BOND DISSOCIATION ENERGIES

Yu-Ran Luo

The bond dissociation energy (enthalpy) is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: $R-X \rightarrow R + X$. The BDE, denoted by $D^{\circ}(R-X)$, is usually derived by the thermochemical equation, $D^{\circ}(R-X) = \Delta H^{\circ}(R) + \Delta H^{\circ}(X) - \Delta H^{\circ}(RX)$. The enthalpy of formation ΔH° of a large number of atoms, free radicals, ions, clusters and compounds is available from the websites of NIST, NASA, CODATA, and IUPAC. Most authors prefer to use the BDE values at 298.15 K.

The following seven tables provide essential information of experimental BDE values of R–X and R⁺–X bonds.

- (1) Table 1: Bond Dissociation Energies in Diatomic Molecules
- (2) Table 2: Enthalpy of Formation of Gaseous Atoms
- (3) Table 3: Bond Dissociation Energies in Polyatomic Molecules
- (4) Table 4: Enthalpies of Formation of Free Radicals and Other Transient Species
- (5) Table 5: Bond Dissociation Energies of Common Organic Molecules
- (6) Table 6: Bond Dissociation Energies in Diatomic Cations
- (7) Table 7: Bond Dissociation Energies in Polyatomic Cations

The data in these tables have been revised through September 2009.

TABLE 1. Bond Dissociation Energies in Diatomic Molecules

The BDEs in diatomic species have usually been measured by spectroscopy or mass spectrometry. In the absence of data on the enthalpy function, the values at 0 K, $D^{\circ}(A-B)$, are converted to $D^{\circ}_{_{298}}$ by the approximate equation:

 $D^{\circ}_{298}(A-B) \approx D^{\circ}(A-B) + (3/2)RT = D^{\circ}(A-B) + 3.7181 \text{ kJ mol}^{-1}$

This table has been arranged in an alphabetical order of the atoms A in the diatomics A–B.

						1			I		
A–B	$D^{o}_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{2}}}}}}}}$	Ref.	A–B	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	A–B	$D^{o}_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{2}}}}}}}}$	Ref.	A–B	$D^{o}_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{2}}}}}}}}$	Ref.
Ac–O	794	1	Ag–Sn	136 ± 21	1	Al–Sb	216.3 ± 6	1	Ar–Si	5.86	1
Ag–Ag	162.9 ± 2.9	1	Ag–Te	195.8 ± 14.6	1	Al–Se	318 ± 13	1	Ar–Sn	<5.1	1
Ag–Al	183.7 ± 9.2	1	Al–Al	264.3 ± 0.5	1	Al–Si	246.9 ± 12.6	1	Ar–Tl	4.09	1
Ag–Au	202.5 ± 9.6	1	Al–Ar	5.69	1	Al–Te	268 ± 13	1	Ar–Xe	5.28	1
Ag–Bi	192 ± 42	1	Al–As	202.7 ± 7.1	1	Al–Ti	263.4	1	Ar–Zn	5.0	1
Ag–Br	280.3 ± 1.3	1	Al–Au	325.9 ± 6.3	1	Al–U	326 ± 29	1	As–As	385.8 ± 10.5	1
Ag–Cl	279.1 ± 8.4	1	Al–Br	429.2 ± 5.8	1	Al–V	147.4 ± 1.0	1	As–Cl	448	1
Ag–Cu	171.5 ± 9.6	1	Al–C	267.7	1	Al–Xe	7.39	1	As–D	270.3	1
Ag–D	226.8	1	Al–Ca	52.7	1	Am–O	553 ± 36	1	As–F	410	1
Ag–Dy	130 ± 19	1	Al–Cl	502	1	Ar–Ar	4.91	1	As–Ga	202.5 ± 4.8	1
Ag–Eu	127 ± 13	1	Al–Co	181.6 ± 0.2	1	Ar–B	4.62	1	As–H	274.0 ± 2.9	1
Ag–F	356.9 ± 5.8	1	Al–Cr	222.9 ± 0.9	1	Ar–Br	~5.0	1	As–I	296.6 ± 24	1
Ag–Ga	159 ± 17	1	Al–Cu	227.1 ± 1.2	1	Ar–C	5.158	1	As–In	201 ± 10	1
Ag–Ge	174.5 ± 21	1	Al–D	290.4	1	Ar–Ca	4.44 ± 0.60	1	As–N	489 ± 2.1	1
Ag–H	202.4 ± 9.1	1	Al–F	675	1	Ar–Cd	5.57 ± 0.05	1	As–O	484 ± 8	1
Ag–Ho	124 ± 19	1	Al–H	288 ± 13	1	Ar–Ga	3.96	1	As–P	433.5 ± 12.6	1
Ag–I	234 ± 29	1	Al–I	369.9 ± 2.1	1	Ar–Ge	<5.4	1	As–S	379.5 ± 6.3	1
Ag–In	166.5 ± 4.9	1	Al–Kr	6.05	1	Ar–He	3.96	1	As–Sb	330.5 ± 5.4	1
Ag–Li	186.1	1	Al–Li	76.1	1	Ar–Hg	5.32	1	As–Se	96	1
Ag–Mn	99.2 ± 21	1	Al–N	$\leq 368 \pm 15$	1	Ar–I	~5.3	1	As–Tl	198.3 ± 14.6	1
Ag–Na	133.1 ± 12.6	1	Al–Ne	3.9	1	Ar–In	4.18	1	Au–Au	226.2 ± 0.5	1
Ag–Nd	<213	1	Al–Ni	224.7 ± 4.8	1	Ar–Kr	5.11	1	Au–B	367.8 ± 10.5	1
Ag–O	221 ± 21	1	Al–O	501.9 ± 10.6	1	Ar–Li	~7.82	1	Au–Ba	254.8 ± 10.0	1
Ag–S	216.7 ± 14.6	1	Al–P	216.7 ± 12.6	1	Ar–Mg	~3.7	1	Au–Be	237.7 ± 4.0	1
Ag–Se	210.0 ± 14.6	1	Al–Pd	254.4 ± 12.1	1	Ar–Na	~4.2	1	Au–Bi	293 ± 8.4	1
Ag–Si	185.1 ± 9.6	1	Al–S	332 ± 10	1	Ar–Ne	4.27	1	Au–Br	213 ± 21	1

 (\bullet)

9-65

()

(

А-В	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	A–B	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	A–B	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	A–B	$D^{o}_{_{_{_{_{_{_{298}}}}}}}/{ m kJ}~{ m mol}^{_{-1}}$	Ref.
Au–Ca	250.4 ± 4.0	1	B–H	345.2 ± 2.5	1	Bi–O	337.2 ± 12.6	1	Br–Sb	314 ± 59	1
Au–Ce	322 ± 18	1	B–I	361	1	Bi–P	281.7 ± 13	1	Br–Sc	444 ± 63	1
Au–Cl	280 ± 13	1	B–Ir	512.2 ± 17	1	Bi–Pb	142.4 ± 3.0	1	Br–Se	297 ± 84	1
Au–Co	218.0 ± 16.4	1	B–La	335 ± 63	1	Bi–S	315.5 ± 4.6	1	Br–Si	358.2 ± 8.4	1
Au–Cr	223.7 ± 28.9	1	B–N	377.9 ± 8.7	1	Bi–Sb	252.7 ± 3.9	1	Br–Sm	331.4	1
Au–Cs	253 ± 3.5	1	B–Ne	3.97	1	Bi–Se	280.3 ± 5.9	1	Br–Sn	337 ± 13	1
Au–Cu	227.1 ± 1.2	1	B-O	809	1	Bi–Sn	193 ± 13	1	Br–Sr	365	1
Au–D	322.2	1	B–P	347 ± 16.7	1	Bi–Te	232.2 ± 11.3	1	Br–T	372.77	1
Au–Dy	259 ± 24	1	B–Pd	351.5 ± 16.7	1	Bi–Tl	120.9 ± 12.6	1	Br–Tb	382.8	1
Au–Eu	245 ± 12	1	B–Pt	477.8 ± 16.7	1	Bk–O	598	1	Br–Th	364	1
Au–F	294.1	1	B–Rh	475.8 ± 21	1	Br–Br	193.859 ± 0.120	1	Br–Ti	373	1
Au–Fe	187.0 ± 19.3	1	B–Ru	446.9 ± 21	1	Br–C	318.0 ± 8.4	1	Br–Tl	331 ± 21	1
Au–Ga	290 ± 15	1	B–S	577 ± 9.2	1	Br–Ca	339	1	Br–Tm	299.1	1
Au–Ge	273.2 ± 14.6	1	B–Sc	272 ± 63	1	Br–Cd	159 ± 96	1	Br–U	377 ± 15	1
Au–H	300.5 ± 2.6	4	B–Se	462 ± 14.6	1	Br–Ce	373.2	1	Br–V	439 ± 42	1
Au–Ho	267 ± 35	1	B–Si	317 ± 12	1	Br–Cl	219.32 ± 0.05	1	Br–W	329.3	1
Au–I	276	1	B–Te	354 ± 20	1	Br–Co	326 ± 42	1	Br–Xe	5.94 ± 0.02	1
Au–In	286.0 ± 5.7	1	B–Th	297 ± 33	1	Br–Cr	328.0 ± 24.3	1	Br-Y	481 ± 84	1
Au–La	457 ± 28	1	B–Ti	272 ± 63	1	Br–Cs	389.1 ± 4.2	1	Br–Yb	295.4	1
Au–Li	284.5 ± 6.7	1	B–U	322 ± 33	1	Br–Cu	331 ± 25	1	Br–Zn	138 ± 29	1
Au–Lu	332 ± 19	1	B-Y	289 ± 63	1	Br–D	370.74	1	Br–Zr	420	1
Au–Mg	179.1 ± 2.7	1	Ba–Br	402	1	Br–Dy	339.3 ± 10.5	1	C–C	618.3 ± 15.4	1
Au–Mn	197.7 ± 21	1	Ba–Cl	443	1	Br–Er	361.3	1	C–Ce	443 ± 30	1
Au–Na	215.1 ± 12.6	1	Ba–D	≤193.7	1	Br–Eu	548	1	C–Cl	394.9 ± 13.4	1
Au–Nd	294 ± 29	1	Ba–F	580.6	1	Br–F	280 ± 12	1	C–D	341.4	1
Au–Ni	247 ± 16.4	1	Ba–H	192.0	1	Br–Fe	243 ± 84	1	C–F	513.8 ± 10.0	1
Au–O	223 ± 21	1	Ba—I	322.6 ± 6.3	1	Br–Ga	402 ± 13	1	C–Fe	376.3 ± 28.9	1
Au–Pb	133 ± 42	1	Ва–О	562 ± 13.4	1	Br–Gd	372.0	1	C–Ge	455.7 ± 11	1
Au–Pd	142.7 ± 21	1	Ba–Pd	221.8 ± 5.0	1	Br–Ge	347 ± 8	1	C–H	338.4 ± 1.2	1
Au–Pr	311 ± 25	1	Ba–Rh	259.4 ± 25	1	Br–H	366.16 ± 0.20	1	C–Hf	540 ± 25	1
Au–Rb	243 ± 3.5	1	Ba–S	418 ± 21	1	Br–Hg	74.9	1	C–I	253.1 ± 35.6	1
Au–Rh	232.6 ± 29	1	Be–Be	59	1	Br–Ho	321.8	1	C–Ir	631 ± 5	1
Au–S	253.6 ± 14.6	1	Be–Br	316	1	Br–I	179.1 ± 0.4	1	C–La	463 ± 20	1
Au–Sc	280 ± 40	1	Be–Cl	434	1	Br–In	409 ± 10	1	C–Mo	482 ± 16	1
Au–Se	251.0 ± 14.6	1	Be–D	203.1	1	Br–K	379.1 ± 4.2	1	C–N	750.0 ± 2.9	1
Au–Si	304.6 ± 6.0	1	Be-F	573	1	Br–La	446.2	1	C–Nb	523.8 ± 14.5	1
Au–Sn	256.5 ± 7.2	1	Be–H	221	1	Br–Li	418.8 ± 4.2	1	C–Ni	337.0	1
Au–Sr	264 ± 42	1	Be–I	261	1	Br–Lu	301.5	1	C-O	1076.38 ± 0.67	1
Au–Tb	285 ± 33	1	Be–O	437	1	Br–Mg	317.96	1	C–Os	608 ± 25	1
Au–Te	237.2 ± 14.6	1	Be–S	372 ± 59	1	Br–Mn	314.2 ± 9.6	1	С-Р	507.5 ± 8.8	1
Au–U	318 ± 29	1	Be-T	204.4	1	Br–Mo	313.4	1	C–Pd	436 ± 20	1
Au–V	246.0 ± 8.7	1	Bi–Bi	204.4	1	Br–N	280.8 ± 21	1	C–Pt	577.8 ± 6.8	13
Au–Y	310 ± 12	1	Bi–Br	240.2	1	Br–Na	363.1 ± 4.2	1	C–Rh	580 ± 4	1
В-В	290	1	Bi–Cl	300.4 ± 4.2	1	Br–Nd	339.7	1	C–Ru	648 ± 13	1
B–Br	390.9 ± 0.5	1	Bi–D	283.7	1	Br–Ni	360 ± 13	1	C–S	713.3 ± 1.2	1
В-С	448 ± 29	1	Bi–F	366.5 ± 12.5	1	Br–O	237.6 ± 0.4	1	C–Sc	444 ± 21	1
B–Cd	301.0	1	Bi–Ga	158.6 ± 16.7	1	Br–P	≤329	1	C–Se	590.4 ± 5.9	1
В-Се	305 ± 21	1	Bi–H	≤283.3	1	Br–Pb	248.5 ± 14.6	1	C–Si	447	1
B–Cl	427	1	Bi–I	186.1 ± 5.8	1	Br–Pr	344.5	1	C–Tc	564 ± 29	1
B-D	341.0 ± 6.3	1	Bi–In	153.6 ± 1.7	1	Br–Rb	380.7 ± 4.2	1	C–Th	453 ± 17	1
B-F	732	1	Bi–Li	149.4	1	Br–S	218 ± 17	1	C–Ti	423 ± 30	1

