
Differential PSK (DPSK) and Its Performance
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A(t) = amplitude information

θ(t) = phase information

fc = the carrier frequency

θ = the phase shift introduced by the channel

• In coherent communications, θ is known to receivers

• In non-coherent communications, θ is unknown to receivers and 

assumed to be a random variable distributed uniformly over (-π, π)



Coherent Detection of Differentially Encoded 

M-PSK Signals

• In coherent communications, phase estimation is required.

• The receiver usually derives its frequency and phase demodulation references 

from a carrier synchronization loop.

• The synchronization loop may introduce a phase ambiguity        

where     is the estimate acquired by the receiver through the synchronization 

loop.

• For M-PSK signals, the phase ambiguity Φmay take any value in

Thus any value of Φ other than 0 will cause a correctly detected phase to be 

erroneously mistaken for one of the other possible phases, even in the 

absence of noise.

• Solution: differential encoding while maintaining coherent detection
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Differentially Encoded M-PSK Signals

• Instead of encoding information into absolute phases, the 

information is now encoded using phase differences between 

successive signal transmission. 

Example: 0 mapped to phase 0, 1 mapped to phase π

π 0    0    0     π 00Differentially encoded

Phase sequence

π π 0    0    π π0Absolute phase 

sequence {∆θn}

1    1    0    0    1    10Binary sequence {an}

The actually transmitted

Phase sequence
Initial value

� The information sequence {an} is now carried by phase difference 

in {θn}.



π 0    0    0     π 00Differentially encoded

Phase sequence

π π 0    0    π π0Absolute phase 

sequence {∆θn}

1    1    0    0    1    10Binary sequence {an}

The actually transmitted

Phase sequence
Initial value

Differentially Encoded M-PSK Signals

•Assume the phase ambiguity Φ introduced by the synchronization 

loop is constant during successive signal intervals. In the absence 

of noise, the receiver would convert the received phase sequence

into 0+Φ, π+Φ, 0+Φ, 0+Φ, 0+Φ, π+Φ, 0+Φ.

•The received sequence would be then differentially decoded into π, 

π, 0, 0, π, π.

•Then we get the original binary sequence (110011) back.



Differentially Encoded M-PSK Signals

Example: M=4. Assume that the following Gray mapping is used

Binary sequence                            00         10    11       01

absolute phase                               0           π/2      π 3π/2

Binary sequence {an} 10           11      00      10        01 11

Absolute phase sequence {∆θn} π/2          π 0      π/2      3π/2       π

Differentially encoded π/2        3π/2   3π/2      0      3π/2      π/2     

phase sequence {θn}

Estimated phase sequence π/2+Φ 3π/2+Φ 3π/2+Φ 0+Φ 3π/2+Φ π/2+Φ

(in the absence of noise)

Differentially decoded sequence π 0       π/2      3π/2       π

Decoded binary sequence 11       00     10         01       11

ˆ
nθ

ˆ
na

Φ є { 0, π/2, π, 3π/2} is the phase ambiguity 



The Structure of Differential Encoder and Decoder

ˆ{ }nθ

Delay T

{∆θn}
{θn}

Modulo 2π addition

Delay T

Figure a. A differential encoder

Figure b. A differential decoder

{∆θn} = the absolute phase

sequence

{θn} = the transmitted phase

sequence

ˆ{ }nθ∆

A digital comm. system that 

employ differential encoding of the 

inform. Symbols and coherent 

detection of successive 

differentially encoded M-PSK 

signals is called a differentially 

encoded coherent M-PSK system. 
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Optimal Coherent Receiver for Differentially 

Encoded M-PSK
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Performance 
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Differential PSK (DPSK)

• The phase shift is treated as a random variable distributed uniformly over 

(-π, π), and no phase estimation is provided at the receiver.

• We are now concerned with non-coherent communications

• The phase shift θ is the same during two consecutive signal transmission 

intervals [(n-1)T, nT) and [nT, (n+1)T). 

• The information phase sequence {∆θn} is still differentially encoded as 

before. 

