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How do we efficiently simulate models near criticality?

◮ Problem: critical slowing-down
◮ The current state-of-the-art: cluster algorithms

◮ Swendsen & Wang PRL 1987
◮ Use global moves in clever way

◮ More recent idea: worm algorithms
◮ Prokof’ev & Svistunov PRL 2001
◮ Enlarge an Eulerian configuration space to include defects
◮ Move the defects via random walk
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Eulerian subgraphs
◮ Fix a finite graph G = (V , E)

◮ A ⊆ E is Eulerian if every vertex in (V , A) has even degree
◮ The cycle space C(G) = {A ⊆ E : A is Eulerian}

◮ Consider the Ising model on G

ZIsing =
∑

σ∈{−1,+1}V

∏

ij∈E

eβσiσj

◮ The high-temperature expansion is

ZIsing =
(

2|V | cosh|E | β
) ∑

A∈C(G)

(tanh β)|A|
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State space for worm dynamics

◮ Let ∂A be the set of all vertices with odd degree in (V , A)

x

y
◮ For distinct x , y ∈ V define

Sx ,y = {A ⊆ E : ∂A = {x , y}}

Sx ,x = {A ⊆ E : ∂A = ∅}

◮ In this notation Sx ,x = C(G)
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State space for worm dynamics

◮ Let ∂A be the set of all vertices with odd degree in (V , A)

x

y
◮ For distinct x , y ∈ V define

Sx ,y = {A ⊆ E : ∂A = {x , y}}

Sx ,x = {A ⊆ E : ∂A = ∅}

◮ In this notation Sx ,x = C(G)

◮ State space of worm algorithm is

S = {(A, x , y) : x , y ∈ V and A ∈ Sx ,y}

◮ Assign (A, x , y) ∈ S probability

π(A, x , y) ∝ dx dy (tanh β)|A|
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Ising susceptibility
◮ If Z :=

∑
A∈C(G) w |A| and w := tanh β

ZIsing =
(

2|V | cosh|E | β
)

Z Partition function

Z 〈σxσy 〉Ising =
∑

A∈Sx,y

w |A| Two-point function

Z 〈M2〉Ising =
∑

A∈S

w |A| Magnetization
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Ising susceptibility
◮ If Z :=

∑
A∈C(G) w |A| and w := tanh β

ZIsing =
(

2|V | cosh|E | β
)

Z Partition function

Z 〈σxσy 〉Ising =
∑

A∈Sx,y

w |A| Two-point function

Z 〈M2〉Ising =
∑

A∈S

w |A| Magnetization

◮ If G is translationally invariant then

π(A, x , y) = w |A|/Z V χ

◮ Therefore the observable D0(A, x , y) = δx ,y satisfies

〈D0〉π = 1/χ
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Worm dynamics

x

y
◮ Start in configuration (A, x , y)

◮ Pick x or y
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◮ Start in configuration (A, x , y)

◮ Pick x or y
◮ Pick x ′ ∼ x
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Transition matrix

◮ Let G be translationally invariant with degree z
◮ Worm dynamics corresponds to transition matrix P on S

P[(A, x , y) → (A△xx ′, x ′, y)] =
1
2

1
z

{
1, xx ′ ∈ A,

w , xx ′ 6∈ A,

◮ And similarly for y moves. . .
◮ All other non-diagonal elements of P are zero
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Transition matrix

◮ Let G be translationally invariant with degree z
◮ Worm dynamics corresponds to transition matrix P on S

P[(A, x , y) → (A△xx ′, x ′, y)] =
1
2

1
z

{
1, xx ′ ∈ A,

w , xx ′ 6∈ A,

◮ And similarly for y moves. . .
◮ All other non-diagonal elements of P are zero

Lemma
P is in detailed balance with π(A, x , y) = w |A|/Z V χ

◮ Can estimate χ by running the worm dynamics
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High-temperature expansions, state spaces, worm dynamics . . .

Efficiency

◮ Worm dynamics provide a valid way to compute χ

◮ But how efficient is the worm algorithm?
◮ How do we measure efficiency anyway?
◮ Empirically – measuring autocorrelations
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Markov-chain Monte Carlo
◮ Markov chain

◮ State space S, with |S| < ∞
◮ Transition matrix P
◮ Stationary distribution π

◮ Observables (random variables) X , Y , . . .