۲

۲

А-В	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	А-В	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	A–B	$D^{o}_{_{_{_{298}}}}/{ m kJ}~{ m mol}^{_{-1}}$	Ref.	A–B	$D_{_{_{298}}}^{_{o}}/{ m kJ}~{ m mol}^{_{-1}}$	Ref.
C–U	455 ± 15	1	Cl–Cu	377.8 ± 7.5	1	Cl–Yb	374.5	1	Cu–In	187.4 ± 7.9	1
C–V	423 ± 24	1	Cl–D	436.303 ± 0.011	1	Cl–Zn	229 ± 8	1	Cu–Li	191.9	1
C–Y	418 ± 14	1	Cl–Dy	392.4	1	Cl–Zr	530	1	Cu–Na	176.1 ± 16.7	1
C–Zr	495.8 ± 38.6	1	Cl–Er	448.6	1	Cm–O	710 ± 45	15	Cu–Ni	201.7 ± 9.6	1
Ca–Ca	16.52 ± 0.11	1	Cl–Eu	405.5	1	Co–Co	<127	1	Cu–O	287.4 ± 11.6	1
Ca–Cl	409 ± 8.7	1	Cl–F	260.83	1	Co–Cu	161.1 ± 16.4	1	Cu–S	274.5 ± 14.6	1
Ca–D	≤169.9	1	Cl–Fe	335.5	11	Co–D	270.2 ± 5.8	1	Cu–Se	255.2 ± 14.6	1
Ca–F	529	1	Cl–Ga	463 ± 13	1	Co–F	431 ± 63	1	Cu–Si	221.3 ± 6.3	1
Ca–H	223.8	1	Cl–Gd	451.0	1	Co–Ge	230 ± 21	1	Cu–Sn	170 ± 10	1
Ca–I	284.7 ± 8.4	1	Cl–Ge	390.8 ± 9.6	1	Co-H	244.9 ± 4.8	1	Cu–Tb	191 ± 18	1
Ca–Kr	5.15 ± 0.72	1	Cl–H	431.361 ± 0.013	1	Co–I	280 ± 21	1	Cu–Te	230.5 ± 14.6	1
Ca–Li	84.9 ± 8.4	1	Cl–Hg	92.0 ± 9.2	1	Co–Mn	50 ± 8	1	D–D	443.3197 ± 0.0003	1
Ca–O	383.3 ± 5.0	1	Cl–Ho	409.1	1	Co–Nb	267.02 ± 0.10	1	D–F	576.236 ± 0.011	1
Ca–Pd	347 - 360	1	Cl–I	211.3 ± 0.4	1	Co-O	397.4 ± 8.7	1	D–Ga	<276.5	1
Ca–S	335 ± 21	1	Cl–In	436 ± 8	1	Co–S	331	1	D–Ge	≤322	1
Ca–Xe	7.31 ± 0.96	1	Cl–K	433.0 ± 8.4	1	Co–Sc	240.1	7	D–H	439.2223 ± 0.0002	1
Cd–Cd	7.36	1	Cl–La	521.6	1	Co–Si	274.4 ± 17	1	D–Hg	42.05	1
Cd–Cl	208.4	1	Cl–Li	469 ± 13	1	Co–Ti	235.37 ± 0.10	1	D–I	302.33	1
Cd–F	305 ± 21	1	Cl–Lu	325.7 ± 2	1	Co-Y	253.71 ± 0.10	1	D–In	246	1
Cd–H	69.0 ± 0.4	1	Cl–Mg	312	1	Co–Zr	306.39 ± 0.10	1	D-K	182.4	1
Cd–I	97.2 ± 2.1	1	Cl–Mn	337.6	11	Cr–Cr	152.0 ± 6	1	D–Li	240.24	1
Cd–In	134	1	Cl–N	333.9 ± 9.6	1	Cr–Cu	154.4 ± 14.5	1	D–Lu	302	1
Cd–K	7.3	1	Cl–Na	412.1 ± 8.4	1	Cr–F	523 ± 19	1	D–Mg	161.33 ± 0.32	1
Cd–Kr	5.17	1	Cl–Nd	418.7	1	Cr–Fe	~75	1	D–Mn	312 ± 6	1
Cd–Na	10.2	1	Cl–Ni	372.3	11	Cr–Ge	154 ± 7	1	D–N	341.6	1
Cd–Ne	3.97	1	Cl–O	267.47 ± 0.08	1	Cr–H	189.9 ± 6.7	1	D–Ni	≤302.9	1
Cd–O	236 ± 84	1	Cl–P	≤376	1	Cr–I	287.0 ± 24.3	1	D-O	429.64	1
Cd–S	208.5 ± 20.9	1	Cl–Pb	301 ± 50	1	Cr–N	377.8 ± 18.8	1	D-P	299.0	1
Cd–Se	127.6 ± 25.1	1	Cl–Pr	423.5	1	Cr–Nb	295.72 ± 0.06	1	D–Pt	≤350.2	1
Cd–Te	100.0 ± 15.1	1	Cl–Ra	343 ± 75	1	Cr–O	461 ± 8.7	1	D–S	350.62 ± 1.20	1
Cd–Xe	6.54	1	Cl–Rb	427.6 ± 8.4	1	Cr–Pb	105 ± 2	1	D–Si	302.5	1
Ce–Ce	251.7	1	Cl–S	241.8	1	Cr–S	331	1	D–Sr	167.7	1
Ce–Cl	457.0	1	Cl–Sb	360 ± 50	1	Cr–Sn	141 ± 3	1	D–T	444.91	1
Ce–F	582 ± 42	1	Cl–Sc	331	1	Cs–Cs	43.919 ± 0.010	1	D–Tl	193.0	1
Ce–I	333.8	1	Cl–Se	322	1	Cs–F	517.1 ± 7.7	1	D–Zn	88.7	1
Ce–Ir	575 ± 9	1	Cl–Si	416.7 ± 6.3	1	Cs–H	175.364	1	Dy-Dy	70.3	1
Ce–N	519 ± 21	1	Cl–Sm	418.7	1	Cs–Hg	8	1	Dy-F	531	1
Ce–O	790	1	Cl–Sn	350 ± 8	1	Cs–I	338.5 ± 2.1	1	Dy–I	269.0 ± 8.4	1
Ce–Os	524 ± 20	1	Cl–Sr	409	1	Cs–Li	72.9 ± 1.2	5	Dy–O	615	1
Ce–Pd	319 ± 21	1	Cl–T	438.64	1	Cs–Na	63.2 ± 1.3	1	Dy-S	414 ± 42	1
Ce–Pt	550 ± 5	1	Cl–Ta	544	1	Cs–O	293 ± 25	1	Dy–Se	322 ± 20	1
Ce–Rh	545 ± 7	1	Cl–Tb	470.1	1	Cs–Rb	49.57 ± 0.01	1	Dy–Te	234 ± 20	1
Ce–Ru	494 ± 12	1	Cl–Th	489	1	Cu–Cu	201	1	Er–Er	75 ± 29	1
Ce–S	569	1	Cl–Ti	405.4 ± 10.5	1	Cu–D	270.3	1	Er–F	565 ± 17	1
Ce–Se	494.5 ± 14.6	1	Cl–Tl	372.8 ± 2.1	1	Cu–Dy	144 ± 18	1	Er–I	315.8	1
Ce–Te	189.4 ± 12.6	1	Cl–Tm	378.0	1	Cu–F	414	1	Er–O	606	1
Cf–O	498	1	Cl–U	439	1	Cu–Ga	215.9 ± 15	1	Er–S	418 ± 21	1
Cl–Cl	436.303 ± 0.011	8	Cl–V	477 ± 63	1	Cu–Ge	208.8 ± 21	1	Er–Se	326 ± 20	1
Cl–Co	343.9	11	Cl–W	419	1	Cu–H	254.8 ± 6	1	Er–Te	238 ± 20	1
Cl–Cr	380.3	11	Cl–Xe	7.08	1	Cu–Ho	144 ± 19	1	Es-O	460	1
Cl–Cs	445.7 ± 7.7	1	Cl–Y	523 ± 84	1	Cu–I	289 ± 63	1	Eu–Eu	45.2	1
			1			i i			1		

۲

۲

۲

А-В	$D^{o}_{_{_{298}}}/{ m kJ}~{ m mol}^{_{-1}}$	Ref.	A–B	$D^{o}_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	Ref.	A–B	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	A–B	$D^{o}_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	Ref.
Eu-F	544	1	F–Ti	569 ± 33	1	H–Hg	39.844	1	Hg–T	43.14	1
Eu–I	288.3	1	F–Tl	439 ± 21	1	H–I	298.26 ± 0.10	1	Hg–Te	<142	1
Eu–Li	268.1 ± 12.6	1	F–Tm	510	1	H–In	243.1	1	Hg–Tl	2.9	1
Eu–O	473	1	F–U	648	1	H–K	174.576	1	Hg–Xe	6.65	1
Eu–Rh	238 ± 34	1	F–V	590 ± 63	1	H–Li	238.039 ± 0.006	1	Hg–Zn	7.3	1
Eu–S	365.7 ± 13.4	1	F-W	≤544	1	H–Mg	127.18 ± 0.006	10	Ho–Ho	70.3	1
Eu–Se	302.9 ± 14.6	1	F–Xe	14.18	1	H–Mn	251 ± 5	1	Ho–I	275.1	1
Eu–Te	251.0 ± 14.6	1	F-Y	685.3 ± 13.4	1	H–Mo	202.5 ± 18.3	9	Ho–O	606	1
F–F	158.670 ± 0.096	1	F–Yb	≥517.6 ± 9.6	1	H–N	≤338.9	1	Ho–S	428.4 ± 14.6	1
F–Fe	447	1	F–Zn	364 ± 63	1	H–Na	185.69 ± 0.29	1	Ho–Se	333 ± 15	1
F–Ga	584 ± 13	1	F–Zr	627.2 ± 10.5	1	H–Nb	$>221.9 \pm 9.6$	1	Ho–Te	$\leq 259 \pm 15$	1
F–Gd	590 ± 17	1	Fe-Fe	118	1	H–Ni	240 ± 8	1	I—I	152.25 ± 0.57	1
F–Ge	523 ± 13	1	Fe–Ge	210.9 ± 29	1	H–O	429.91 ± 0.29	1	I–In	306.9 ± 1.1	1
F–H	569.680 ± 0.011	1	FeH	148 ± 3	1	H–P	297.0 ± 2.1	1	I–K	322.5 ± 2.1	1
F–Hf	650 ± 15	1	Fe–I	123	1	H–Pb	≤157	1	I–Kr	5.67	1
F–Hg	~180	1	Fe–O	407.0 ± 1.0	1	H–Pd	234 ± 25	1	I–La	411.7	1
F–Ho	540	1	Fe-S	328.9 ± 14.6	1	H–Pt	330	1	I–Li	345.2 ± 4.2	1
F–I	≤271.5	1	Fe-Si	297 ± 25	1	H–Rb	172.6	1	I–Lu	263.2	1
F–In	516 ± 13	1	Fm–O	443	1	H–Rh	241.0 ± 5.9	1	I–Mg	229	1
F–K	489.2	1	Ga–Ga	<106.4	1	H–Ru	223 ± 15	1	I–Mn	282.8 ± 9.6	1
F–Kr	6.6	1	Ga–H	265.9 ± 5.9	4	H–S	353.57 ± 0.30	1	I–Mo	266.9	1
F–La	659.0 ± 17.2	1	Ga–I	334 ± 13	1	H–Sb	239.7 ± 4.2	1	I–N	159 ± 17	1
F–Li	577 ± 21	1	Ga–In	94.0 ± 3	1	H–Sc	205 ± 17	1	I–Na	304.2 ± 2.1	1
F–Lu	405 ± 19	1	Ga–Kr	4.08	1	H–Se	312.5	1	I–Nd	301.5	1
F-Mg	463	1	Ga–Li	133.1 ± 14.6	1	H–Si	293.3 ± 1.9	1	I–Ni	293 ± 21	1
F–Mn	445.2 ± 7.5	1	Ga–O	374 ± 21	1	H–Sn	264 ± 17	1	I–O	233.4 ± 1.3	12
F–Mo	464	1	Ga–P	229.7 ± 12.6	1	H–Sr	164 ± 8	1	I–Pb	194 ± 38	1
F–N	≤349	1	Ga–Sb	192.0 ± 12.6	1	H–T	440.49	1	I–Pr	306.2	1
F–Na	477.3	1	Ga–Te	265 ± 21	1	H–Te	270.7 ± 1.7	1	I–Rb	318.8 ± 2.1	1
F–Nd	545.2 ± 12.6	1	Ga–Xe	5.27	1	H–Ti	204.6 ± 8.8	1	I–Si	243.1 ± 8.4	1
F–Ni	439.7 ± 5.9	2	Gd–Gd	206.3 ± 67.5	1	H–Tl	195.4 ± 4	1	I–Sm	293.1	1
F–Np	430 ± 50	1	Gd–I	333.8	1	H–V	209.3 ± 6.8	1	I–Sn	235 ± 3	1
F-O	220	1	Gd–O	715	1	H–Yb	183.1 ± 2.0	1	I–Sr	301	1
F–P	≤405	1	Gd–S	526.8 ± 10.5	1	H–Zn	85.8 ± 2	1	I–Tb	336.2	1
F–Pb	355 ± 13	1	Gd–Se	430 ± 15	1	He–He	3.809	1	I–Te	192 ± 42	1
F–Pr	582 ± 46	1	Gd–Te	341 ± 15	1	He–Hg	3.8	1	I–Th	361 ± 25	1
F–Pu	538 ± 29	1	Ge–Ge	264.4 ± 6.8	1	He–Xe	3.8	1	I–Ti	306	1
F–Rb	494 ± 21	1	Ge–H	263.2 ± 4.8	1	Hf–Hf	328 ± 58	1	I–Tl	285 ± 21	1
F–Ru	402	1	Ge–I	268 ± 25	1	Hf–N	535 ± 30	1	I–Tm	260.8	1
F–S	343.5 ± 6.7	1	Ge–Ni	290.3 ± 10.9	1	Hf–O	801 ± 13	1	I–U	299 ± 27	1
F–Sb	439 ± 96	1	Ge–O	657.5 ± 4.6	4	Hg–Hg	8.10 ± 0.18	1	I–Xe	~6.9	1
F–Sc	599.1 ± 13.4	1	Ge–Pb	145.3 ± 6.9	6	Hg—I	34.69 ± 0.96	1	I–Y	422.6 ± 12.5	1
F–Se	339 ± 42	1	Ge–Pd	254.7 ± 10.5	1	Hg–K	8.8	1	I–Yb	257.3	1
F–Si	576.4 ± 17	1	Ge–S	534 ± 3	1	Hg–Kr	5.75	1	I–Zn	153.1 ± 6.3	1
F–Sm	565	1	Ge–Sc	270 ± 11	1	Hg–Li	13.16 ± 0.38	1	I–Zr	127	1
F–Sn	476 ± 8	1	Ge–Se	484.7 ± 1.7	1	Hg–Na	10.8	1	In–In	82.0 ± 5.7	1
F–Sr	538	1	Ge-Si	297	1	Hg–Ne	4.14	1	In–Kr	4.85	-
F–T	579.009 ± 0.108	1	Ge–Sn	230.1 ± 13	1	Hg–O	269	1	In–Li	92.5 ± 14.6	1
F–Ta	573 ± 13	1	Ge–Te	396.7 ± 3.3	1	Hg-Rb	8.4	1	In–O	346 ± 30	-
F–Tb	561 ± 42	1	Ge-Y	279 ± 11	1	Hg-S	217.3 ± 22.2	- 1	In–P	197.9 ± 8.4	-
F–Th	652	1	H–H	435.7799 ± 0.0001	1	Hg–Se	144.3 ± 30.1	1	In–S	287.9 ± 14.6	1
			1			0			-		

