \to \cdot]$$

USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

An alternate perspective on worm dynamics

How do we solve the problem?

- ▶ $P_{\infty}[(A, x, y) \rightarrow (A, x, y)] = 1$ whenever $d_x(A) = d_y(A) = z$
- But on the honeycomb lattice z = 3
- So states with Eulerian A never get stuck
- To simulate loop models, we only observe the chain when A is Eulerian...
- Try defining new transition matrix P'_{∞} such that:

$$P'_{\infty}[(A, x, x) \to \cdot] = \lim_{w \to \infty} P_w[(A, x, x) \to \cdot]$$

• $P'_{\infty}[(A, x, y) \rightarrow (A, x, y)] = 0$ when $x \neq y$

Worm algorithms for fully-packed loops

Summary

An alternate perspective on worm dynamics

How do we solve the problem?

- ▶ $P_{\infty}[(A, x, y) \rightarrow (A, x, y)] = 1$ whenever $d_x(A) = d_y(A) = z$
- But on the honeycomb lattice z = 3
- So states with Eulerian A never get stuck
- To simulate loop models, we only observe the chain when A is Eulerian...
- Try defining new transition matrix P'_{∞} such that:

$$P'_{\infty}[(A, x, x) \to \cdot] = \lim_{w \to \infty} P_w[(A, x, x) \to \cdot]$$

- $P'_{\infty}[(A, x, y) \rightarrow (A, x, y)] = 0$ when $x \neq y$
- This will get rid of the absorbing states...

Worm algorithms for fully-packed loops

Summary

An alternate perspective on worm dynamics

How do we solve the problem?

- ▶ $P_{\infty}[(A, x, y) \rightarrow (A, x, y)] = 1$ whenever $d_x(A) = d_y(A) = z$
- But on the honeycomb lattice z = 3
- So states with Eulerian A never get stuck
- To simulate loop models, we only observe the chain when A is Eulerian...
- Try defining new transition matrix P'_{∞} such that:

•
$$P'_{\infty}[(A, x, x) \rightarrow \cdot] = \lim_{w \rightarrow \infty} P_w[(A, x, x) \rightarrow \cdot]$$

- $P'_{\infty}[(A, x, y) \rightarrow (A, x, y)] = 0$ when $x \neq y$
- This will get rid of the absorbing states...
- If we are lucky P'_{∞} will simulate the FPL...

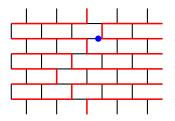
Worm algorithms for fully-packed loops

▲□▶▲□▶▲□▶▲□▶ □ のQ@

An alternate perspective on worm dynamics

Worm algorithm for honeycomb-lattice FPL

► Start in configuration (*A*, *x*, *y*)



INTRALIAN RESEARCH COUNCIL Ientre of Excellence for Mathematics nd Statistics of Complex Systems

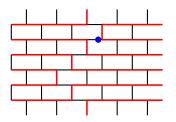
Worm algorithms for fully-packed loops

▲□▶▲□▶▲□▶▲□▶ □ のQ@

An alternate perspective on worm dynamics

Worm algorithm for honeycomb-lattice FPL

- ► Start in configuration (*A*, *x*, *y*)
- ► If *x* = *y*



USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

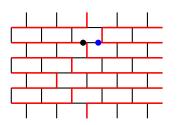
▲□▶▲□▶▲□▶▲□▶ □ のQ@

An alternate perspective on worm dynamics

Worm algorithm for honeycomb-lattice FPL

► Start in configuration (*A*, *x*, *y*)

▶ Pick *x*′ ~ *x*



DETRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

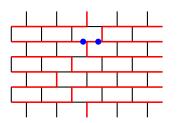
Worm algorithm for honeycomb-lattice FPL

► Start in configuration (*A*, *x*, *y*)

- ▶ Pick *x*' ~ *x*
- If *xx*′ ∉ *A*

$$(A, x, x) \rightarrow (A \cup xx', x', x) \text{ or } (A, x, x) \rightarrow (A \cup xx', x, x')$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@



ISTRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

Worm algorithm for honeycomb-lattice FPL

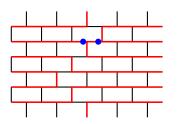
► Start in configuration (*A*, *x*, *y*)

- ▶ Pick *x*' ~ *x*
- If xx' ∉ A

$$(A, x, x) \rightarrow (A \cup xx', x', x) \text{ or } (A, x, x) \rightarrow (A \cup xx', x, x')$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Else $(A, x, x) \rightarrow (A, x, x)$



INTRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems

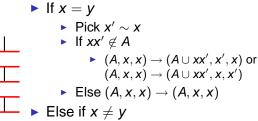
Worm algorithms for fully-packed loops

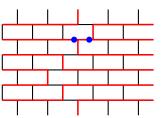
(日)

An alternate perspective on worm dynamics

Worm algorithm for honeycomb-lattice FPL

► Start in configuration (*A*, *x*, *y*)





DETRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics nd Statistics of Complex Systems

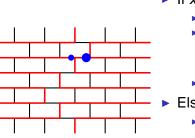
Worm algorithms for fully-packed loops

= nar

An alternate perspective on worm dynamics

Worm algorithm for honeycomb-lattice FPL

► Start in configuration (*A*, *x*, *y*)



For
$$f(x) = y$$

Pick $x' \sim x$
If $xx' \notin A$
(A, x, x) → (A ∪ xx', x', x) or
(A, x, x) → (A ∪ xx', x, x')
Else (A, x, x) → (A, x, x)
Else if $x \neq y$
Pick x or y (say x)

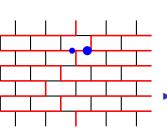
USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics Ind Statistics of Complex Systems

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

Worm algorithm for honeycomb-lattice FPL

► Start in configuration (*A*, *x*, *y*)



If x = y
Pick x' ~ x
If xx' ∉ A
(A ∪ xx', x', x) or
(A, x, x) → (A ∪ xx', x', x) or
(A, x, x) → (A ∪ xx', x, x')
Else (A, x, x) → (A, x, x)
Else if x ≠ y
Pick x or y (say x)
If d_x(A) = 3
Pick one of the three xx' ∈ A

$$(A, x, y) \rightarrow (A \setminus xx', x', y)$$

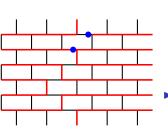
NETRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

Worm algorithm for honeycomb-lattice FPL

► Start in configuration (*A*, *x*, *y*)



- If x = y
 Pick x' ~ x
 If xx' ∉ A
 (A ∪ xx', x', x) or
 (A, x, x) → (A ∪ xx', x, x')
 Else (A, x, x) → (A ∪ xx', x, x')
 Else if x ≠ y
 Pick x or y (say x)
 If d_x(A) = 3
 Pick one of the three xx' ∈ A
 - $\blacktriangleright (A, x, y) \rightarrow (A \setminus xx', x', y)$

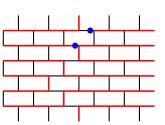
USTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

Worm algorithm for honeycomb-lattice FPL

► Start in configuration (*A*, *x*, *y*)



► If
$$x = y$$
Fick $x' \sim x$
If $xx' \notin A$
(A, x, x) → (A ∪ xx', x', x) or
(A, x, x) → (A ∪ xx', x, x')
Else (A, x, x) → (A ∪ xx', x, x')
Else if $x \neq y$
Fick x or y (say x)
If $d_x(A) = 3$
Fick one of the three $xx' \in A$
(A, x, y) → (A \ xx', x', y)
Else if $d_x(A) = 1$
Fick one of the two $xx' \notin A$
(A, x, y) → (A ∪ xx', x', y)

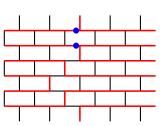
STRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics id Statistics of Complex Systems

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

Worm algorithm for honeycomb-lattice FPL

► Start in configuration (*A*, *x*, *y*)