◮ Simulate Markov chain s0
P
−→ s1

P
−→ s2

P
−→ . . . with st ∈ S

◮ Get time series X0, X1, X2, . . . with Xt = X (st)

◮ Define the autocorrelation function

ρX (t) :=
〈XsXs+t〉π − 〈X 〉2

π

varπ(X )

◮ Stationary process – start “in equilibrium”
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, T → ∞
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Integrated autocorrelation times

◮ The integrated autocorrelation time

τint,X :=
1
2

∞∑

t=−∞

ρX (t)

◮ If X̂ is the sample mean of {Xt}
T
t=1 then we have

var(X̂ ) ∼ 2 τint,X
var(X )

T
, T → ∞

◮ 1 “effectively independent” observation every 2 τint,X steps
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◮ ρX (t) typically decays exponentially as t → ∞

◮ The exponential autocorrelation time

τexp,X := lim sup
t→∞

t
− log |ρX (t)|

and τexp := sup
X

τexp,X
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Exponential autocorrelation times

◮ ρX (t) typically decays exponentially as t → ∞

◮ The exponential autocorrelation time

τexp,X := lim sup
t→∞

t
− log |ρX (t)|

and τexp := sup
X

τexp,X

◮ Typically τexp,X = τexp < ∞ and τint,X ≤ τexp for all X

◮ Start the chain with arbitrary distribution α

◮ Distribution at time t is αP t

Lemma
αP t tends to π with rate bounded by e−t/τexp
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Autocorrelations, critical slowing down . . .

Critical slowing-down

◮ Near a critical point the autocorrelation times typically
diverge like

τ ∼ ξz

◮ More precisely, we have a family of exponents:
zexp, and zint,X for each observable X .

◮ Different algorithms for the same model can have very
different z

◮ E.g. d = 2 Ising model
◮ Glauber (Metropolis) algorithm z ≈ 2
◮ Swendsen-Wang algorithm z ≈ 0.2
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Numerical results

Worm simulations

◮ Simulated the critical square-lattice Ising model
◮ Focus on two observables:

◮ N (A, x , y) = |A|
◮ D0(A, x , y) = δx,y

◮ 〈N〉 is “energy-like”
◮ 〈D0〉 = 1/χ

◮ Measured observables after every hit (worm update)
◮ Natural unit of time is one sweep (Ld hits)
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Numerical results

Dynamics of N

◮ ρN (t) is almost a perfect exponential
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◮ Scaled time by τint,N

◮ Good data collapse suggests
zexp ≈ zint,N

◮ Fitting τint,N gives zint,N ≈ 0.379

◮ Li-Sokal bound zexp, zint,N ≥ α/ν applies to worm dynamics
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Numerical results

Dynamics of D0

◮ ρD0(t) decays significantly in O(1) hits!
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2048 ◮ ρD0(t) ∼ t−s with s ≈ 0.75

◮ D0 decorrelates on a totally different time scale to N
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Numerical results

Three dimensions

◮ Qualitatively similar behavior when d = 3:
◮ ρD0(t) ∼ t−s

◮ s ≈ 0.66
◮ ρN (t) roughly exponential
◮ zexp ≈ zint,N ≈ α/ν ≈ 0.174
◮ Li-Sokal bound may be sharp for d = 3 worm algorithm
◮ Compare Swendsen-Wang zSW ≈ 0.46
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Numerical results

Practical efficiency for square/cubic lattice critical Ising

◮ Swendsen-Wang seems to outperform worm when d = 2
◮ Efficiency depends on observable, X
◮ A simple way to compare worm and SW is to compute
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◮ For d = 3 we find κworm/κSW ≈ L−0.32

◮ With the crossover κworm/κSW ≈ 1 at around L ≈ 45
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◮ Our perspective so far:

Worm algorithm ⇐⇒ simulate Ising high-temperature graphs

◮ Eulerian-subgraph model
◮ State space C(G)
◮ P(A) ∝ w |A|

◮ Run a worm simulation
◮ Only observe the chain when A ∈ C(G), i.e. when x = y
◮ Obtain a new Markov chain P
◮ Stationary distribution π(A, x , x) ∝ f (x) w |A|

◮ New perspective:

Worm algorithm ⇐⇒ simulate Eulerian-subgraph model
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An alternate perspective on worm dynamics

Loop models

◮ Honeycomb lattice Eulerian subgraphs = disjoint cycles
◮ Nienhuis loop model

0 < w < wc Disordered phase
wc < w < ∞ Critical densely-packed phase

w = +∞ Critical fully-packed phase

+ + + +
+ − − + +

+ − − +
+ − + − +

+ − − +
+ + + + + ◮ 1 loop config ↔ 2 dual spin configs

◮ Ising spin domains
◮ w = e−2β

◮ w > 1 =⇒ antiferromagnetic β

◮ Worm ⇐⇒ simulate dual Ising domain boundaries
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Fully-packed loop model (FPL)