9-68

۲

2/23/10 5:28:56 PM

۲

۲

A–B	$D^{o}_{acc}/kJ \text{ mol}^{-1}$	Ref.	А-В	$D^{o}_{noo}/kJ \text{ mol}^{-1}$	Ref.	A–B	$D^{o}_{acc}/kJ \text{ mol}^{-1}$	Ref.	A–B	$D^{o}_{aaa}/kJ \text{ mol}^{-1}$	Ref
In–Sb	151.9 ± 10.5	1	Lr–O	665	1	Nd–Te	305 ± 15	1	O–Zr	766.1 ± 10.6	1
In–Se	245.2 ± 14.6	1	Lu–Lu	142 ± 33	1	Ne–Ne	4.070	1	Os–Os	415 ± 77	1
In–Te	215.5 + 14.6	1	Lu–O	669	1	Ne-Xe	4.31	1	р_р	489.1	1
In-Xe	6.48	1	Lu-Pt	402 + 34	1	Ne-Zn	3.92	1	P_Pt	<4167 + 167	1
In_7n	32.2	1	Lu-S	508.4 ± 14.4	1	Ni-Ni	204	1	P_Rh	353.1 ± 16.7	1
In Zn Ir_Ir	361 + 68	1	Lu So	418 + 15	1	Ni_O	366 + 30	1	D_S	442 + 10	1
Ir_Lo	501 ± 00	1	Lu Je	$\frac{110 \pm 15}{225 \pm 15}$	1	Ni_Dd	140.9	1	D_Sh	$\frac{112}{256} \pm 10$	1
II La	165 ± 25	1	Md O	323 ± 13	1	NI D+	170.7	1		350.7 ± 10.0	1
	403 ± 23	1	Ma-Ma	11.2	1	NI-FU	273.7 ± 0.3	1	D_S;	363.7 ± 10.0	1
	414 ± 42	1	Ma No	4.1	1	NI CI	330 ± 21	1		303.0	1
11-51 L. Th	402.8 ± 21	1	Mg-Ne	~4.1	1	NI-SI	310 ± 17	1	r-re	297.9 ± 10.0	1
II-III	374 ± 42	1	Mg-O	336.2 ± 7.2	1	NI-V	200.5 ± 0.2	1	P-IN D TI	$3/2 \pm 29$	1
II-II Lu V	422 ± 15	1	Mg-5	234	1	NI-I	285.92 ± 0.10	1	P-11	209 ± 15	1
Ir-i	457 ± 15	1	Mg-Ae	9.70 ± 1.79	1	NI-Zr	2/9.8 ± 0.1	1	P-U	293 ± 21	1
К-К	56.96	1	Mn–Mn	61.6 ± 9.6	1	No-O	268	1	P-W	305 ± 4	1
K–Kr	4.6	1	Mn–O	362 ± 25	1	Np-O	731	1	PD-PD	86.6 ± 0.8	1
K-Li	82.0 ± 4.2	1	Mn-S	301 ± 17	1	0-0	498.36 ± 0.17	1	Pb-S	398	1
K–Na	65.994 ± 0.008	1	Mn–Se	239.3 ± 9.2	1	O–Os	575	1	Pb-Sb	161.5 ± 10.5	1
K–Zn	6.5	1	Mo–Mo	435.5 ± 1.0	1	O-P	589	1	Pb–Se	302.9 ± 4.2	1
K-O	271.5 ± 12.6	1	Mo–Nb	452 ± 25	1	O–Pa	792	1	Pb–Si	168.8 ± 7.3	6
K–Rb	53.723 ± 0.005	1	Mo–O	502	1	O–Pb	382.4 ± 3.3	4	Pb–Te	249.8 ± 10.5	1
K–Xe	5.0	1	N–N	944.84 ± 0.10	1	O–Pd	238.1 ± 12.6	1	Pd–Pd	>136	1
Kr–Kr	5.39	1	N-O	631.62 ± 0.18	1	O–Pr	740	1	Pd–Pt	191.0	1
Kr–Li	~12.1	1	N–P	617.1 ± 20.9	1	O–Pt	418.6 ± 11.6	13	Pd–Si	261 ± 12	1
Kr–Mg	6.71 ± 0.96	1	N–Pt	374.2 ± 9.6	1	O–Pu	656.1	1	Pd-Y	241 ± 15	1
Kr–Na	~4.53	1	N–Pu	469 ± 63	1	O–Rb	276 ± 12.6	1	Po-Po	187	1
Kr–Ne	4.31	1	N–S	467 ± 24	1	O–Re	627 ± 84	1	Pr–Pr	129.1	1
Kr–O	<8	1	N–Sb	460 ± 84	1	O–Rh	405 ± 42	1	Pr–S	492.5 ± 4.6	1
Kr–Tl	4.14	1	N–Sc	464 ± 84	1	O–Ru	528 ± 42	1	Pr–Se	446.4 ± 23.0	1
Kr–Xe	5.66	1	N–Si	437.1 ± 9.9	1	O–S	517.90 ± 0.05	1	Pr–Te	326 ± 20	1
Kr–Zn	5.0	1	N–Ta	607 ± 84	1	O–Sb	434 ± 42	1	Pt–Pt	306.7 ± 1.9	1
La–La	244.9	1	N–Th	577 ± 33	1	O–Sc	671.4 ± 1.0	1	Pt–Si	501 ± 18	1
La–N	519 ± 42	1	N–Ti	476 ± 33	1	O–Se	429.7 ± 6.3	1	Pt–Th	551 ± 42	1
La–O	798	1	N–U	531 ± 21	1	O–Si	799.6 ± 13.4	1	Pt–Ti	397.5 ± 10.6	1
La–Pt	505 ± 12	1	N-V	523 ± 38	1	O–Sm	573	1	Pt–Y	474 ± 12	1
La–Rh	550 ± 12	1	N–Xe	26.9	1	O–Sn	528	1	Rb–Rb	48.898 ± 0.005	1
La–S	573.4 ± 1.7	1	N-Y	477 ± 63	1	O–Sr	426.3 ± 6.3	1	Re–Re	432 ± 30	1
La–Se	485.7 ± 14.6	1	N–Zr	565 ± 25	1	O–Ta	839	1	Rh–Rh	235.85 ± 0.05	1
La–Te	385.6 ± 15	1	Na–Na	74.805 ± 0.586	1	O–Tb	694	1	Rh–Sc	444 ± 11	1
La-Y	197 ± 21	1	Na–Ne	~3.8	1	O–Tc	548	1	Rh–Si	395.0 ± 18.0	1
Li–Li	105.0	1	Na–O	270 ± 4	1	O–Te	377 ± 21	1	Rh–Th	513 ± 21	1
Li–Mg	67.4 ± 6.3	1	Na–Rb	63.887 ± 0.024	1	O–Th	877	1	Rh–Ti	390.8 ± 14.6	1
Li–Na	87.181 ± 0.001	1	Na–Xe	~5.12	1	O–Ti	666.5 ± 5.6	1	Rh–U	519 ± 17	1
Li–O	340.5 ± 6.3	1	Nb–Nb	513	1	O–Tl	213 ± 84	1	Rh–V	364 ± 29	1
Li–Pb	78.7 ± 8	1	Nb–Ni	271.9 ± 0.1	1	O–Tm	514	1	Rh–Y	446 ± 11	1
Li–S	312.5 ± 7.5	1	Nb–O	726.5 ± 10.6	1	O–U	755	1	Ru–Ru	193.0 ± 19.3	1
Li–Sb	169.0 ± 10.0	1	Nb-Ti	302.0 ± 0.1	1	O–V	637	1	Ru–Si	397.1 ± 21	1
Li–Si	149	1	Nb–V	369.3 ± 0.1	1	O–W	720 ± 71	1	Ru–Th	592 ± 42	1
Li–Sm	193.3 ± 18.8	1	Nd–Nd	82.8	1	O–Xe	36.4	1	Ru–V	414 ± 29	1
Li–Tm	276.1 ± 14.6	1	Nd–O	703	1	O-Y	714.1 ± 10.2	1	S–S	425.30	1
Li–Xe	~12.1	1	Nd–S	471.5 ± 14.6	1	O-Yb	387.7 ± 10	1	S–Sb	378.7	1

۲

9-69

Ref.

Li–Yb

 143.5 ± 12.6

1

۲

1 Nd–Se 393.9

1 O−Zn ≤250

1 S–Sc

 478.2 ± 12.6

A–B	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	А-В	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	A–B	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	A–B	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.
S–Se	371.1 ± 6.7	1	Sb–Tl	126.7 ± 10.5	1	Si-Te	429.2	3	Ti–Ti	117.6	1
S–Si	617 ± 5	1	Sc–Sc	163 ± 21	1	Si-Y	258 ± 17	1	Ti–V	203.2 ± 0.1	1
S-Sm	389	1	Sc–Se	385 ± 17	1	Sm–Sm	54 ± 21	1	Ti–Zr	214.3 ± 0.1	1
S–Sn	467	1	Sc–Si	227.2 ± 14	1	Sm–Te	272.4 ± 14.6	1	Tl–Tl	59.4	1
S–Sr	338.5 ± 16.7	1	Sc–Te	289 ± 17	1	Sn–Sn	187.1 ± 0.3	1	Tl–Xe	4.18	1
S–Ta	669.5 ± 13.5	1	Se–Se	330.5	1	Sn–Te	338.1 ± 6.3	1	Tm–Tm	54 ± 17	1
S–Tb	515 ± 42	1	Se–Si	538 ± 13	1	Sr–Sr	16.64 ± 1.12	1	U–U	222 ± 21	1
S–Te	335 ± 42	1	Se–Sm	331.0 ± 14.6	1	T–T	446.67	1	V–V	269.3 ± 0.1	1
S–Ti	418 ± 3	1	Se–Sn	401.2 ± 5.9	1	Та–Та	390 ± 96	1	V–Zr	260.6 ± 0.3	1
S–Tm	368 ± 21	1	Se–Sr	251.0 ± 12.6	1	Tb–Tb	138.8	1	W–W	666	1
S–U	528.4 ± 10.5	1	Se–Tb	423 ± 20	1	Tb–Te	339 ± 42	1	Xe–Xe	6.023	1
S–V	449.4 ± 14.6	1	Se–Te	293.3	1	Tc-Tc	330	1	Y–Y	$\sim 270 \pm 39$	1
S–Y	528.4 ± 10.5	1	Se–Ti	381 ± 42	1	Te-Te	257.6 ± 4.1	1	Yb–Yb	16.3	1
S–Yb	167	1	Se–Tm	274 ± 40	1	Te-Ti	289 ± 17	1	Zn–Zn	22.2 ± 6.3	1
S–Zn	224.8 ± 12.6	1	Se–V	347 ± 21	1	Te-Tm	182 ± 40	1	Zr–Zr	298.2 ± 0.1	1
S–Zr	572.0 ± 11.6	1	Se-Y	435 ± 13	1	Te-Y	339 ± 13	1			
Sb-Sb	301.7 ± 6.3	1	Se–Zn	170.7 ± 25.9	1	Te–Zn	117.6 ± 18.0	1			
Sb–Te	277.4 ± 3.8	1	Si–Si	310	1	Th–Th	≤289 ± 33	1			

References

- 1. Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, FL, 2007.
- 2. Hildenbrand, D. L., and Lau, K.H., J. Phys. Chem. A 110, 11886, 2006.
- Chattopadhyaya, S., Pramanik, A., Banerjee, A., and Das, K. K., J. Phys. Chem. A 110, 12303, 2006.
- 4. Brutti, S., Balducci, G., and Gigli, G., *Rapid Commun. Mass Spectrom.* 21, 89, 2007.
- 5. Staanum, P., Pashov, A., Knöckel, H., and Tiemann, E., *Phys. Rev. A* 75, 042513, 2007.
- 6. Ciccioli, A., Gigli, G., Meloni, G., and Testani, E., J. Chem. Phys. 127, 054303/1, 2007.
- 7. Nagarajan, R., and Morse, M. D., J. Chem. Phys. 127, 074304/1, 2007.
- Li, J., Hao, Y., Yang, J., Zhou, C., and Mo, Y., J. Chem. Phys. 127, 104307/1, 2007.

- 9. Armentrout, P. B., Organometallics 26, 5473, 2007.
- 10. Shayesteh, A., Henderson, R. D. E., Le Roy, R. J., and Bernath, P. F., *J. Phys. Chem. A* 111, 12495, 2007.
- 11. Hildenbrand, D. H., J. Phys. Chem. A 112, 3813, 2008.
- 12. Dooley, K. S., Geidosch, J. N., and North, S. W., *Chem. Phys. Lett.* 457, 303, 2008.
- 13. Citir, M., Metz, R. B., Belau, L., and Ahmed, M., *J. Phys. Chem. A* 112, 9584, 2008.
- 14. Hildenbrand, D. L., Lau, K. H., Perez-Mariano, J., and Sanjurjo, A., *J. Phys. Chem. A* 112, 9978, 2008.
- Gibson, J. K., Haire, R. G., Santos, M., Pires de Matos, A., and Marçalo, J., *J. Phys. Chem. A* 112, 11373, 2008.

Atom	$\Delta H^{o}_{298}/\text{kJ mol}^{-1}$	Ref.	Atom	$\Delta H^{o}_{298}/\text{kJ mol}^{-1}$	Ref.	Atom	$\Delta_{f}H^{o}_{298}/\text{kJ}\text{ mol}^{-1}$	Ref.	Atom	$\Delta_{f}H^{o}_{298}/\text{kJ}\text{ mol}^{-1}$	Ref.
Ac	406	5	Cr	397.48 ± 4.2	3	La	431.0 ± 2.1	4	Pu	345	6
Ag	284.9 ± 0.8	2	Cs	76.5 ± 1.0	2	Li	159.3 ± 1.0	2	Ra	159	5
Al	330.9 ± 4.0	2	Cu	337.4 ± 1.2	2	Lu	427.6 ± 2.1	4	Rb	80.9 ± 0.8	2
Am	284	6	Dy	290.4 ± 2.1	4	Mg	147.1 ± 0.8	2	Re	774 ± 6.3	1
As	302.5 ± 13	1	Er	316.4 ± 2.1	4	Mn	283.3 ± 4.2	3	Rh	556 ± 4	1
Au	368.2 ± 2.1	1	Es	133	6	Мо	658.98 ± 3.8	3	Ru	650.6 ± 6.3	1
В	565 ± 5	2	Eu	177.4 ± 2.1	4	N	472.68 ± 0.40	2	S	277.17 ± 0.15	2
Ba	179.1 ± 5.0	3	F	79.38 ± 0.30	2	Na	107.5 ± 0.7	3	Sb	264.4 ± 2.5	1
Be	324 ± 5	2	Fe	415.5 ± 1.3	3	Nb	733.0 ± 8	3	Sc	377.8 ± 4	1
Bi	209.6 ± 2.1	1	Ga	271.96 ± 2.1	3	Nd	326.9 ± 2.1	4	Se	227.2 ± 4	1
Bk	310	6	Gd	397.5 ± 2.1	4	Ni	430.1 ± 8.4	3	Si	450.0 ± 8	2
Br	111.87 ± 0.12	3	Ge	372 ± 3	2	Np	464.8	6	Sm	206.7 ± 2.1	4
С	716.68 ± 0.45	2	Н	217.998 ± 0.006	2	0	249.229 ± 0.002	7	Sn	301.2 ± 1.5	2
Ca	177.8 ± 0.8	2	Hf	618.4 ± 6.3	3	Os	787 ± 6.3	1	Sr	164.0 ± 1.7	3
Cd	111.80 ± 0.20	2	Hg	61.38 ± 0.04	2	Р	316.5 ± 1.0	2	Ta	782.0 ± 2.5	1
Ce	420.1 ± 2.1	4	Но	300.6 ± 2.1	4	Pa	563	5	Tb	388.7 ± 2.1	4
Cf	196	6	Ι	106.76 ± 0.04	2	Pb	195.2 ± 0.8	2	Tc	678	5
Cl	121.301 ± 0.008	2	In	243 ± 4	1	Pd	376.6 ± 2.1	1	Te	196.6 ± 2.1	1
Cm	386	6	Ir	669 ± 4	1	Pr	356.9 ± 2.1	4	Th	602 ± 6	2
Со	426.7	3	K	89.0 ± 0.8	2	Pt	565.7 ± 1.3	1	Ti	473 ± 3	2

9-70

()

()

Atom	$\Delta_f H^o_{298}/\text{kJ mol}^{-1}$	Ref.	Atom	$\Delta_f H^o_{298}/\text{kJ mol}^{-1}$	Ref.	Atom	$\Delta_f H^o_{298}/\text{kJ mol}^{-1}$	Ref.	Atom	$\Delta_{f}H^{o}_{298}/\text{kJ mol}^{-1}$	Ref.
Tl	182.2 ± 0.4	1	U	533 ± 8	2	W	851.0 ± 6.3	3	Yb	155.6 ± 2.1	4
Tm	232.2 ± 2.1	4	V	515.5 ± 8	3	Y	424.7 ± 2.1	4	Zn	130.40 ± 0.40	2
									Zr	610.0 ± 8.4	3

References

1. Brewer, L., and Rosenblatt, G. M., Adv. High Temp. Chem. 2, 1, 1969.

- 2. Cox, J. D., Wagman, D. D., and Medvedev, V. A., Eds., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corporation, New York, 1989; updated e-version: http://www.codata.org/codata.
- NIST Chemistry WebBook, http://webbook.nist.gov, NIST-JANAF Thermochemical Table, 4th Edn., Chase, Jr., M. W., Ed., ACS, AIP, New York, 1998.
- 4. Chandrasekharaiah, M.S., and Gingerich, K.A., Thermodynamic properties of gaseous species, in *Handbook on the Chemistry and Physics of Rare Earths*, Gschneidner, Jr., K.A., and Ering, L., Eds., Elsevier, Amsterdam, 1989, Vol. 12, Chap. 86, pp. 409–431.
- 5. Lias, S.G., Bartmess, J. E., Liebman, J. F., Holmes, J. L., Levin, R. D., and Mallard, W. G., J. Phys. Chem. Ref. Data 17, Suppl. 1, 1988.
- 6. Kleinschmidt, P.D., Ward, J. W., Matlack, G. M., and Haire, R. G., High Temp. Sci. 19, 267, 1985.
- 7. Ruscic, B., Pinzon, R.E., Morton, M. E., Srinivasan, N. K., Su, M.-C., Sutherland, J. W., and Michael, J. V., J. Phys. Chem. A 110, 6592, 2006.

TABLE 3. Bond Dissociation Energies in Polyatomic Molecules

The D_{298}° values in polyatomic molecules are notoriously difficult to measure accurately since the mechanism of the kinetic systems involved in many of the measurements are seldom straightforward. Thus, much lively controversy has taken place in the literature and is likely to continue for some time to come. We will continue updating and presenting our assessment of the most reliable BDE data every year.

The references relating to each of the D_{298}^{o} values listed in Table 3 are contained in the *Comprehensive Handbook of Chemical Bond Energies*, by Yu-Ran Luo, CRC Press, 2007. Many D_{298}^{o} in Table 3 are derived from the equation

$$D_{298}^{o}(R-X) = \Delta_{f} H^{o}(R) + \Delta_{f} H^{o}(X) - \Delta_{f} H^{o}(RX)$$

Here, the enthalpies of formation of the atoms and radicals are taken from Tables 2 and 4, respectively, and the enthalpies of formation of the molecules are from reference sources listed in the above *Comprehensive Handbook of Chemical Bond Energies*.

Table 3 presents H-C, C-C, C-halogen, O-, N-, S-, Si-, Ge-, Sn-, Pb-, P-, As-, Sb-, Bi-, Se-, Te-, and metal-X BDEs. The **boldface** in the species indicates the dissociated fragment. The **metal**-X BDEs are arranged on the basis of the Periodic Table with the new IUPAC notation for Groups 1 to 18, see inside front cover of this *Handbook*.

Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.
$(1) C H RDE_{-}$			CH ₂ =CHCCCH ₂ -H	363.3	1	H -cyclo- C_5H_9	400.0 ± 4.2	1
(I) C-H BDEs			CH ₃ CCCH ₂ CH ₃	365.3 ± 9.6	1	H -cyclo- C_6H_{11}	416.3	1
CH ₃ -H	439.3 ± 0.4	1	HCCCH,CH,CH,	349.8 ± 8.4	1	$H-C_6H_5$	472.2 ± 2.2	1
$CH_{3}CH_{2}-H$	420.5 ± 1.3	1	HCCCH(CH.).	345.2 ± 8.4	1	H-CH_C_H_	375.5 ± 5.0	1
$CH_3CH_2CH_2-H$	422.2 ± 2.1	1	CH CCC H (CH)	344.3 + 11.3	1	² ⁶ ⁵ H –CH(CH)C H	357.3 ± 6.3	1
$CH_{3}CH_{2}CH_{3}$	410.5 ± 2.9	1	HCCCCCC-H	-543 ± 13	1	$H_{-CH(CH)}$	3535 ± 21	1
$CH_{3}CH_{2}CH_{2}CH_{2}-H$	421.3	1		$^{-3}$ $^{-3}$ $^{-1$	1	$\mathbf{H} = C\mathbf{H}(C_{6}\mathbf{H}_{5})_{2}$	333.3 ± 2.1	1
CH ₃ CH ₂ CH ₂ CH ₃	411.1 ± 2.2	1	$\Pi_2 C = C \Pi - \Pi$	404.2 ± 2.5	1	$H = CII(C_6II_4 - p - OII)_2$	375.8 ± 4.7	1
(CH ₃) ₂ CHCH ₂ -H	419.2 ± 4.2	1	$CH_2 = C = CH - H$	3/1.1 ± 12.6	1	$H-C(CH_3)_2C_6H_5$	348.1 ± 4.2	1
(CH_)_C-H	400.4 ± 2.9	1	CH ₃ CH=CH–H	464.8	1	$H - C(C_6 H_5)_3$	338.9 ± 8.4	1
(СН) ССН –Н	419.7 ± 4.2	1	$CH_2 = CHCH_2 - H$	369 ± 3	1	$1 - H - C_{10} H_7$	469.4 ± 5.4	1
(CH CH)CH(CH)	400.8	1	$CH_2 = CH - CH_2 CH_2 - H$	410.5	1	$2 - H - C_{10} H_7$	468.2 ± 5.9	1
$(CH_3CH_2)CH(CH_3)_2$	415 1	1	CH ₂ =CHCH ₂ CH ₃	350.6	1	H–CF ₃	445.2 ± 2.9	1
$CH_3 CH_2 (CH_2)_2 CH_3$	415.1	1	CH ₂ =C(CH ₃)CH ₂ -H	372.8	1	H-CHF ₂	431.8 ± 4.2	1
$(C_3H_7)CH(CH_3)_2$	396.2 ± 8.4	1	CH_=CHCH=CHCHH	347.3 ± 12.6	1	H–CH ₂ F	423.8 ± 4.2	1
$CH_3CH(CH_3)CH(CH_3)_2$	399.2 ± 13.0	1	(CH = CH) CH-H	320.5 ± 4.2	1	H-CClF	421.3 ± 8.4	1
$CH_3CH_2(CH_2)_3CH_3$	410	1	CH - CHCH CH CH	348.8	1	H–CCl F	410.9 ± 8.4	1
$CH_3CH_2(CH_2)_4CH_3$	410	1	CH = CHCH(CH)	222.6 ± 7.1	1	H_CBrF	4155 ± 126	1
HCC-H	557.81 ± 0.30	1	$CH_2 = CHCH(CH_3)_2$	352.0 ± 7.1	1		421.7 ± 10.0	1
HCCCC-H	539 ± 12	1	$CH_2 = C(CH_3CH_2)CH_2 - H$	356.1 ± 8.4	1	H-CICIF	421.7 ± 10.0	1
CHCCH,-H	384.1 ± 4.2	1	$(CH_2=CH)_2C(CH_3)-H$	322.2	1	H-CCI ₃	392.5 ± 2.5	1
CH_CCCHH	379.5	1	H-cyclo-C ₃ H ₅	444.8 ± 1.0	1	\mathbf{H} -CHCl ₂	400.6 ± 2.0	1
HCCCH CH.	373.0	1	H-CH ₂ -cyclo-C ₃ H ₅	407.5 ± 6.7	1	H–CH ₂ Cl	419.0 ± 2.3	1
		-	H-cyclo-C H	4092 ± 13	1	H–CFClBr	413 ± 21	1

(

9-72

Bond Dissociation Energies

Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.
H–CHClBr	406.0 ± 2.4	1	$(CH_2OH)_2$	385.3	1	Me ₂ CHC(O)OEt	387.4	1
H–CCl ₂ Br	387 ± 21	1	$HOCH_2(CH_2)_2$	399.2	1	PhCHMe(C(O)OEt)	358.2	1
H–CClBr ₂	371 ± 21	1	(OH)CH- H	077.2	1	H-furaylmethyl	361.9 ± 8.4	1
H–CBr ₃	399.2 ± 8.4	1	CH ₃ OCH ₃	402.1	1	$CH_{3}NH_{2}$	392.9 ± 8.4	1
H–CHBr ₂	412.6 ± 2.7	3	CHF ₂ OCF ₃	443.5 ± 4.2	1	CH ₃ N=CH ₂	407.9 ± 14.6	1
H–CH ₂ Br	427.2 ± 2.4	1	CHF ₂ OCHF ₂	435.1 ± 4.2	1	$CH_3CH_2NH_2$	377.0 ± 8.4	1
H–CI ₃	423 ± 29	1	CH ₃ OCF ₃	426.8 ± 4.2	1	$C_2H_5CH_2NH_2$	380.7 ± 8.4	1
H–CHI ₂	431.0 ± 8.4	1	CH ₃ OCH ₂ CH ₃	389.1	1	$C_3H_7CH_2NH_2$	393.3 ± 8.4	1
H–CH ₂ I	431.6 ± 2.8	1	$(CH_3)_3 COC (CH_3)_3$	402.1	1	$C_4H_9CH_2NH_2$	387.7 ± 8.4	1
$CF_{3}CF_{2}-H$	429.7 ± 2.1	1	CH ₃ CH ₂ OCH ₂ CH ₃	389.1	1	$HOCH_2CH_2NH_2$	379.5 ± 8.4	1
CHF_2CF_2-H	431.0 ± 18.8	1	$CH_3CH_2Ot-C(CH_3)_3$	405.4	1	$(CH_{3}CH_{2})_{2}NH$	370.7 ± 8.4	1
CH_2FCF_2-H	433.0 ± 14.6	1	CH ₃ OPh	385.0	1	$(C_3H_7CH_2)_2NH$	379.9 ± 8.4	1
CHF_2CFH-H	426.8 ± 14.6	1	H-2-oxiran-2-yl	420.5 ± 6.5	1	$(C_4H_9CH_2)_2NH$	384.5 ± 8.4	1
CF_3CH_2-H	446.4 ± 4.5	1	H-tetrahydrofuran-2-yl	385.3 ± 6.7	1	$(C_2H_5)_2NCH_2CH_3$	379.5 ± 1.7	1
$CH_{3}CF_{2}-H$	416.3 ± 4.2	1	HC(O)–H	368.40 ± 0.67	1	$(C_2H_5CH_2)_3N$	376.6 ± 8.4	1
CH ₂ FCHF– H	413.4 ± 12.6	1	FC(O)-H	423.0	1	$((CH_3)_2CCH_2)_3N$	388.3 ± 8.4	1
CHF ₂ CH ₂ -H	433.0 ± 14.6	1	$CH_{3}C(O)-H$	374.0 ± 1.3	1	$(Bu)_2 NCH_2(nPr)$	381 ± 10.0	1
CH ₂ FCH ₂ -H	433.5 ± 8.4	1	$CF_{3}C(O)-H$	390.4	1	((CH ₃) ₂ CH) ₃ N	387.0 ± 8.4	1
CH ₃ CHF– H	410.9 ± 8.4	1	$C_2H_5C(O)-H$	374.5	1	(CH ₃) ₂ CHNH ₂	372.0 ± 8.4	1
CF ₃ CHCl-H	425.9 ± 6.3	1	$CH_2 = CHC(O) - H$	372.8	1	CH,NHCH,	364.0 ± 8.4	1
CF ₃ CClBr–H	404.2 ± 6.3	1	$C_{3}H_{7}C(O)-H$	371.2	1	(CH ₃) ₃ N	380.7 ± 8.4	1
CCIF_CHF-H	412.1 ± 2.1	1	$iso-C_3H_7C(O)-H$	364.5	1	tert-BuN(CH ₃) ₂	376.6 ± 8.4	1
CCl ₂ CCl ₂ -H	397.5 ± 8.4	1	$C_4H_9C(O)-H$	372.0	1	((HOCH ₂ CH ₂) ₂ (CH ₂))N	364.4 ± 8.4	1
CHCl ₂ CCl ₂ -H	393.3 ± 8.4	1	$(CH_3)_2CHCH_2C(O)-H$	362.5	1	(HOCH ₂ CH ₂) ₃ N	379.9 ± 8.4	1
CH ₃ CCl ₂ –H	397.9 ± 5.0	1	$C_2H_5CH(CH_3)C(O)-H$	360.8	1	((HOCH ₂)C H (CH ₃)) ₃ N	379.9 ± 8.4	1
CH,CHCl-H	406.6 ± 1.5	1	tert-BuC(O)–H	375.1	1	PhCH,NH,	368.2	1
CH,ClCH,-H	423.1 ± 2.4	1	$Et_2CHC(O)-H$	367.2	1	PhN(CH,CH,),	383.3 ± 4.2	1
CH,CBr,-H	397.1 ± 5.0	1	$CH_3(CH_2)_8C(O)-H$	373.3	1	Ph,NCH	379.5 ± 1.7	1
CH_BrCHH	415.1 ± 8.4	1	$C_6H_5C(O)-H$	371.1 ± 10.9	1	PhN(CH ₂ Ph) ₂	357.3 ± 8.8	1
CH,CHBr-H	415.0 ± 2.7	3	$PhCH_2C(O)-H$	362.0	1	$N(CH_{2}Ph)_{3}$	372.8 ± 2.5	1
CF_=CF-H	464.4 ± 8.4	1	$PhC(CH_3)_2C(O)-H$	362.9	1	PhN(CH ₂ CH=CH ₂) ₂	339.3 ± 2.9	1
CF,CF,CF,-H	432.2	1	H-CH=C=O	448.1	1	N(CH,CH=CH,)	345.6 ± 3.3	1
CH,CH,CHCl-H	407.0 ± 3.5	1	$CH_{3}C(O)H$	394.5 ± 9.2	1	H ₂ NNH(CH ₃)	410	1
CH_=CH-CHF-H	370.7 ± 4.6	1	CH ₃ C(O)Cl	≤423.4	1	HNN(CH ₃) ₂	410	1
CH ₂ =CHCHCl-H	370.7 ± 4.6	1	$CH_{3}CH_{2}C(O)H$	383.7	1	$(CH_2)_2NC_2H_2$	383.7 ± 5.4	1
CH ₂ =CHCHBr-H	374.0 ± 4.6	1	CH ₃ COCH ₃	401.2 ± 2.9	1	H-CN	528.5 ± 0.8	1
$H - C_{c}F_{c}$	487.4	1	$CF_{3}C(O)CH_{3}$	465.6	1	CH ₃ CN	405.8 ± 4.2	1
Н –СН,ОН	401.92 ± 0.63	1	CH ₃ COCH ₂ CH ₃	403.8	1	CH ₃ CH ₂ CN	393.3 ± 12.6	1
CH, CHOH	467 ± 11	1	$MeCOCH_2Me$	386.2 ± 7.1	1	PhCH,CN	344.3	1
CH,CH,OH	401.2 ± 4.2	1	EtCOCH ₂ Me	396.5 ± 2.8	1	C ₆ F ₅ CH ₂ CN	350.6	1
CH,CH,OH	421.7 ± 8	1	CH ₃ CH ₂ COC ₆ H ₅	402.8 ± 3.6	1	CH ₂ (CN) ₂	366.5	1
CH ₃ CH ₅ CH ₅ OH	392	1	MeCH ₂ COPh	388.7	1	CH ₂ (CN)(NH ₂)	355.2	1
CH ₃ CH,CH,OH	394.6 ± 8.4	1	H–C(O)OH	404.2	1	(CH ₃) ₂ CHCN	384.5	1
CH,CH,CH,OH	406.3 ± 8.4	1	CH ₃ C(O)OH	398.7 ± 12.1	1	CH ₃ NC	389.1 ± 12.6	1
(CH ₂) ₂ CHOH	383.7 ± 8.4	1	$ClCH_2C(O)OH$	398.9	1	H-HCNN	405.8 ± 8.4	1
(CH ₂) ₂ CHOH	394.6 ± 8.4	1	$H-C(O)OCH_3$	399.2 ± 8.4	1	H-CNN	331 ± 17	1
CH_=CHCH_OH	341.4 ± 7.5	1	CH ₃ C(O)OCH ₃	406.3 ± 10.5	1	CH,NO,	415.4	1
(CH ₂),COH	418.4 ± 8.4	1	$CH_{3}C(O)OCH_{3}$	404.6	1	CH ₃ CH ₂ NO ₂	410.5	1
(CH_=CH)_CHOH	288.7	1	CH ₃ C(O)OCH ₂ CH ₃	401.7	1	C,H,CH,NO,	410.5	1
Ph ₂ CHOH	326	1	CH ₃ C(O)OPh	419.2 ± 5.4	1	Me ₂ CHNO ₂	394.9	1
² CH ₂ CH(OH) ₂	~385	1	$CH_{3}CH_{2}C(O)OEt$	400	1	C ₆ H ₅ C(NO ₂)CHCH ₂	357.3	1
3 2			PhCH ₂ C(O)OEt	370.7	1	oo:∠' 3		