► If
$$x = y$$
Fick $x' \sim x$
If $xx' \notin A$
(A, x, x) → (A ∪ xx', x', x) or
(A, x, x) → (A ∪ xx', x, x')
Else (A, x, x) → (A ∪ xx', x, x')
Else if $x \neq y$
Fick x or y (say x)
If $d_x(A) = 3$
Fick one of the three $xx' \in A$
(A, x, y) → (A \ xx', x', y)
Else if $d_x(A) = 1$
Fick one of the two $xx' \notin A$
(A, x, y) → (A ∪ xx', x', y)

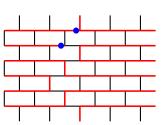
ISTRALIAN RESEARCH COUNCIL entre of Excellence for Mathematics nd Statistics of Complex Systems

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

Worm algorithm for honeycomb-lattice FPL

► Start in configuration (*A*, *x*, *y*)

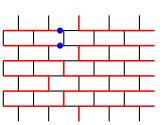


Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

Worm algorithm for honeycomb-lattice FPL

► Start in configuration (*A*, *x*, *y*)



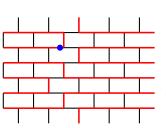
► Exact in configuration (x, x, y)
If
$$x = y$$
Pick $x' \sim x$
If $xx' \notin A$
(A, x, x) → (A ∪ xx', x', x) or
(A, x, x) → (A ∪ xx', x, x')
Else (A, x, x) → (A ∪ xx', x, x')
Else if $x \neq y$
Pick x or y (say x)
If $d_x(A) = 3$
Pick one of the three $xx' \in A$
(A, x, y) → (A \ xx', x', y)
Else if $d_x(A) = 1$
Pick one of the two $xx' \notin A$
(A, x, y) → (A ∪ xx', x', y)
Else if $d_x(A) = 1$
Pick one of the two $xx' \notin A$
(A, x, y) → (A ∪ xx', x', y)

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

Worm algorithm for honeycomb-lattice FPL

► Start in configuration (*A*, *x*, *y*)



► If
$$x = y$$
► Pick $x' \sim x$
► If $xx' \notin A$
► $(A, x, x) \rightarrow (A \cup xx', x', x)$ or
 $(A, x, x) \rightarrow (A \cup xx', x, x')$
► Else $(A, x, x) \rightarrow (A \cup xx', x, x')$
► Else if $x \neq y$
► Pick x or y (say x)
► If $d_x(A) = 3$
► Pick one of the three $xx' \in A$
► $(A, x, y) \rightarrow (A \setminus xx', x', y)$
► Else if $d_x(A) = 1$
► Pick one of the two $xx' \notin A$
► (A, x, y) $\rightarrow (A \cup xx', x', y)$

Worm algorithms for fully-packed loops

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Summary

An alternate perspective on worm dynamics

Transition matrix

 $P'_{\infty}[(A, x, y) \rightarrow (A \triangle xx', x', y)] = \begin{cases} 1/6 & d_x(A) = 3\\ 1/4 & xx' \notin A \end{cases}$ X = y $P'_{\infty}[(A, x, x) \rightarrow (A, x, x)] = \frac{d_x(A)}{3}$ $P'_{\infty}[(A, x, x) \rightarrow (A \cup xx', x', x)] = \frac{1}{6}$

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

Transition matrix

 $\begin{array}{l} \mathbf{x} \neq \mathbf{y} \\ P'_{\infty}[(A, x, y) \to (A \triangle xx', x', y)] = \begin{cases} 1/6 & d_x(A) = 3\\ 1/4 & xx' \notin A \end{cases} \\ \mathbf{x} = \mathbf{y} \\ P'_{\infty}[(A, x, x) \to (A, x, x)] &= \frac{d_x(A)}{3} \\ P'_{\infty}[(A, x, x) \to (A \cup xx', x', x)] = \frac{1}{6} \end{cases}$

Theorem

The set of states in *S* with no isolated vertices is recurrent and irreducible, its complement is transient, and the stationary distribution of $\overline{P'_{\infty}}$ is uniform on the fully-packed configurations