+−

+

Frustration

◮ FPL ↔ triangular-lattice Ising antiferromagnet at T = 0
◮ Frustrated systems hard to simulate
◮ Cluster algorithms for frustrated Ising models thought to be

non-ergodic at T = 0
◮ Can we use worm instead?
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An alternate perspective on worm dynamics

P∞ has absorbing states

◮ Standard worm transitions for w ≥ 1 on z-regular graph:

Pw [(A, x , y) → (A△xx ′, x ′, y)] =
1

2z

{
1/w xx ′ ∈ A

1 xx ′ 6∈ A

◮ Identity transitions are fixed by normalization:

Pw [(A, x , y) → (A, x , y)] = (1 − 1/w)
dx(A) + dy (A)

2z

◮ P∞[(A, x , y) → (A, x , y)] = 1 whenever dx(A) = dy (A) = z
◮ Cannot use standard worm algorithm when w = +∞
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An alternate perspective on worm dynamics

How do we solve the problem?

◮ P∞[(A, x , y) → (A, x , y)] = 1 whenever dx(A) = dy (A) = z
◮ But on the honeycomb lattice z = 3
◮ So states with Eulerian A never get stuck
◮ To simulate loop models, we only observe the chain when

A is Eulerian. . .
◮ Try defining new transition matrix P ′

∞ such that:
◮ P ′

∞[(A, x , x) → · ] = limw→∞ Pw [(A, x , x) → · ]
◮ P ′

∞[(A, x , y) → (A, x , y)] = 0 when x 6= y

◮ This will get rid of the absorbing states. . .
◮ If we are lucky P ′

∞ will simulate the FPL. . .
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Transition matrix
◮ x 6= y

P ′
∞[(A, x , y) → (A△xx ′, x ′, y)] =

{
1/6 dx(A) = 3

1/4 xx ′ 6∈ A
◮ x = y

P ′
∞[(A, x , x) → (A, x , x)] =

dx(A)

3

P ′
∞[(A, x , x) → (A ∪ xx ′, x ′, x)] =

1
6

Theorem
The set of states in S with no isolated vertices is recurrent and
irreducible, its complement is transient, and the stationary
distribution of P ′

∞ is uniform on the fully-packed configurations
◮ Therefore P ′

∞ correctly simulates the FPL
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Numerical results

Worm simulations of honeycomb-lattice FPL

◮ Simulated the honeycomb-lattice FPL
◮ Again observed multiple time scales
◮ Nl(A, x , y) = number of loops (cyclomatic number)
◮ 〈Nl〉 is “energy-like”
◮ Nl is the slowest mode observed
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Numerical results

Dynamics of Nl

◮ ρNl (t) is almost a perfect exponential
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◮ Scaled time by τint,Nl

◮ Good data collapse suggests
zexp ≈ zint,Nl

◮ Fitting τint,Nl gives
zint,Nl = 0.515(8)



Outline Worm algorithms for Ising high-temperature graphs Worm algorithms for fully-packed loops Summary

Summary

◮ Standard worm algorithm for Ising high-temperature
graphs outperforms SW in three dimensions



Outline Worm algorithms for Ising high-temperature graphs Worm algorithms for fully-packed loops Summary

Summary

◮ Standard worm algorithm for Ising high-temperature
graphs outperforms SW in three dimensions

◮ Worm decorrelates on different time scales – depends on
observable



Outline Worm algorithms for Ising high-temperature graphs Worm algorithms for fully-packed loops Summary

Summary

◮ Standard worm algorithm for Ising high-temperature
graphs outperforms SW in three dimensions

◮ Worm decorrelates on different time scales – depends on
observable

◮ Modified worm algorithm is demonstrated to be valid for
honeycomb lattice FPL

◮ Dynamic exponent z ≈ 0.5



Outline Worm algorithms for Ising high-temperature graphs Worm algorithms for fully-packed loops Summary

Summary

◮ Standard worm algorithm for Ising high-temperature
graphs outperforms SW in three dimensions

◮ Worm decorrelates on different time scales – depends on
observable

◮ Modified worm algorithm is demonstrated to be valid for
honeycomb lattice FPL

◮ Dynamic exponent z ≈ 0.5
◮ By contrast, even the best cluster algorithms for frustrated

Ising models are thought to be non-ergodic at T = 0
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