۲

۲

Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.
H-C(S)H	399.6 ± 5.0	1	CH ₃ -CHCH ₂	426.3 ± 6.3	1	CCl ₃ -CH ₂ Cl	323.8 ± 8.4	1
CH ₃ SH	392.9 ± 8.4	1	CH ₃ -CH=CCH ₂	359.8 ± 5.9	1	CCl ₃ -CH ₃	362.3 ± 6.3	1
CH ₃ SCH ₃	392.0 ± 5.9	1	CH ₃ -cyclopro-en-1-yl	340.6 ± 20.9	1	CHCl ₂ -CHCl ₂	326.9 ± 4.1	1
PhSCH ₃	389.1	1	CH ₃ -CH ₂ CH=CH ₂	317.6 ± 3.8	1	CHCl ₂ –CH ₂ Cl	352.2 ± 5.9	1
PhCH ₂ SPh	352.3	1	CH ₃ -CH ₂ C(CH ₃)=CH ₂	310.0 ± 4.2	1	CHCl ₂ –CH ₃	361.3 ± 2.5	1
(PhS) ₂ C H Ph	341.0	1	CH ₃ -CH(CH ₃)CH=CH ₂	302.5 ± 6.3	1	CHBrCl–CH ₃	384.5	1
PhSCHPh ₂	344.8	1	$CH_3 - C(CH_3)_2 CH = CH_2$	282.4 ± 6.3	1	CHClBr-CHClBr	317.1 ± 12.6	1
CH ₃ SOCH ₃	393.3	1	CH_3 -cyclo- C_5H_7	299.2 ± 8.4	1	CH ₂ Cl–CH ₂ Cl	360.7 ± 8.4	1
CH ₃ SO ₂ CH ₃	414.2	1	$CH_3 - C_6H_5$	426.8 ± 4.2	1	CH ₂ Cl–CH ₃	375.7 ± 9.2	1
CH ₃ SO ₂ CF ₃	431.0	1	$HCC-C_6H_5$	590.8 ± 5.9	1	Br ₃ C–CH ₃	356.9 ± 12.6	1
$CH_{3}SO_{2}Ph$	414.2	1	$C_{2}H_{3}-C_{6}H_{5}$	482.0 ± 5.4	1	Br ₃ C–CBr ₃	278.7 ± 16.7	1
PhCH ₂ SO ₂ Me	380.7	1	CH_3 - $CH_2C_6H_5$	325.1 ± 4.2	1	CHBr ₂ -CH ₃	372.8	1
PhCH ₂ SO ₂ CF ₃	372.4	1	CH_3 -CH(CH ₃)C ₆ H ₅	318.8 ± 8.4	1	CH ₂ Br–CH ₂ Cl	378.2	1
PhCH ₂ SO ₂ tBu	376.6	1	$CH_{3}-C(CH_{3})_{2}C_{6}H_{5}$	303.3 ± 8.4	1	CH_2Br – CH_2Br	379.9 ± 8.4	1
Ph ₂ CHSO ₂ Ph	365.3	1	CH ₃ -CH ₂ CHCHPh	295.4	1	CH_2I - CH_2I	387.0 ± 10.5	1
$CH_2(SPh)_2$	372.4	1	$CH_{3}-CH(C_{6}H_{5})_{2}$	315.9 ± 6.3	1	CH_3 - CH_2Br	381.6 ± 8.4	1
H-CH ₂ SiMe ₃	418 ± 6.3	1	$CH_{3}-C(CH_{3})(C_{6}H_{5})_{2}$	290.8 ± 8.4	1	CH ₃ -CH ₂ I	384.5 ± 8.4	1
H-CH ₂ C(CH ₃) ₂ SiMe ₃	409 ± 5	1	$C_{6}H_{5}-C_{6}H_{5}$	478.6 ± 6.3	1	CF_3 - CF_2CF_3	424.3 ± 13.6	1
H-CH ₂ SiMe ₂ Ph	410.1	1	$C_6H_5-CH_2C_6H_5$	383.7 ± 8.4	1	CF_3 - CF = CF_2	420.5	1
$H-CH((CH_3)_3Si)_2$	397 ± 13	1	$C_6H_5CH_2-CH_2C_6H_5$	272.8 ± 9.2	1	CH ₃ -CH ₂ CH ₂ Cl	371.4 ± 2.8	1
$H-CH_2B(RO)_2$	412.5	1	$C_{6}H_{5}-CH(C_{6}H_{5})_{2}$	361.1 ± 8.4	1	CH ₃ -CHClCH ₃	367.5 ± 2.0	1
\mathbf{H} - $\mathbf{CH}((\mathbf{CH}_3)_2\mathbf{P})_2$	385 ± 13	1	$C_{6}H_{5}-C(C_{6}H_{5})_{3}$	324.3 ± 12.6	1	CH ₂ Cl-CHClCH ₃	356.5 ± 8.4	1
$(2) C C RDF_{\alpha}$			Ph ₂ CH–CHPh ₂	247.3 ± 8.4	1	CH ₂ Cl–CH ₂ CClH ₂	369.0 ± 8.4	1
(2) C = C BDES	277.4 ± 0.8	1	PhCH ₂ -CPh ₃	234.7 ± 14.6	1	CH ₃ -CCl ₂ CH ₃	362.8 ± 8.4	1
	377.4 ± 0.8	1	R- R, π -dimer, R =	42	1	CH ₂ Br–CHBrCH ₃	369.4 ± 8.4	1
$CH_3 - C_2 H_5$	370.3 ± 2.1 372.0 ± 2.9	1	phenalenyl	12	1	CH2CICH2-CHCICH3	364.4 ± 8.4	1
$CH_3 = C_3 H_7$ CH -iso-C H	372.0 ± 2.9 369.0 ± 3.8	1	R -R, σ -dimer, R =	42.7	1	$CH_2CICH_2-CH_2CCIH_2$	369.0 ± 8.4	1
$CH_3 - i30 - C_3 H_7$	371.5 ± 2.9	1	$\mathbf{R}_{-}\mathbf{R}_{-}\mathbf{R}_{-}\mathbf{Q}_{-}$			CH ₃ CHBr–CHBrCH ₃	355.6 ± 8.4	1
$CH_3 = C_4 H_9$ $CH = -iso_2 C H$	371.3 ± 2.9 370.3 ± 4.6	1	phenylfluorenyl	63.6	1	$CF_{3}-C_{6}H_{5}$	463.2 ± 12.6	1
$\mathbf{CH}_{3} \text{ iso } \mathbf{C}_{4}\mathbf{H}_{9}$ $\mathbf{CH}_{-\text{sec}} C \mathbf{H}$	368.2 ± 2.9	1	CF ₃ -CF ₃	413.0 ± 5.0	1	$\mathbf{CCl}_{3}-\mathbf{C}_{6}\mathbf{H}_{5}$	388.7 ± 8.4	1
CH_3 set C_4H_9 CH -tert-C H	363.6 ± 2.9	1	CF ₃ -CHF ₂	399.6 ± 8.4	1	$CH_{3}-C_{6}F_{5}$	439.3	1
$\mathbf{CH}_{3} = \mathbf{CH}_{4} \mathbf{H}_{9}$	368.4 ± 6.3	1	CF ₃ -CClF ₂	373.6 ± 12.5	1	$CF_{3}-C_{6}F_{5}$	435.1	1
$\mathbf{CH}_{3} = \mathbf{CH}_{11}$ $\mathbf{CH}_{11} = \mathbf{CH}_{11}$	365.7 ± 4.2	1	CF ₃ -CH ₂ F	397.5 ± 8.4	1	CF_3 - $CH_2C_6H_5$	365.7 ± 12.6	1
$CH_{3} = C(CH_{2}) (CH_{2}CH_{3})$	360.9 ± 6.3	1	CF ₃ -CCl ₃	332.2 ± 5.4	1	$C_{6}F_{5}-C_{6}F_{5}$	488.3	1
СН ₃ С(СП ₃ /2(СП ₂ СП ₃)	368.2 ± 6.3	1	CF ₃ -CHBrCl	377.0 ± 10.5	1	CF_3 -CHPh ₂	352.3 ± 16.7	1
$CH_{3} = C_{6} H_{13}$	363.2 ± 2.5	1	CF ₃ -CH ₂ Br	399.6 ± 8.4	1	CF_3 - CPh_3	290.8 ± 16.7	1
с <u>1</u> -С.Н	366.1 ± 3.3	1	CF ₃ -CH ₂ I	408.4 ± 10.5	1	$CF_2CF-CFCF_2$	558.1 ± 12.6	1
<i>iso-C</i> _H_ <i>iso-</i> C_H_	353.5 ± 4.6	1	CF ₃ -CH ₃	429.3 ± 5.0	1	CH ₂ FCH ₂ -CPh ₃	274.9 ± 16.7	1
С.НС.Н.	364.0 ± 3.8	1	CHF ₂ -CHF ₂	382.4 ± 15.5	1	CHF ₂ CH ₂ -CPh ₃	264.0 ± 16.7	1
<i>iso-</i> C . H .– <i>iso-</i> C.H.	362.3 ± 6.3	1	$CClF_2$ -CClF ₂	378.7 ± 12.6	1	CH ₃ -CH ₂ OH	364.8 ± 4.2	1
sec-C.Hsec-C.H.	348.5 ± 3.3	1	CF_2CI -CFCl ₂	358.6 ± 12.6	1	CF ₃ -CH ₂ OH	405.4 ± 6.3	1
<i>tert-C</i> ,H_ <i>-tert-C</i> ,H_	322.6 ± 4.2	1	CHF ₂ -CH ₂ F	394.1 ± 16.7	1	C_2H_5 -CH ₂ OH	356.9 ± 5.0	1
CH _a -cyclo-C _a H _a	358.2 ± 5.0	1	CH ₂ F–CH ₂ F	368.2 ± 8.4	1	C_3H_7 -CH ₂ OH	357.3 ± 3.3	1
CHcvclo-C.H.	377.0 ± 7.5	1	CHF ₂ -CH ₃	405.0 ± 8.4	1	iso-C ₃ H ₇ -CH ₂ OH	354.8 ± 4.2	1
cyclo-C.H.,-cyclo-C.H.	369.0 ± 8.4	1	CH ₂ F–CH ₃	388.3 ± 8.4	1	C ₄ H ₉ -CH ₂ OH	355.6 ± 4.2	1
CH _a −CH _a C≡CH	320.5 ± 5.0	1	CHCIF-CH ₃	399.6 ± 12.6	1	sec-C ₄ H ₉ -CH ₂ OH	352.7 ± 4.2	1
CH,−CH,C≡CCH.	308.4 ± 6.3	1	CF ₂ Br–CHClF	369.4	1	<i>iso-</i> C ₄ H ₉ –CH ₂ OH	354.0 ± 5.4	1
CH ₃ −CH(CH ₅)C≡CH	305.4 ± 8.4	1	CF ₂ Br–CH ₃	396.6 ± 15.1	1	C ₆ H ₅ -CH ₂ OH	413.4 ± 5.4	1
CH ₃ −CH(CH ₅)C≡CCH	320.9 ± 6.3	1	CCl ₃ -CCl ₃	285.8 ± 6.3	1	HOH ₂ C-CH ₂ OH	358.2 ± 6.3	1
CH ₃ −C(CH ₃) ₂ C≡CH	295.8 ± 6.3	1	CCl_3 - $CClF_2$	282.0 ± 12.6	1	NH ₂ CH ₂ -CH ₂ OH	335.6 ± 10.5	1
CH ₃ −C(CH ₃) ₂ C≡CCH ₂	303.3 ± 6.3	1	CCl_3 -CHCl ₂	303.3 ± 6.3	1	CH ₃ -CH ₂ OCH ₃	363.2 ± 5.0	1

۲

۲

۲

9-74

Bond Dissociation Energies

Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.
CH ₃ OCH ₂ -CH ₂ OCH ₃	338.9 ± 10.5	1	$C_{58} - C_2$	955.2 ± 14.5	1	Cl-CF ₂ CF ₂ Cl	331.4 ± 20.9	1
CH ₃ -C(O)H	354.8 ± 1.7	1				Cl-CCl ₂ CF ₃	307.9	1
CCl ₃ -C(O)H	309.2 ± 5.0	1	(3) C-halogen BDEs			Cl-CCl,CCl	303.8	1
CH ₃ -C(O)F	417.6 ± 6.3	1	F-CN	482.8	1	CI-CHClCCl ₃	330.5 ± 4.2	1
CH ₃ -C(O)Cl	367.8 ± 6.3	1	F-CF ₃	546.8 ± 2.1	1	Cl-CCl,CHCl,	311.7	1
CCl ₃ -C(O)Cl	289.1 ± 6.3	1	F-CHF ₂	533.9 ± 5.9	1	CI-CHCICH ₃	327.9 ± 1.8	1
CHCl ₂ -C(O)Cl	312.5 ± 8.4	1	F-CH ₂ F	496.2 ± 8.8	1	Cl-CH ₂ CH ₂ Cl	345.1 ± 5.0	1
CClH ₂ -C(O)Cl	340.2 ± 8.4	1	\mathbf{F} - $\mathbf{CF}_{2}\mathbf{CI}$	511.7	1	Cl–CHBrCH ₃	331.8 ± 8.4	1
$C_6H_5-C(O)H$	408.4 ± 4.2	1	F-CFCl ₂	482.0 ± 10.5	1	Cl-CH ₂ CH ₃	352.3 ± 3.3	1
C ₆ H ₅ -C(O)Cl	417.6 ± 6.3	1	F-CHFCI	462.3 ± 10.0	1	Cl-CH ₂ CH=CH ₂	298.3 ± 5.0	1
CH ₃ -C(O)CH ₃	351.9 ± 2.1	1	F-CCl ₃	439.3 ± 4	1	$Cl-C_{3}H_{7}$	352.7 ± 4.2	1
$C_2H_5-C(O)CH_3$	347.3 ± 2.9	1	F-CH ₂ Cl	465.3 ± 9.6	1	Cl-CH ₂ CH ₂ CH ₂ Cl	348.9	1
$C_3H_7 - C(O)CH_3$	348.5 ± 2.9	1	F-CH ₃	460.2 ± 8.4	1	Cl-iso-C ₃ H ₇	354.0 ± 6.3	1
<i>iso-</i> C ₃ H ₇ -C(O)CH ₃	340.2 ± 3.8	1	F-C≡CH	521.3	1	Cl-CH ₂ CHCH=CH ₂	342.7	1
$C_4H_7-C(O)CH_3$	346.9 ± 5.4	1	F-C=CF	519 ± 21	1	$Cl-C_4H_9$	350.6 ± 6.3	1
tert-C ₄ H ₉ -C(O)CH ₃	329.3 ± 4.2	1	F-CF=CF ₂	546.4 ± 12.6	1	Cl-sec-C ₄ H ₉	350.2 ± 6.3	1
$C_6H_5-C(O)CH_3$	406.7 ± 4.6	1	$\mathbf{F} - \mathbf{CF}_2 \mathbf{CF}_3$	532.2 ± 6.3	1	Cl -tert- C_4H_9	351.9 ± 6.3	1
C ₆ H ₅ CH ₂ -C(O)CH ₃	299.7 ± 8.4	1	\mathbf{F} - $\mathbf{CH}_2\mathbf{CF}_3$	457.7	1	CH ₂ CHCHCI(CH ₃)	300.0 ± 6.3	1
HC(O) –C(O)H	295.8 ± 6.3	1	\mathbf{F} - $\mathbf{CF}_{2}\mathbf{CH}_{3}$	522.2 ± 8.4	1	$Cl - C_5 H_{11}$	350.6 ± 6.3	1
ClC(O)–C(O)Cl	292.5 ± 8.4	1	$\mathbf{F} - \mathbf{C}_2 \mathbf{H}_3$	517.6 ± 12.6	1	$Cl-C(CH_3)_2(C_2H_5)$	352.7 ± 6.3	1
CH ₃ C(O)–C(O)H	302.5 ± 8.4	1	$\mathbf{F} - \mathbf{C}_2 \mathbf{H}_5$	467.4 ± 8.4	1	Cl-cyclo-C ₆ H ₁₁	360.2 ± 6.5	1
CH ₃ C(O)–C(O)CH ₃	307.1 ± 4.2	1	$\mathbf{F} - \mathbf{C}_3 \mathbf{H}_7$	474.9 ± 8.4	1	Cl-C ₆ H ₅	399.6 ± 6.3	1
$C_6H_5C(O)-C(O)C_6H_5$	288.3 ± 16.7	1	\mathbf{F} -iso- $\mathbf{C}_{3}\mathbf{H}_{7}$	483.8 ± 8.4	1	$Cl-C_6F_5$	383.3 ± 8.4	1
CH ₃ -C(O)OH	384.9 ± 8.4	1	\mathbf{F} -tert- $\mathbf{C}_{4}\mathbf{H}_{9}$	495.8 ± 8.4	1	Cl-CH ₂ C ₆ H ₅	299.9 ± 4.3	1
CF ₃ -C(O)OH	370.7 ± 8.4	1	$F-C_6H_5$	525.5 ± 8.4	1	Cl–C(O)Cl	318.8 ± 8.4	1
CCl ₃ -C(O)OH	310.5 ± 12.6	1	$\mathbf{F} - \mathbf{C}_6 \mathbf{F}_5$	485 ± 25	1	Cl-COF	376.6	1
CCIH ₂ -C(O)OH	357.7 ± 8.4	1	$\mathbf{F} - \mathbf{CH}_2\mathbf{C}_6\mathbf{H}_5$	412.8 ± 4.2	1	Cl-C(O)CH ₃	354.0 ± 8.4	1
CH ₂ Br–C(O)OH	358.2 ± 8.4	1	F-COH	497.9 ± 10.5	1	Cl-C(O)CH ₂ CH ₃	353.3 ± 6.3	1
NH ₂ CH ₂ -C(O)OH	349.4 ± 8.4	1	F-COF	510.3	1	$Cl-C(O)C_6H_5$	341.0 ± 8.4	1
CH ₃ NHCH ₂ -C(O)OH	300.4 ± 8.4	1	F-COCI	484.5	1	Cl-CH ₂ C(O)C ₆ H ₅	309	1
C ₆ H ₅ -C(O)OH	429.7 ± 8.4	1	\mathbf{F} - $\mathbf{C}(\mathbf{O})\mathbf{CH}_{3}$	511.7 ± 12.6	1	Cl-CH ₂ C(O)OH	310.9 ± 2.2	1
C_6F_5 -C(O)OH	470.0 ± 10.5	1	CI-CN	422.6 ± 8.4	1	Cl-C(O)OC ₆ H ₅	364	1
HOCH ₂ -C(O)OH	371.5 ± 5.4	1	CI-CF ₃	365.3 ± 3.8	1	$Cl-C(NO_2)_3$	302.1	1
HOC(O)–C(O)OH	334.7 ± 6.3	1	CI–CHF ₂	364 ± 8	1	Br-CN	364.8 ± 4.2	1
CH ₃ NHCH ₂ -C(O)OH	301.2 ± 16.7	1	CI–CH ₂ F	354.4 ± 11.7	1	Br-CF ₃	296.2 ± 1.3	1
CH ₃ CH(NH ₂)–C(O)OH	331.4 ± 16.7	1	$CI-CF_2CI$	333.9 ± 10.5	1	Br-CHF ₂	288.7 ± 8.4	1
NH ₂ CH ₂ -CH ₂ C(O)OH	325.5 ± 16.7	1	CI-CFCI ₂	320.9 ± 8.4	1	Br-CF ₂ Cl	269.9 ± 6.3	1
CN-CN	571.9 ± 6.7	1	CI-CHFCI	346.0 ± 13.4	1	Br-CCl ₃	231.4 ± 4.2	1
HC(O) –CN	455.2 ± 8.4	1		296.6	1	Br-CH ₂ Cl	277.3 ± 3.6	1
HC(S)– CN	530.1 ± 8.4	1	CI-CHCI ₂	311.1 ± 2.0	1	Br-CBr ₃	242.3 ± 8.4	1
CF ₃ -CN	469.0 ± 4.2	1	CI-CH ₂ CI	338.0 ± 3.3	1	Br-CHBr ₂	274.9 ± 13.0	1
CH ₃ -CN	521.7 ± 9.2	1	CI-CBrCl ₂	287 ± 10.5	1	Br–CH ₂ Br	276.1 ± 5.3	1
NCC-CN	462.3	1	CI–CH ₂ Br	332.8 ± 4.6	1	Br-CH ₂ I	274.5 ± 7.5	1
C_2H_5-CN	506.7 ± 7.5	1	CI-CH ₂ I	328.2 ± 6.9	1	Br-CH ₃	294.1 ± 2.1	1
CH ₃ -CH ₂ CN	348.1 ± 12.6	1	CI-CH ₃	350.2 ± 1.7	1	Br −C≡CH	410.5	1
C ₆ H ₅ -CH ₂ CN	386.6 ± 8.4	1	CI-C≡CCI	443 ± 50	1	Br–CH=CH ₂	338.3 ± 3.1	1
CH ₃ -CH(CH ₃)CN	332.6 ± 8.4	1	CI-C≡CH	435.6 ± 8.4	1	\mathbf{Br} - $\mathbf{CF}_{2}\mathbf{CF}_{3}$	283.3 ± 6.3	1
CH ₃ -C(CH ₃) ₂ CN	340.6 ± 16.7	1	CI-CH ₂ CN	267.4	1	Br –CClBrCF ₃	251.0 ± 6.3	1
CH ₃ -C(CH ₃)(CN)C ₆ H ₅	250.6	1	CI-CCI=CCI ₂	383.7	1	\mathbf{Br} - $\mathbf{CF}_{2}\mathbf{CF}_{2}\mathbf{Br}$	282.8 ± 6.7	1
(Ph) ₂ (CN)C-C(CN)(Ph),	109.6	1	CI-CH=CH ₂	394.1 ± 3.1	2	Br–CHClCF ₃	274.9 ± 6.3	1
$(NO_2)_3C-C(NO_2)_3$	308.8	1	$CI-CF=CF_2$	434.7 ± 8.4	1	Br-CF ₂ CH ₃	287.0 ± 5.4	1
20			$CI-CF_2CF_3$	346.0 ± 7.1	1			