• The transmitted signal s(t) in the interval [(n-1)T, (n+1)T] is 

• ∆θn= θn- θn-1. θn and θn-1 are independent. Both of them take values 

uniformly over 

• {∆θn} and {θn} are i.i.d. sequences
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Differential PSK (DPSK)

• The received waveform is then r(t)=s(t)+n(t)

• To derive the optimal receiver, the observation interval should be 

taken as (n-1)T ≤ t <(n+1)T since θis the same in this interval.

• We have four orthonormal basis functions:
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We estimate ∆θn from the new observation (rn,c, rn,s, rn-1,c, rn-1,s)
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θ is distributed uniformly over (-π, π) and θn-1 tales values uniformly 

over 
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Applying the MAP rule, we now



Optimal Receiver for M-DPSK
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Performance of M-DPSK
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(rn,c, rn,s)

(rn-1,c, rn-1,s)

noise vector (ηn,c, ηn,s) 

noise vector

(ηn-1,c, ηn-1,s) 

It follows that the pdf of ψ is 

independent of the angle θn-1+ θ. 

It can be shown that the 

conditional pdf of ψ given ∆θn

satisfies the following equation
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We then get



Special case

• M=2

Pb=Pe=1/2e-Eb/N0

• For large M, M-DPSK requires 3dB more Eb/N0 than coherent M-PSK



Comparison of Digital Modulation Methods

• To make a fair comparison among different digital modulation 

methods, one must investigate the tradeoff among the bandwidth 

efficiency, bit error probability, and bit SNR.

• The bandwidth efficiency of a modulation method is defined as the 

bit rate (Rb) to bandwidth (W) ratio Rb/W

• The bandwidth is calculated from the power spectral density function 

of the transmitted waveform, which in turn depends on the signal set 

used.



Assume that the optimal signal set is used. 

Theorem 3.7.1: The maximum number N of dimension of the signal 

source spanned by a set of signals of duration of T and “bandwidth”

W grows linearly with time T and bandwidth W, respectively:

N=KWT

where K is a constant around 2.

The value of K depends on specific definitions of bandwidth. We 

normally choose K=2.

Comparison of Digital Modulation Methods



Examples

PAM signals: N=1    =>     W=1/(2T)  (single sideband)

The bandwidth efficiency of M-ary PAM is

M-PSK: N=2    =>     W=1/T

log /
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1/ 2

bR M T
M

W T
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1/

bR M T
M

W T
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bR M T
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log / 2 log  
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/ 2 M

bR M T M

W M T
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M2-QAM: N=2 =>   W=1/T 

M-FSK: N=M =>   W=M/(2T)

As M approaches infinity, Rb/W goes to 0



Comparison of Digital Modulation Methods

• In the case of PAM, QAM, and PSK, increasing M results in a higher 

bit rate-to-bandwidth ratio R/W. 

• However, the cost of achieving the higher data rate is an increase in 

the SNR per bit.

• Therefore, these modulation methods are appropriate for channels 

that are bandlimited, where we desire R/W>1 and where there is 

sufficient high SNR to support increases in M. 

• Example:  Telephone channels



• M-ary orthogonal signals yields R/W≤1. As M increases, R/W 

decreases. 

• However, the SNR/bit required to achieve a given error probability 

(10-5) decreases as M increases. 

• Consequently, M-ary orthogonal signals are appropriate for power-

limited channels that have sufficiently large bandwidth to 

accommodate a large number of signals. 

• As M goes to infinity, Pe approaches zero provided that SNR/bit≥-

1.6 dB

Comparison of Digital Modulation Methods
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Channel Capacity and Coded Modulation



Channel Models and Channel Capacity

Binary Symmetric Channels

AWGN

Channel

{an} BPSK

Modulator

s(t) ˆ{ }naDemodulator

and

detector

Assume that an=0 or 1, i.i.d, and symbol 0 and 1 are equally likely.

Then 
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Binary Symmetric Channels

1 2 1 2
ˆ ˆ ˆ( ) 1 [1 ]nn n bP a a a a a a p≠ = − −⋯ ⋯

For any fixed bit SNR Eb/N0, the block error prob. goes to 1 as n 

approaches infinity. 

In order to transmit information reliably over the BSC, one has to 

employ channel encoders and decoders.