Worm algorithms for fully-packed loops

An alternate perspective on worm dynamics

Transition matrix

 $\begin{array}{l} \mathbf{x} \neq \mathbf{y} \\ P'_{\infty}[(A, x, y) \to (A \triangle xx', x', y)] = \begin{cases} 1/6 & d_x(A) = 3\\ 1/4 & xx' \notin A \end{cases} \\ \mathbf{x} = \mathbf{y} \\ P'_{\infty}[(A, x, x) \to (A, x, x)] &= \frac{d_x(A)}{3} \\ P'_{\infty}[(A, x, x) \to (A \cup xx', x', x)] = \frac{1}{6} \end{cases}$

Theorem

The set of states in S with no isolated vertices is recurrent and irreducible, its complement is transient, and the stationary distribution of $\overline{P'_{\infty}}$ is uniform on the fully-packed configurations

• Therefore P'_{∞} correctly simulates the FPL

Centre of Excellence for Mathematics and Statistics of Complex Systems

Outline	Worm algorithms for Ising high-temperature grap
00	000000
	0000
	00000

▲□▶▲□▶▲□▶▲□▶ □ のQで

Numerical results

Worm simulations of honeycomb-lattice FPL

Simulated the honeycomb-lattice FPL

Outline	Worm algorithms for Ising high-temperature graphs
00	000000
	00000

Numerical results

Worm simulations of honeycomb-lattice FPL

- Simulated the honeycomb-lattice FPL
- Again observed multiple time scales

Outline	Worm algorithms for Ising high-temperature graphs
00	000000
	00000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Numerical results

Worm simulations of honeycomb-lattice FPL

- Simulated the honeycomb-lattice FPL
- Again observed multiple time scales
- $\mathcal{N}_{l}(A, x, y) =$ number of loops (cyclomatic number)
- $\langle \mathcal{N}_l \rangle$ is "energy-like"

Outline	Worm algorithms for Ising high-temperature graphs
00	000000
	00000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Numerical results

Worm simulations of honeycomb-lattice FPL

- Simulated the honeycomb-lattice FPL
- Again observed multiple time scales
- $\mathcal{N}_{l}(A, x, y) =$ number of loops (cyclomatic number)
- $\langle \mathcal{N}_l \rangle$ is "energy-like"
- \mathcal{N}_l is the slowest mode observed

Worm algorithms for Ising high-temperature graphs

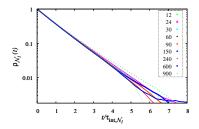
Worm algorithms for fully-packed loops

Summary

Numerical results

Dynamics of \mathcal{N}_{l}

• $\rho_{\mathcal{N}_l}(t)$ is almost a perfect exponential



- Scaled time by \(\tau_{\text{int},\(\mathcal{N}\)_l}\)
- Good data collapse suggests

 $z_{\text{exp}} pprox z_{\text{int},\mathcal{N}_l}$

Fitting $\tau_{\text{int},\mathcal{N}_l}$ gives $z_{\text{int},\mathcal{N}_l} = 0.515(8)$

Outline	Worm algorithms for Ising high-temperature graphs
00	000000
	00000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

 Standard worm algorithm for Ising high-temperature graphs outperforms SW in three dimensions

Worm algorithms for Ising high-temperature graphs 00000 0000 Worm algorithms for fully-packed loops

(日)

Summary

Summary

- Standard worm algorithm for Ising high-temperature graphs outperforms SW in three dimensions
- Worm decorrelates on different time scales depends on observable

Worm algorithms for Ising high-temperature graphs 00000 00000 Worm algorithms for fully-packed loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Summary

Summary

- Standard worm algorithm for Ising high-temperature graphs outperforms SW in three dimensions
- Worm decorrelates on different time scales depends on observable
- Modified worm algorithm is demonstrated to be valid for honeycomb lattice FPL
- Dynamic exponent $z \approx 0.5$

Worm algorithms for Ising high-temperature graphs 00000 00000 Worm algorithms for fully-packed loops

Summary

Summary

- Standard worm algorithm for Ising high-temperature graphs outperforms SW in three dimensions
- Worm decorrelates on different time scales depends on observable
- Modified worm algorithm is demonstrated to be valid for honeycomb lattice FPL
- Dynamic exponent $z \approx 0.5$
- By contrast, even the best cluster algorithms for frustrated lsing models are thought to be non-ergodic at T = 0