۲

۲

Bond Dissociation Energies

9-75

Bond	$D_{208}^{o}/\mathrm{kJ}\mathrm{mol}^{-1}$	Ref.	Bond	$D_{208}^{o}/\text{kJ} \text{ mol}^{-1}$	Ref.	Bond	$D^{o}_{200}/\mathrm{kJ}\mathrm{mol}^{-1}$	Ref.
Br–CH ₂ CH ₂ Cl	292.5 ± 8.4	1	I–2-naphthyl	272.0 ± 10.5	1	C ₆ H ₅ OO–H	384	1
Br–CHClCH ₃	272.0 ± 8.4	1	I-CH ₂ CN	187.0 ± 8.4	1	C ₆ H ₅ CH ₂ OO-H	363	1
Br-C,H ₅	292.9 ± 4.2	1	I-CH ₂ OCH ₃	229.4 ± 8.4	1	(C ₆ H ₅) ₂ CHOO–H	370	1
Br-CH ₂ CH=CH ₂	237.2 ± 5.0	1	I-CH ₂ SCH ₃	216.8 ± 6.3	1	CH ₃ C(O)OO-H	386	1
$\mathbf{Br} - \mathbf{C}_{3}\mathbf{H}_{7}$	298.3 ± 4.2	1	I-C(O)CH ₃	223.0 ± 8.4	1	CCl ₂ (CN)OO-H	384	1
Br-iso-C ₃ H ₇	299.2 ± 6.3	1	$I-C(O)C_6H_5$	212.1 ± 8.4	1	OHCH ₂ OO-H	368	1
Br-CH ₂ CH ₂ CH ₂ Br	324.7	1	I-CH ₂ C(O)OH	197.5 ± 2.7	1	H-ONO	330.7	1
Br-CF ₂ CF ₂ CF ₃	278.2 ± 10.5	1	$I-C(NO_2)_3$	144.8	1	H-OONO	299.2	1
CF ₃ CF Br CF ₃	274.2 ± 4.6	1				$H-ONH_2$	318	1
$\mathbf{Br} - \mathbf{C}_{4}\mathbf{H}_{9}$	296.6 ± 4.2	1	(4) O-X BDEs			H-ONO ₂	426.8	1
Br-sec-C ₄ H ₉	300.0 ± 4.2	1	HO-H	497.10 ± 0.29	1	H-ONNOH	189	1
Br -tert-C ₄ H ₉	292.9 ± 6.3	1	FO-H	425.1	1	H-OPO ₂	465.7 ± 12.6	1
$\mathbf{Br} - \mathbf{C}_{6}\mathbf{H}_{5}$	336.4 ± 6.3	1	CIO-H	393.7	1	H-OSO ₂ OH	441.4 ± 14.6	1
$\mathbf{Br} - \mathbf{C}_{6}\mathbf{F}_{5}$	~328	1	BrO–H	405	1	H–OSiMe3	495	1
Br-CH ₂ C ₆ H ₅	239.3 ± 6.3	1	IO-H	403.3	1	(CH ₃)CHNO-H	354.4	1
Br-CH ₂ C ₆ F ₅	225.1 ± 6.3	1	CH₃O−H	440.2 ± 3	1	(CH ₃) ₂ CNO- H	354.0	1
$Br - 1 - C_{10}H_7$	339.7	1	CF ₃ O–H	497.1	1	(C ₆ H ₅)CHNO- H	368.6	1
$Br-2-C_{10}H_{7}$	341.8	1	HC≡CO−H	443.1	1	PhO-H	362.8 ± 2.9	1
Br –anthracenyl	322.6	1	C_2H_5O-H	441.0 ± 5.9	1	α-tocopherol RO- H	323.4	1
Br–C(O)CH,	292.0 ± 8.4	1	$CH_2 = CHO - H$	355.6	1	β-tocopherol RO- H	335.6	1
$Br-C(O)C_{c}H_{c}$	276.6 ± 8.4	1	CF_3CH_2O-H	447.7 ± 10.5	1	γ-tocopherol RO- H	335.1	1
Br-CH_C(O)CH	257.9 ± 10.5	1	$C_{3}H_{7}O-H$	$\leq 433 \pm 2$	1	δ-tocopherol RO-H	342.8	1
Br-CH ₂ C(O)C ₂ H ₂	271	1	iso-C ₃ H ₇ O–H	442.3 ± 2.8	1	p-C _c H _c CH _a -C _c H _a O-H	356.2	1
Br-CH ₂ C(O)OH	257.4 ± 3.7	1	C_4H_9O-H	432.3	1	O -O ₂	106.6	1
$Br-C(NO_{a})_{a}$	218.4	1	sec - C_4H_9O - H	441.4 ± 4.2	1	HO-OH	210.66 ± 0.42	1
I-CN	320.1	1	$tert-C_4H_9O-H$	444.9 ± 2.8	1	HO-OF	199.7 ± 8.4	1
I-CF.	227.2 ± 1.3	1	tert-BuCH ₂ O-H	436.1	1	HO-OCl	~146	1
I-CCl	168 ± 42	1	$C_6H_5CH_2O-H$	442.7 ± 8.8	1	HO–OBr	138.5 ± 8.4	1
I-CH.Cl	221.8 ± 4.2	1	$CH_{3}C(OH)O-H$	446.9 ± 6.3	1	FO-OF	199.6	1
I-CH_Br	219.2 ± 5.4	1	$(CH_3)_2C(OH)O-H$	450.6 ± 6.3	1	CIO-OCI	72.4 ± 2.8	1
I-CH.I	216.9 ± 7.9	1	HC(O)O-H	468.6 ± 12.6	1	IO-OI	74.9 ± 17	1
I-CH.	238.9 ± 2.1	1	CH ₃ C(O)O–H	468.6 ± 12.6	1	trans-perp-HO–ONO	$\leq 67.8 \pm 0.4$	1
I-CH.CN	187.0 ± 6.3	1	$C_2H_5C(O)O-H$	472.8	1	cis-cis-HO–ONO	83.3 ± 2.1	1
I-CF_CF_	219.2 ± 2.1	1	iso-C ₃ H ₇ C(O)O–H	472.8	1	HO-ONO	163.2 ± 8.4	1
I-CF _a CF _a I	217.6 ± 6.7	1	$C_6H_5C(O)O-H$	464.4 ± 16.7	1	HO-OCH,	189.1 ± 4.2	1
I-CH.CF.	235.6 ± 4.2	1	HOO-H	366.06 ± 0.29	1	HO-OCF	201.3 ± 20.9	1
I-CHFCCIF	202 ± 2	1	CH ₃ OO–H	370.3 ± 2.1	1	HO-OC,H.	178.7 ± 6.3	1
I-CF.CH.	217.6 ± 4.2	1	CF ₃ OO-H	383	1	HO-O-iso-C _a H _a	185.8 ± 6.3	1
I-CFICH3	218.0 ± 4.2	1	CH ₂ FOO–H	379	1	HO–O-tert-C,H	186.2 ± 4.2	1
CF_CFICF_	215.1	1	CCl ₃ OO–H	386	1	HO-OC(O)CH	169.9 ± 2.1	1
I-CH=CH	259.0 ± 4.2	1	CHCl ₂ OO–H	383	1	HO-OC(O)C_H_	169.9 ± 2.1	1
I-C_H_	233.5 ± 6.3	1	CH ₂ ClOO–H	379	1	CH,O-OCH,	167.4 ± 6.3	1
I-CH_CH=CH_	185.8 ± 6.3	1	CBr ₃ OO–H	383	1	CF_O-OCF	198.7 ± 2.1	1
I-C.H.	236.8 ± 4.2	1	CH ₂ BrOO–H	379	1	C.H.O-OC.H.	166.1	1
I-iso-C.H.	234.7 ± 6.3	1	C_2H_5OO-H	354.8 ± 9.2	1	C_H_O -OC_H_	155.2 ± 4.2	1
I-C,F	205.8	1	CH3CHClOO-H	377	1	iso-C,H,O-O-iso-C,H_	157.7	1
I-tert-C.H.	227.2 ± 6.3	1	$CH_{3}CCl_{2}OO-H$	383	1	sec-C , H , O –O-sec-C.H	152.3 ± 4.2	1
I-C,H,	272.0 ± 4.2	1	CF ₃ CHClOO-H	384	1	<i>tert-BuO</i> –O <i>-tert-Bu</i>	162.8 ± 2.1	1
I-C.F.	<301.7	1	C_2Cl_5OO-H	383	1	tert-BuCH_O-OCH	150.0	_
I-CH C H	187.8 ± 4.8	1	$iso-C_3H_7OO-H$	356	1	tert-Bu	152.3	1
I-1-naphthvl	274.5 ± 10.5	1	$CH_2 = CHCH_2OO - H$	372.4	1	EtC(Me) ₂ O–OC(Me) ₂ Et	164.4 ± 4.2	1
1 7			$tert$ - C_4H_9OO-H	352.3 ± 8.8	1	$(\mathbf{CF}_3)_3\mathbf{CO}-\mathbf{OC}(\mathbf{CF}_3)_3$	148.5 ± 4.6	1