BSC

{an} Channel

encoder

ˆ{ }naChannel

decoder

An important question: with the use of channel encoders and 

decoders, how many number of bits of information can be reliably

transmitted over the BSC? 

The answer is the channel capacity of the BSC.



Channel Capacity of the BSC

max ( ; )
X

C I X Y=

X is the input random variable to the BSC, Y is the corresponding output. 

The maximization is taken over all possible input random variable X.

For BSC, C = 1 – H(q) with the maximum achieved by the equally likely 

input X.



AWGN

Channel

{an} BPSK

Modulator

s(t) ˆ{ }na
Demodulator

and

detector

Channel

encoder

Channel

decoder

•The concatenation of the channel encoder and BPSK modulator is a

binary coded modulation scheme and gives binary coded signals.

•The BPSK detector is not optimal any more since coded signals are 

correlated and the BPSK makes a hard decision (0 or 1) bit by bit.

•To improve the performance, we may consider a detector that outputs 

Q>2 outputs. That is, a detector quantizes the demodulator output into 

Q>2 outputs (or no quantization). In this case, we say that the detector 

has made a soft decision.

•With a detector making a soft decision, we get an equivalent discrete 

channel with two inputs and Q>2 possible outputs.

Channel Capacity of the BSC



Discrete Memoryless Channels

m0

m1

mM-1

Y0

Y1

YQ-1

P(y0|m0)

P(yQ-1|mM-1)

•With any M-ary modulator and a soft (or hard) decision detector, we get 

an equivalent discrete channel with M inputs and Q≥M possible outputs.

•The maximum number of bits of information that can be reliably 

transmitted over the channel is given by channel capacity

A general discrete channel 

max ( ; )
X

C I X Y=



Discrete Input, Continuous-Output Channels

AWGN

Channel

{an} PAM

Modulator

s(t) Demodulator {yn}

•The demodulator converts the received waveform into scalar vectors, 

no estimation is made at this point. The corresponding composite

channel is then equivalent to the scalar channel 

Y = X + n

•X takes values in the amplitude set of the PAM modulator

•n is a Gaussian random variable with n ~ N(0, N0/2)

•Channel capacity

max ( ; )
X

C I X Y=

•The modulator is given, but coded PAM signal and their receiver 

including the detector and channel decoder are left open.



Band-limited, power-limited AWGN channels

Assume the channel is band limited and power limited

r(t) = x(t) + n(t)

x(t) is the input waveform band-limited to W and power-limited to P 

n(t) = the AWGN with Sn(f) = N0/2.

To compute the channel capacity, we first convert the waveform 

channel into discrete time Gaussian channel.
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Since x(t) is power-limited to P, each sample xn is then energy limited 

to P. The channel capacity CN per use of the discrete-time Gaussian 

channel is

CN = max {I(Xn; rn: Xn is an input with
2
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1
[ ] } log(1 )

2
n

P
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During T seconds, we have 2WT samples, and the discrete-time channel

is used 2WT times. Thus, the channel capacity C in bits per second is 
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Band-limited, power-limited AWGN channels



Bandwidth Efficiency versus Bit SNR
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2) In order to achieve essentially error free transmission, Eb/N0 must 

be ≥-1.6 dB (Shannon limit)

3) An transmission rate Rb< C is achievable, any rate Rb>C is not 

achievable (Shannon noisy channel coding theorem)

4) The proof of noise channel coding theorem involves the well-

known random coding argument

Bandwidth Efficiency versus Bit SNR



Achieving Channel Capacity with Orthogonal Signals

• The error probability can be made arbitrarily small as T goes to infinity (M 

goes to infinity for a fixed bit rate Rb = log M/T ).

• For a power-limited AWGN channel with unbounded bandwidth orthogonal 

signaling (or M-FSK) is asymptotically optimal in the sense that the 

corresponding (symbol) error probability goes to o exponentially as M goes 

to infinity if the bit rate Rb = log M/T is less than the channel capacity.
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Coded Modulation-A Probabilistic Approach

• Although orthogonal signaling is asymptotically optimal, there is a 

considerable gap between the performance of practical uncoded

communication systems and the optimal performance theoretically 

achievable given by the noisy channel coding theorem. 

• To reduce the gap, one must resort to coded modulation.

� Algebraic approach (specific coding design techniques)

� Probabilistic approach (analysis of the performance of a general 

class of coded signals) 



Random Coding Based on M-ary Binary Coded Signals

• Objective

– Design a binary code C consisting of M binary codewords

Ci=(Ci1,Ci2,···, Cin), 0≤ i ≤M-1

– The corresponding coded signals {si(t)} gives good error prob. 

performance

• The encoding bit rate is Rb bits/second

• Blocks of k bits are encoded at a time into one of the M waveforms  

, M = 2k = 2RbT

• Assume Rb<1/Tc, T=nTc.  This implies that k < n, and            

1

2
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• We consider the ensemble of (2n)M distinct ways in which we can 

select M codewords from the total 2n possible binary sequences.

• Associated with each of the (2n)M binary codes, there is a coded 

communication system.
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ˆ{ }naOptimal

Receiver

Channel

Code C1
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Random Coding Based on M-ary Binary Coded Signals



• Instead of evaluating the error prob.                  of each coded system 

individually, we compute the average error prob. of the 2nM coded 

communication systems:

• This is equivalent to choosing a binary code      from the set of all possible 

code Cj, 1≤j ≤2nM, and evaluate the average error prob.             , where
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Applying the union bound, we get
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where Ci and Cl are the ith and lth codeword of the random codebook     

respectively.          
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Since     is the average error prob. of the 2nM coded comm. Systems,

There exists at least one binary code Cj such that the corresponding 

error prob.

Pe(Cj)<2-T(DR0-Rb)< 2-n(R0-Rc)

where Rc = k/n = Rb/D is referred to as the code rate.

eP

When Rb<DR0 (or Rc<R0), one can always design a binary coded 

system so that the block error prob. goes to 0 exponentially fast as 

the block length n approached infinity.

Random Coding Based on M-ary Binary Coded Signals



• If one selects a code at random, then this code is good with a very 

high probability. 

• The probability that the error probability of the randomly chosen code 

is less than 1/α.

• As the dimension n is large enough, good codes are abundant. But the 

implementation complexity is high.

• The rate R0 is called the cutoff rate.
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Group Structures

Definition 1 A group is a set G together with a binary operation * 

on G such that the following three properties hold:

1) * is associative, that is,

for any a,b,c G, (a*b)*c=a*(b*c)∈

2) There is an identity or (unity) 

element e in G such that for all a G,

a*e = e*a = a

∈

3) For each a    G, there exists an 

inverse element a-1 G such that

a*a-1 = e

Sometimes, we denote the group 

as a triple (G, *, e). If the group 

also satisfies 

4) for all a, b

a * b = b * a

Then the group is called abelian

or commutative.

∈

∈



Example 1 Let

• Z, the set consisting of all integers

• Q, the set of all rational numbers

+ and · are ordinary addition and multiplication.

Then (Z, +, 0), (Q, +, 0), (Q*, ·, 1)

are all groups where Q* is the all nonzero rational 

numbers.

Furthermore, they are abelian

How about (Z*, ·, 1) ?



Let n be a positive integer (n>1) 

and Zn represent the set of 

remainder of all integers on 

division n, i.e.,

Zn = {0, 1, 2, ···, n-1}

We define a+b and ab the 

ordinary sum and product of a

and b reduced by modulo n 

respectively.

Let Zn* = { a Zn| a 0}∈ ≠

Proposition 1

(a) (Zn, +, 0) forms a group

(b) (Zp*, ., 1) forms a group 

for any prime p



Definition 2 A multiplicative group 

is said to be cyclic if there is an 

element a  G such that for any b    G 

there is some integer i with b = ai. 

Such and element is called the 

generator of the cyclic group,  and we 

write

G = <a>

∈ ∈

G

1

a

a2

b=ai



Examples

(Z3*,·,1) is a cyclic group with generator 2.

Z3 = {1, 2} = <2> , 20 = 1, 22 = 1 mod 3

(Z7*,·,1) is a cyclic group with generator 3.