K11100_S09.indb 75

۲

2/23/10 5:29:11 PM

۲

9-76

Bond Dissociation Energies

Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.
Ph ₃ CO-OCPh ₃	131.4	1	CH ₃ O-C ₄ H ₉	346.0 ± 6.3	1	O_2N-ONO_2	95.4 ± 1.5	1
SF ₅ O-OSF ₅	155.6	1	CH ₃ O- <i>tert</i> -C ₄ H ₉	353.1 ± 6.3	1	cis-HO– NO	207.0	1
SF ₅ O-OOSF ₅	126.8	1	C ₆ H ₅ -OCH ₃	418.8 ± 5.9	1	trans-HO-NO	200.64 ± 0.19	1
(CH ₃) ₃ CO–OSi(CH ₃) ₃	196.6	1	C ₆ H ₅ CH(CH ₃)-OCH ₃	313.4 ± 9.6	1	FO-NO	132.5 ± 17	1
tert-BuO-OGeEt ₃	192.5	1	C ₆ H ₅ -OC ₆ H ₅	326.8 ± 4.2	1	cis-ClO–NO	127.6 ± 8.4	1
tert-BuO-OSnEt ₃	192.5	1	CH ₃ -OC(O)H	383.7 ± 12.6	1	trans-ClO-NO	116.6 ± 8.4	1
CF,OO-OCF,	126.8 ± 8.4	1	НС(О) –ОН	457.7 ± 2.1	1	cis-BrO-NO	138.1 ± 8.4	1
HC(O)O-OH	199.2 ± 8.4	1	CH ₃ C(O)–OH	459.4 ± 4.2	1	trans-BrO-NO	121.6 ± 8.4	1
FC(O)O-OC(O)F	96.2	1	С₆Н₅С(О) –ОН	447.7 ± 10.5	1	trans-perp-HOO–NO	114.2 ± 4	1
CH ₃ C(O)O-ONO ₂	131.4 ± 8.4	1	HO-CH,C(O)OH	368.2 ± 10.5	1	CH ₃ O-NO	176.6 ± 3.3	1
CH ₃ C(O)O-OC(O)CH ₃	140.2 ± 21	1	CH ₃ -OC(O)CH ₃	380.3 ± 12.6	1	C,H ₅ O- NO	185.4 ± 4.2	1
CF₃C(O)O –OC(O)CF ₃	125.5	1	HC(O)–OCH ₃	423.8 ± 4.2	1	C ₃ H ₇ O– NO	179.1 ± 6.3	1
CF ₃ OC(O)O–OC(O)F	121.3 ± 4.2	1	CH₃C(O) –OCH ₃	424.3 ± 6.3	1	iso-C ₃ H ₂ O– NO	175.3 ± 4.2	1
CF,OC(O)O-OCF,	142.3 ± 2.9	1	C ₂ H ₂ C(O)–OCH ₂	421.3 ± 12.6	1	C ₄ H ₀ O-NO	177.8 ± 6.5	1
CF_OC(O)O –OC(O)	110.0	1	C,H,C(O)-OC,H,	307.5 ± 8.4	1	iso-C ₄ H ₀ O- NO	175.7 ± 6.5	1
OCF ₃	119.2	1	CH,OCH,-OCH,	367.5 ± 8.4	1	sec-C ₄ H ₀ O- NO	173.6 ± 3.3	1
$C_2H_5C(O)O-OC(O)$	150.6	1	CH ₂ C(O) –OC(O)CH ₂	382.4 ± 12.6	1	tert-C,H _a O– NO	176.1 ± 5.9	1
C_2H_5	10010	-	C , H , C (O)–OC(O)C,H.	384.9 ± 16.7	1	tert-AmO– NO	171.1 ± 0.4	1
$C_{3}H_{7}C(O)O-OC(O)$	150.6	1	CHOOH	300.4 ± 12.6	1	C.H.O –NO	87.0	1
$C_{3}\Pi_{7}$	02 100	1	С.Н. -ООН	332.2 ± 20.9	1	HO-NO.	205.4	1
$FS(O)_2O-OS(O)_2F$	92-100	1	с.н –оон	364.4	1	FO-NO	131.8 ± 12.6	1
HO-CF ₃	≤482.0 ± 1.3	1	iso-C H –OOH	298.3	1	ClO-NO	110.9	4
FO-CF ₃	408 ± 17	1	tert-C H -0.0 H	3092 ± 42	1	BrO-NO	118.0 ± 6.3	1
	384.93 ± 0.71	1	СН –ООСН	2925 ± 84	1	IO-NO	~100	1
$HO-C_2H_5$	391.2 ± 2.9	1	CE = OOCE	3615 ± 8.4	1	СН О -NO	1761 ± 42	1
$HO-CH_2CF_3$	408.4 ± 8.4	1	CH -00	137.0 ± 3.8	1	C H O - NO	174.5 ± 4.2	1
$HO-CH_2CH=CH_2$	332.6 ± 4.2	1	CE = OO	169.0	1	C H O - NO	171.0 ± 1.2 177.0 ± 4.2	1
$HO-C_3H_7$	392.0 ± 2.9	1	CCIF - 00	127.6	1	$i_{3}n_{7}O nO_{2}$	177.0 ± 1.2 175.7 ± 4.2	1
HO-iso-C ₃ H ₇	397.9 ± 4.2	1	CCLE-00	127.0	1	HOO-NO	173.7 ± 4.2	1
$HO-C_4H_9$	389.9 ± 4.2	1	CH_2^{-1}	121.7 122.4 ± 10.5	1	CH 00-N0	33.2 ± 4.0	1
$HO-sec-C_4H_9$	396.1 ± 4.2	1	CHCI = 00	122.4 ± 10.5 108.2 ± 8.2	1	$CF_{3}OO-NO_{2}$	105	1
HO–iso-C ₄ H ₉	394.1 ± 4.2	1	CC1 = 00	100.2 ± 0.2	1	$CF_{3}OO-NO_{2}$	105	1
HO – $tert$ - C_4H_9	398.3 ± 4.2	1	UC(0) OOU	92.0 ± 0.4	1	$CFCLOO NO_2$	106.7	1
$HO-CH(CH_3)(nC_3H_7)$	398.3 ± 4.2	1	$\frac{CH}{C(0)} = 0001$	215.1	1	$CCLOO-NO_2$	95.8	1
$\mathbf{HO}-\mathbf{CH}(\mathbf{C}_{2}\mathbf{H}_{5})_{2}$	399.2 ± 4.2	1	$CIO_{3}C(0) = 000C(0)CII_{3}$	515.1	1	$CH_{3}U(0)$	205.2 ± 4.4	1
$\mathbf{HO}-\mathbf{C(CH}_{3})_{2}(\mathbf{C}_{2}\mathbf{H}_{5})$	395.8 ± 6.3	1	CH ONO	$\leq 309.9 \pm 1.3$	1	$CH_{3}N(O) \cdot O$	303.3 ± 4.4	1
$HO-C_6H_5$	463.6 ± 4.2	1		240.2	1	$C_6 \Pi_5 N(O) = O$	392 ± 6	1
$HO-C_6F_5$	446.9 ± 9.2	1	$C_2 \Pi_5 = ONO$	200.2	1	$C_5 \Pi_5 \mathbb{N} \cdot \mathbb{O}$	204.9 ± 2.0	1
$HO-CH_2C_6H_5$	334.1 ± 2.6	1	$C_3 \Pi_7 = ONO$	249.4 ± 6.3	1	$C_6 \Pi_5 N = N(O)(C_6 \Pi_5) - O$	509.4 ± 5.5	1
$HO-C(CH_3)_2C_6H_5$	339.3 ± 6.3	1	$lso-C_3 \Pi_7 = ONO$	254.4 ± 0.5	1	$C_6 \Pi_5(O) N = N(O) (C_6 \Pi_5)^2$	309.4 ± 3.6	1
<i>cyclo</i> -C ₅ H ₉ - OH	385.8 ± 6.3	1	$C_4 H_9 = ONO$	256.5 ± 6.3	1	O-SO	551.1	1
$1 - C_{10}H_7 - OH$	468.6 ± 6.3	1	$lso-C_4H_9$ -ONO	254.0 ± 6.5	1	O-SOF.	513.3	1
$2 - C_{10} H_7 - OH$	467.8 ± 6.3	1	$sec-C_4H_9$ -ONO	253.6 ± 6.3	1	\mathbf{O} -SOC	398.5	1
$(CH_3)_2(NH_2)C-OH$	310.4 ± 6.3	1	$tert-C_4H_9$ -ONO	252.7 ± 6.3	1	O-S(OH)	493.7 ± 25	1
$CH_{3}C(O)$ -OH	459.4 ± 4.2	1	$(C_2H_5)(CH_3)_2C-ONO$	254.0 ± 8.4	1	HO-SH	293.3 ± 16.7	1
HOCH ₂ -OH	411.3	1	$CH_3 - ONO_2$	340.2	1	HO-SOH	313.4 ± 12.6	1
CH ₃ -OCH ₃	351.9 ± 4.2	1	C_2H_5 -ONO ₂	344.8	1	HO-S(OH)O	384.9 + 8.4	1
ICH ₂ -OCH ₃	373.2 ± 12.6	1	CH_3O-CH_2CN	393.3	1	HO-SCH	303.8 ± 12.6	1
$CH_{3}O-C_{2}H_{5}$	355.2 ± 5.4	1	$O-N_2$	167.4 ± 0.4	1	HO-SO CH	360.2 ± 12.0	1
CH ₃ O-CHCICH ₃	370.3 ± 8.4	1	0- NO	306.21 ± 0.13	1	F -OH	215.1	1
$CH_{3}O-C_{3}H_{7}$	358.6 ± 6.3	1	O-NO ₂	206.3	1	E-OF	164.1	1
$CH_{3}O$ - <i>iso</i> - $C_{3}H_{7}$	360.7 ± 4.2	1	NO-NO	40.6 ± 2.1	1	1 01	107.1	1

۲

۲

Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.
F-OCF ₃	200.8 ± 4.2	1	ON -NO ₂	42.5	1	C ₆ H ₅ CH ₂ -NH ₂	306.7 ± 6.3	1
F-OCH ₃	>196.6	1	O ₂ N-NO ₂	57.3 ± 1	1	C ₆ H ₅ CH(CH) ₃ -NH ₂	307.5 ± 9.6	1
F-ONO ₂	143.1	1	H ₂ N–NH ₂	277.0 ± 1.3	1	HC(O)–NH,	421.7 ± 8.4	1
CI-OH	233.5	1	F,N-NF,	92.9 ± 12.6	1	$CH_3C(O)-NH_2$	414.6 ± 8.4	1
Cl–OCl	142	1	H ₂ N–NHCH ₃	275.8 ± 8.4	1	HS-NO	138.9	1
Cl-OCF ₃	${\leq}220.9\pm8.4$	1	$\mathbf{H}_{2}\mathbf{N}-\mathbf{N}(\mathbf{CH}_{3})_{2}$	259.8 ± 8.4	1	CH ₃ S–NO	104.6 ± 4.2	1
CI-OCH ₃	200.8	1	$H_2N-NHC_6H_5$	227.6 ± 8.4	1	tert-BuS-NO	115.1	1
Cl–O-tert-C ₄ H ₉	198.3	1	H_2N-NO_2	230	1	PhCH ₂ S-NO	120.5	1
CI-OOCI	91.2	1	H ₂ NN(CH ₃)– NO	179.6	1	C ₆ H ₅ S-NO	81.2 ± 5.4	1
Cl-ONO ₂	172.0	1	$(C_6H_5)_2$ N-NO	94.6	1	SCN-SCN	255.6	1
Br–OH	209.6 ± 4.2	1	N ₃ -CH ₃	335.1 ± 20.5	1	FSO ₂ -NF ₂	163	1
Br–OBr	125	1	N ₂ -C ₂ H ₂	375.7 ± 20.9	1	F-NO	235.26	1
Br –O- <i>tert</i> -C ₄ H ₀	183.3	1	N,-CH,C,H	211.3 ± 14.2	1	F-NO ₂	221.3	1
Br-ONO,	143.1 ± 6.3	1	CH ₂ -NC	413.0 ± 3.3	1	F-NF ₂	254.0	1
I-OH	213.4	1	C_HNC	413.4 ± 8.4	1	F-NH ₂	286.6	1
I-OI	130.1	1	iso-C _a H _a - NC	423.0 ± 8.4	1	cl-NO	158.8 ± 0.8	1
I-ONO,	>140.6	1	tert-C ₄ H ₀ -NC	399.6 ± 5.4	1	Cl-NO ₂	141.8 ± 1.3	1
2			NC-NO	204.4	1	CI–NF.	~134	1
(5) N–X BDEs			CHNO	172	1	Cl–NH.	253.1	1
$H-NH_2$	450.08 ± 0.24	1	CF – NO	167	1	Br-NO	120.1 ± 0.8	1
$H-NF_2$	316.7 ± 10.5	1	CCI –NO	125	1	Br-NO	82.0 ± 7.1	1
H –NNH	254.4	1	С.Н.– NO	171.5	1	Br-NF	<2.2.7.2	1
H-N ₃	≤389	1	$C_2 + C_5 + C_5$	110	1	I-NO	75.6 ± 4	1
H-N=CH ₂	364 ± 25	1	iso-C H - NO	152.7 ± 12.6	1	I-NO	79.6 ± 4	1
H-NO	199.5	1	tert-C H $-NO$	167	1		1910 - 1	-
H-NHOH	341	1	C H - NO	2268+21	1	(6) S-X BDEs		
H-NCO	460.7 ± 2.1	1	$C_6 H_5 = NO$	2113 ± 42	1	H–SH	381.18 ± 0.05	1
H-NCS	${\leq}396.6\pm4.6$	1	C H CH - NO	123	1	H–SCH ₃	365.7 ± 2.1	1
H-NCS	347.3 ± 8.4	1	$C_6 H_5 C H_2$ NO	260.7 ± 2.1	1	H–SCHCH ₂	351.5 ± 8.4	1
CH_3NH_2	425.1 ± 8.4	1	C H - NO	254.4	1	$H-SC_2H_5$	365.3	1
$tert$ -BuNH $_2$	397.5 ± 8.4	1	$C_2 H_5 NO_2$	256.5	1	H-SC ₃ H ₇	365.7	1
$C_6H_5CH_2NH_2$	418.4	1	$C_3 T_7 T C_2$	250.5	1	H–S-iso-C ₃ H ₇	369.9 ± 8.4	1
$(CH_3)_2NH$	395.8 ± 8.4	1	C H - NO	257.8	1	$\mathbf{H} - \mathbf{S} \text{-} tert \text{-} \mathbf{C}_4 \mathbf{H}_9$	362.3 ± 9.2	1
H–NHNH(CH ₃)	276 ± 21	1	$C_4 \Pi_9 = \Pi O_2$	254.0	1	H–SOH	330.5 ± 14.6	1
$H-NHN(CH_3)_2$	356 ± 21	1	tort C H - NO	205.2	1	H-SCOCH ₃	370.7	1
NH ₂ CN	414.2	1	C H - NO	295.0	1	H–SCOPh	364	1
$(NH_2)_2C=O$	464.4	1	$C_6 H_5 = NO_2$	210.3 ± 6.3	1	$H-SO_2CH_3$	≤397	1
$(NH_2)_2C=S$	389.1	1	(NO)CH - NO	210.3 ± 0.3	1	H-SSCH ₃	330.5 ± 14.6	1
CH_3CSNH_2	380.7	1	$(NO_2)CH_2 = NO_2$	176.1	1	H–SPh	349.4 ± 4.5	1
PhCSNH ₂	380.7	1	$(NO_2)_3 C - NO_2$	280.7	1	H–SSH	318.0 ± 14.6	1
$(PhNH)_2C=S$	364.0	1	$CH_3 - NE_2$	230.7	1	H–SSSH	292.9 ± 6.5	1
$(NH_2)_2C=NH$	435.1	1	$C_6 \Pi_5 C \Pi_2 \Pi_2$	257.2 ± 14.0 256.1 ± 2.1	1	HS–SH	270.7 ± 8.4	1
Ph ₂ C=NH	489.5	1	$CH_3 - NH_2$	350.1 ± 2.1	1	FS-SF	362.3	1
H–N(SiMe ₃) ₂	464	1	$C_2 \Pi_5 - N \Pi_2$	352.5 ± 0.5	1	ClS–SCl	329.7	1
H –NHPh	375.3	1	$C_3 \Pi_7 - \Pi_2$	350.1 ± 2.9	1	HS-SCH ₃	272.0	1
C_6H_5NHOH	292	1	C L NU	357.7 ± 3.8	1	HS-SPh	255.2 ± 6.3	1
C ₆ H ₅ NH(CONMe2)	387.9	1	$C_4 \Gamma_9 = \Gamma \Gamma_2$	350.1 ± 2.9	1	CH ₃ S-SCH ₃	272.8 ± 3.8	1
H–NPh ₂	364.8	1	$sec - C_4 \Pi_9 - IN \Pi_2$	339.0 ± 2.9	1	$C_2H_5S-SC_2H_5$	276.6	1
$HN-N_2$	63	1	$\iota_{30} - C_4 \Pi_9 = IN \Pi_2$	234.0 ± 3.0	1	MeS–SPh	272.0 ± 6.3	1
ON –N	480.7 ± 0.4	1	$\iota e r \iota - \bigcup_4 \Pi_9 = \mathbf{N} \Pi_2$	555.0 ± 0.5 421	1	$C_6H_5S-SC_6H_5$	214.2 ± 12.6	1
ON-NO	8.49 ± 0.12	1		чэт 400 2 ± 4 2	1	$\mathbf{F}_{5}\mathbf{S}-\mathbf{SF}_{5}$	305 ± 21	1
			$C_6 \Pi_5 - \mathbf{NH}_2$	429.3 ± 4.2	T	· •		