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35=5, 36 = 1 mod 7

(Z5*,·,1) is a cyclic group with generator 2.

21 = 2, 22 = 4, 23 = 3, 24 = 1 mod 7

Every element in Z5* can be written in a power of 2



Finite Groups

Definition 3 A group G is called finite if it contains a finite 

number of elements. The number of elements in G is called 

the order of G, denoted as |G|



Definition 4 A ring (R,+, ·) is a set R, together with two binary 

operations, denoted by + and · such that 

1) R is an abelian group with respective to +

2) · is associative, that is

( a · b) · c = a · (b · c ) for all a, b, c R.

3) The distributive law holds:

a · (b + c ) = a · b + a · c

(b + c ) · a = b · a + c · a

(Z, +, ·) and (Q, +, ·) are rings

(Zn, +, ·) forms a ring, called residue class ring modulo n

(Z4, +, ·) is a ring.

Rings

∈



Let (F,+, ·) be a ring, and let 

F* = { a   F| a    0}

The set of nonzero elements in F.

∈ ≠

Definition 5 A field is a ring (F ,+, ·) such that F* together 

with the multiplication · forms an abelian group.

Fields

•(Q ,+, ·), 

•(R ,+, ·), and 

•(C ,+, ·) are fields

where R is the set of all real numbers,

and C is the set of all complex numbers



Definition 6 A finite field F is a field that contains a finite 

number q of elements. This number is called the order of the 

field. F is also called a Galois field, denoted by GF(q).

Finite Fields

Proposition 2 Let P be a prime, then (Zp ,+, ·) is finite field with 

order p. This field is denoted as GF(p). 

The addition and multiplication are carried out modulo p.

Examples: GF(2) and GF(3) on page 266



Polynomials

Let R be an arbitrary ring. A polynomial over R is an expression of 

the form 

f(x) = a0 + a1x + ···anx
n

where n is an nonnegative integer, the coefficients ai are elements 

of R. x is a symbol not belonging to R, called an indeterminant

over R.

f(x) is said to to be irreducible if f(x) cannot be factored into a 

product of lower degree polynomials over R

x2+x+1 is irreducible in GF(2)



Construction of GF(2n) and GF(qn)

Step 1 Selcet n, a positive integer and p a prime.

Step 2 Choose that f(x) is an irreducible polynomial over GF(p) of 

degree n.

Step 3 We agree that αis an element that satisfies f(α) = 0.

Let GF(pn) = {a0 + a1 α + ···an α
n| ai GF(p) }∈



For two elements g(α) and h(α) in GF(Pn),

g(α)=a0 + a1α+ ··· + an-1α
n-1

h(α)=b0 + b1α+ ··· + bn-1α
n-1

Define two operations:

a) Addition

g(α)+ h(α)= a0+b0+(a1+b1)α+···+(an-1+bn-1) α
n-1

b) Multiplication

g(α) h(α)= r(α)

where r(x) is the remainder of g(x)h(x) divided by f(x)

Theorem: The set GF(pn) together with the two operations above forms

a finite field, and the order of the field is pn

Construction of GF(2n) and GF(pn)



Example: Let p=2 and f(x) = 1+x+x3. Then f(x) is irreducible 

over GF(2). Let α be a root of f(x). That is, f(α)=0. The finite 

field GF(23) is defined by 

GF(23)={a0 + a1 α + ···a2 α2| ai GF(2) }∈

α7 = 1

=α61+  α2101=

=α51+ α + α2111=

=α4α + α2110=

=α31+ α011=

=α2α2100=

=αα010=

=11001=

=00000=

As a power of  αAs a polynomialAs a 3-tupe



Primitive Elements and Primitive Polynomials

Fact: For any finite field F, its mutliplcative field F*, the set of 

nonzero elements in F is cyclic.

Definition: A generator of the cyclic group GF(pn)* is  called a 

primitive element of GF(pn). A polynomial has a primitive element 

as zero is called a primitive polynomial

Example: x3+x+1 is primitive polynormial over GF(2)

x7-1 = (x+1)(x3+x+1)(x3+x2+1)