۲

۲

2/23/10 5:29:15 PM

۲

Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D_{298}^{o}/{\rm kJ}~{\rm mol}^{-1}$	Ref.	Bond	$D_{298}^{o}/{\rm kJ}~{\rm mol}^{-1}$	Ref.
HS-CH ₃	312.5 ± 4.2	1	SiH ₃ – Br	376 ± 9	1	MgO-H	441	1
$HS-C_2H_5$	307.9 ± 2.1	1	SiH ₃ -I	299 ± 8	1	Mg(OH)–OH	349	1
$HS-C_3H_7$	310.5 ± 2.9	1	GeH ₃ -H	348.9 ± 8.4	1	BrMg-CH ₃	253	1
HS-iso-C ₃ H ₇	307.1 ± 3.8	1	Me ₃ Ge–H	364.0	1	BrMg-CH ₂ CH ₃	205	1
HS-C ₄ H ₉	309.2 ± 2.9	1	Ph ₃ Ge–H	359.8	1	BrMg-i-C ₃ H ₇	184	1
HS-sec-C ₄ H ₉	307.5 ± 2.9	1	(CH ₃) ₃ Ge-Ge(CH ₃) ₃	280.3	1	BrMg-t-C ₄ H ₉	174	1
HS-iso-C ₄ H ₉	310.0 ± 4.6	1	(CH ₃) ₃ Ge-CH ₃	288.7	1	$BrMg-C_6H_5$	289	1
HS-tert-C ₄ H ₉	301.2 ± 3.8	1	Me ₃ Sn-H	326.4	1	$BrMg-CH_2C_6H_5$	201	1
$HS-C_6H_5$	360.7 ± 6.3	1	Ph ₃ Sn–H	294.6	1	$\mathbf{BrMg} - \mathbf{C}(\mathbf{C}_{6}\mathbf{H}_{5})_{3}$	180	1
HS-CH ₂ C ₆ H ₅	258.2 ± 6.3	1	$(CH_3)_3Sn-Sn(CH_3)_3$	257.7	1	Ca(OH)–OH	409	1
HS-C(O)H	309.6 ± 8.4	1	(CH ₃) ₃ Sn-Cl	425 ± 17	1	Sr(OH)–OH	407	1
HS-C(O)CH ₃	307.9 ± 6.3	1	(CH ₃) ₃ Pb -Pb(CH ₃) ₃	228.4	1	Ba(OH)–OH	443	1
CH ₃ S-CH ₃	307.9 ± 3.3	1	Cl ₃ Pb-Cl	271 ± 84	1			
HOS-CH ₃	284.9 ± 12.6	1	(CH ₃) ₃ Pb-CH ₃	238 ± 21	1	(10.3) Group 3		
CH ₃ SO-CH ₃	221.8 ± 8.4	1	(9) D Ac Sh Bi-Y BD	Es		Sc-CH ₃	116 ± 29	1
HOSO ₂ -CH ₃	324.3 ± 12.6	1	(8) Г-, АS-, SD-, DI-A DD Н D_H	251.0 ± 2.1	1	$Sc-C_6H_6$	60.8	1
CH ₃ SO ₂ –CH ₃	279.5	1		331.0 ± 2.1	1	$La(\eta^{\circ}-C_5Me_5)_2 - CH(SiMe_5)$	278.7 ± 10.5	1
F ₅ S -CF ₃	392 ± 43	1	Cn ₃ rn-n	322.2 ± 12.0	1	$Nd(n^5 - C Me) =$		
F-SF ₅	391.6	1	$\mathbf{n}_{2}\mathbf{r} - \mathbf{r}\mathbf{n}_{2}$	250.1	1	$CH(SiMe_3)_2$	236.8 ± 10.5	1
\mathbf{F} -SO ₂ (F)	379	1	$(C_2 \Pi_5)_2 P - P(C_2 \Pi_5)_2$	559.8	1	(η ⁵ -C ₅ Me ₅) ₂ Sm-H	226.8 ± 12.6	1
Cl-SF ₅	<272	1	$\mathbf{r}_{2}\mathbf{r}-\mathbf{r}$	256 ± 9	1	$(\eta^5 - C_5 Me_5)_3 Sm - OCH_3$	343.1	1
CI-SO,CH	293	1	CI ₂ P-CI	300 ± 8	1	$(\eta^{5}-C_{5}Me_{5})_{2}Sm-(\eta^{3}-$	100 2 4 6 2	1
Cl-SO ₂ Ph	297	1	$\mathbf{Dr}_{2}\mathbf{r}$ -Dr	<239	1	C_3H_5	188.3 ± 6.3	1
Br-SBr	259 ± 17	1	$I_2 r = 1$	217	1	$(\eta^{5}-C_{5}Me_{5})_{2}Sm-S-nC_{3}H_{7}$	295.4 ± 10.0	1
Br–SF ₅	<230	1		331.4	1	$(\eta^{5}-C_{5}Me_{5})_{2}Sm-N(CH_{3})_{2}$	201.7 ± 7.5	1
I-SH	206.7 ± 8.4	1	п ₂ As-п и sh u	319.2 ± 0.8	1	$(\eta^5 - C_5 Me_5)_2 Sm - SiH$	179.9 ± 21	1
I-SCH ₃	206.3 ± 7.1	1	п ₂ зд-п F Bi_F	288.5 ± 2.1 435 ± 19	1	$(SiMe_3)_2$	1064 - 04	1
(7) Si-, Ge-, Sn-, and Pb-	-X BDEs		Br ₂ Bi –Br	>297.1	1	$(1 -C_5 Me_5)_2 SM - F(Et)_2$ $(n^5 - C Me) Eu - I$	130.4 ± 8.4 238.9 ± 8.4	1
SiHH	383.7 ± 2.1	1				(η ⁵ -C ₂ Me ₂) ₂ Yb-I	256.1 ± 6.3	1
Me_Si-H	396 ± 7	1	(9) Se- and Te-X BDEs	004.00 + 0.55		$Lu(\eta^5 - C_E Me_E)_{2}$	270.1 + 10.5	1
H_SiH	373 ± 8	1	H–SeH	334.93 ± 0.75	1	CH(SiMe ₃) ₂	$2/9.1 \pm 10.5$	1
$(C_{2}H_{2})_{3}Si-H$	396 ± 4	1	$H-SeC_6H_5$	326.4 ± 16.7	1	$(\eta^{5}-C_{5}H_{4}SiMe_{3})_{3}Th-H$	277 ± 6	1
$C_{H}SiH_{H}$	382 ± 5	1	PhSe-SePh	280 ± 19	1	$(\eta^{5}-C_{5}H_{4}SiMe_{3})_{3}Th-O$	371 ± 24	1
(CH_S)_Si-H	364.0	1	H-TeH	277.0 ± 5.0	1	$(\eta^{5}-C_{5}H_{5})_{3}Th-CH_{3}$	375 ± 9	1
(iPrS) Si–H	376.6	1	$H - 1eC_6H_5$	≤264	1	$(\eta^{5}-C_{5}H_{5})_{3}Th-$	369 ± 12	1
PhMe_Si-H	377 ± 7	1	Phie-lePh	138.1 ± 12.6	1	$CH_2Si(CH_3)_3$		
Ph_SiH-H	379 ± 7	1	(10) Metal-Centered BD	Es		$(\mathbf{C}_{9}\mathbf{H}_{7})_{3}\mathbf{T}\mathbf{h}-\mathbf{C}\mathbf{H}_{2}\mathbf{C}_{6}\mathbf{H}_{5}$	342 ± 9	1
Ph_MeSi-H	361 ± 10	1	Arranged by the Periodic	Table		$(\eta^{5}-C_{5}H_{4}tBu)_{3}U-H$	249.7 ± 5.7	1
SiFH	432 ± 5	1	0 1			$(\eta^{5}-C_{5}H_{4}SiMe_{3})_{3}U-H$	253.7 ± 5.1	1
SiClH	391	5	(10.1) Group 1			$[HB(3,5-Me_2Pz)_3]$	422.6	1
SiBrH	334 ± 8	1	Li–OH	431.0	1	$(CI)_2 = CI$	265.6 ± 4.2	1
SiH – SiH	321 ± 4	1	$Li-C_2H_5$	214.6 ± 8.4	1	$(1 -C_5 \Pi_4 S \Pi v He_3)_3 O - 1$ $(n^5 C H + P v) U O$	203.0 ± 4.3	1
SiH –Si H	313 ± 8	1	$Li-nC_4H_9$	197.9 ± 16.3	1	$(\eta - C_5 \Pi_4 LBu)_3 U = 0$	307 ± 9	1
Ph Si-SiPh	368.2	1	Na-OH	342.3	1	$(\Pi^{-}C_{5}\Pi_{4}SIMe_{3})_{3}U=CU$	43.1 ± 0.8	1
F Si –SiF	453.1 ± 25	1	$Na-O_2$	<200	1	$(C_9 \Pi_7)_3 U = C \Pi_3$	190.5 ± 0.0	1
SiH –CH	375 ± 5	1	K-OH	359	1	$(\Pi^{2} - C_{5}Me_{5})_{2}O(CI) - C_{6}\Pi_{5}$	330 ± 11	1
SiF -CH	355.6	1	Rb–OH	356.2 ± 4.2	1	$(1 ^{3}-C_{5}\Pi_{4}SIMe_{3})_{3}U=1\Pi P$	41.0 ± 0.8	1
H.Si–NO	158.2 ± 5.7	1	Cs–OH	373	1	(10.4) Group 4		
H Si-PH	331.4	1	(10.2) Grown 2			$Ti(\eta^{5}-C_{5}H_{5})_{2}$ -Cl	471	1
SiH -F	638 ± 5	1	BeO-H	469	1	$Ti(Cl)(\eta^5-C_5H_5)_2$ -Cl	390	1
SiH –Cl	458 ± 7	1	Be(OH)_OH	476	1	$Ti(\eta^5 - C_5 Me_5)_2 - I$	219	1
	100 ± 7	T		I/U	T			

9-78

۲

۲

	Bond	$D_{298}^{o}/{\rm kJ}~{\rm mol}^{-1}$	Ref.	Bond	<i>D°</i> ₂₉₈ /kJ mol ⁻¹	Ref.	Bond	$D_{298}^{o}/{\rm kJ}~{\rm mol}^{-1}$	Ref.
Ti	(η ⁵ -C ₅ H ₅) ₂ -CO	174	1	$Cr(C_6H_6)-C_6H_6$	268.2 ± 15.4	1	Fe-CH ₃	135 ± 29	1
Ti	(CO)(η⁵- C ₅ H ₅) ₂ -CO	170	1	$Cr(CO)_5 - C_6H_6$	57.3 ± 3.3	1	$Fe(C_{2}H_{4})(CO)_{3}-C_{2}H_{4}$	89.1 ± 8	1
Ti	-CH ₃	174 ± 29	1	$(P(C_{6}H_{11})_{3})_{2}(CO)_{3}Cr-$	696 + 95	1	Fe-C ₃ H ₅	218	1
Ti	$(Cl)(\eta^{5}-C_{5}H_{5})_{2}-CH_{3}$	276	1	$P(OMe_3)_3$	08.0 ± 2.5	1	$\mathbf{Fe} - \mathbf{C}_{3}\mathbf{H}_{6}$	79	1
Ti	$(Cl)((\eta^{5}-C_{5}H_{5})_{2}-C_{6}H_{5})$	292	1	$(\eta^{5}-C_{5}H_{5}))Mo(CO)_{3}-H$	290	1	Fe(CO) ₅ -Ni(CO) ₄	37.7	1
Ti	$(C_{6}H_{6})-C_{6}H_{5}$	308.7	1	$Mo(\eta^{5}-C_{5}H_{5})_{2}-H$	246	1	$Fe(CO)_{5} - (\eta^{3} - C_{3}H_{5})$	176	1
Zı	$(\eta^5 - C_5 Me_5)_2 - H$	351.0 ± 7.5	1	$Mo(H)(\eta^{5}-C_{5}H_{5})_{2}-H$	256.9 ± 8.4	1	$Fe(C_3H_6)(CO)_3-C_3H_6$	~79.5	1
Zı	$(H)(\eta^{5}-C_{5}Me_{5})_{2}-H$	326.4 ± 4	1	$Mo(CO)_{3}(\eta^{5}-C_{5}H_{5})-I$	216.7 ± 4.2	1	$(\mathbf{CO}_2)(\eta^5-\mathbf{C}_5\mathbf{H}_5)\mathbf{Ru}-\mathbf{H}$	272	1
Zı	$(\eta^{5}-C_{5}Me_{5})_{2}$ -Cl	481.2	1	$(\eta^5-C_5Me_5)_2Mo-O$	272	1	$(\mathbf{PMe}_3)_2(\eta^5-\mathbf{C}_5\mathbf{Me}_5)\mathbf{Ru}-\mathbf{H}$	167.4	1
Zı	$(\eta^5 - C_5 Me_5)_2 - Br$	410.0	1	$(P(C_6H_{11})_3)_2(CO)_3Mo-$	27.2 ± 0.8	1	$(CO)_2(\eta^5-C_5Me_5)Ru-Cl$	337.6	1
Zı	$(I)(\eta^{5}-C_{5}Me_{5})_{2}-I$	336.4 ± 2.1	1	$(\mathbf{P}(\mathbf{C} \mathbf{H})) (\mathbf{C}\mathbf{O}) \mathbf{M}_{\mathbf{C}}$			$(\eta^{5}-C_{5}Me_{5})(PMe_{3})_{2}Ru-$	<138	1
Zı	:(η ⁵ -C ₅ Me ₅) ₂ (Ph)–OH	482.4 ± 6.3	1	N_{2}	37.7 ± 2.5	1	Cl	(100	1
Zı	$(\eta^5 - C_5 Me_5)_2$ (Ph)(OH)	482.8 ± 10.5	1	Mo(CO) ₅ –CO	169.5 ± 8.4	1	(η ⁵ -C ₅ Me ₅)(PMe ₃) ₂ Ru– OH	204.6	1
-	OH (m5			$Mo(CO)_{3} (\eta^{5}-C_{5}H_{5})-CH_{3}$	203 ± 8	1	(CO) Ru–CO	115 ± 1.7	1
21 C	(1) ⁵ - (Me_)_(NH_)H -NH_	421.3 ± 15.1	1	W(CO) ₅ –Xe	35.1 ± 0.8	1	$(n^{5}-C_{Me_{1}})(PMe_{1})_{Ru}$		
Zı	(n ⁵ -C Me) –CH.	276 ± 10	1	$W(CO)_3(\eta^5-C_5H_5)-H$	303	1	CH ₃	142.3	1
Zı	$(n^5 - C H) (C H) -$	2,0 2 10	-	$W(H)(\eta^{5}-C_{5}H_{5})_{2}-H$	310.9 ± 4.2	1	Os(H)(CO) ₄ –H	326.4	1
C	C_6H_5	300 ± 10	1	$W(I)(\eta^{5}-C_{5}H_{5})_{2}-H$	273 ± 14	1	(CO) ₄ Os–CO	133 ± 2.6	1
Zı	$(\eta^5 - C_5 H_5)_2 (Si(SiMe_3)_3)$	188 ± 30	1	$(CO)_5W-H_2$	≥67	1	Os(C ₂ H ₂)(CO) ₄ -CO	99.5 ± 0.8	1
_	SiMe ₃		1	$(P(C_6H_{11})_3)(CO)_3W-$	28.5 ± 2.1	1	(10.9) Group 9		
H	$f(\mathbf{H})(\eta^{\circ}-\mathbf{C}_{5}\mathbf{M}\mathbf{e}_{5})_{2}-\mathbf{H}$	346.0 ± 7.9	1	$(\eta^2 - H_2)$	100 5 1 0 40 4	1	$(\mathbf{CO}) \mathbf{Co} - \mathbf{Co}(\mathbf{CO})$	83 + 29	1
C	$L(\Pi^{\circ}-C_{5}Me_{5})(C_{4}H_{9}) - LH_{2}$	274 ± 10	1	$W(CU)_5 = CU$	$192.5 \pm 8.48.4$	1	$(CO)_{4}CO = Mn(CO)$	96 ± 12	1
	4 9			$\mathbf{W}(\mathbf{CH}_3)(\mathbf{\eta}^{\mathbf{s}} - \mathbf{C}_5\mathbf{H}_5)_2 - \mathbf{CH}_3$	220.9 ± 4	1	$(CO)_4 CO - Re(CO)_5$	113 ± 15	1
(1	0.5) Group 5			(10.7) Group 7			$C_0(CO) -H$	278	1
(η	$^{5}-C_{5}H_{5})(CO)_{3}V-\eta^{2}H_{2}$	90 ± 20	1	$F_{3}Mn - MnF_{3}$	210.9 ± 2.5	1	$Co(CO)_4$ II $Co(CO)_2)(PPh_2)-H$	272	1
(η	⁵ -C ₅ H ₅)(CO) ₃ V–CO	146 ± 21	1	(CO) ₅ Mn–Mn(CO) ₅	185 ± 8	1	(CO)_HCo-CO	~54	1
V-	-CH ₃	169 ± 18	1	(CO) ₅ Mn–H	284.5	1	(n ⁵ -C ₋ H ₋)Co(CO)–CO	184.3 ± 4.8	1
V-	$-C_6H_6$	76.2	1	(PPh ₃) Mn (CO) ₄ –H	286.2	1	Co-CH	331 ± 38	1
V(C_6H_6)- C_6H_6	307.8	1	MnBr(CO) ₄ –CO	184	1	Co-CH	178 ± 8	1
N	$\mathbf{b}(\eta^{5}-\mathbf{C}_{5}\mathbf{H}_{5})_{2}\mathbf{H}_{3}-\mathrm{TFE}$	18.8 ± 1.3	1	$(\eta^{5}-C_{5}H_{5})(CO)_{2}Mn-CO$	195.8 ± 9.2	1	cobalamin–CH	150.6	1
Та	(CH ₃) ₅ -CH ₃	261 ± 5	1	Mn–CH ₃	$>35\pm12$	1	cobinamide –iC,H	104	1
(N	Ie ₃ SiCH ₂) ₄ Ta– [~] H SiMe)	184.1 ± 8.4	1	Mn(CO) ₅ –CH ₃	187.0 ± 3.8	1	Co –C bonds in B_{12}	123.8 ± 6.3	1
((12011)			$\mathbf{Mn(CO)}_{5} - \mathbf{C}_{6}\mathbf{H}_{5}$	207 ± 11	1	Cl(CO),Rh-Rh(CO),Cl	94.6	1
(1	0.6) Group 6			$(CO)_5 Mn - Re(CO)_5$	149 ± 11	1	HRh(m-xylyl)Rh-H	255.6 ± 1.7	1
[C	$[r(CO)_{3}(\eta^{5}-C_{5}Me_{5})]_{2}-$	61.5	1	$(\eta^{5}-C_{5}H_{5})Mn(CO)_{2}-$	59.4 ± 3.3	1	(PiPr ₃) ₂ (Cl)Rh–H ₂	136.0	1
H	lg			PhMe			(PiPr ₃) ₂ (Cl)Rh–N ₂	69.0	1
IC H	$[\sigma]{r(CO)_3(\eta^3 - C_5 Me_5)]} =$	111.3	1	$(CO)_5 Ic - Ic (CO)_5$	177.5 ± 1.9	1	(PiPr ₃) ₂ (Cl)Rh–CO	201.7	1
Cı	-9 -(CO) –Xe	37.7 ± 3.8	1	$(CO)_5 \text{Re} - \text{Re}(CO)_5$	187 ± 4.8	1	HRh(m-xylyl)Rh-	105.4 ± 7.5	1
(C	O),(PPh,)(η ⁵ -	250.2 + 4.2	1	$(CO)_5 \text{Re-CH}$	313 220 ± 8	1	CH ₂ OH	193.4 ± 7.3	1
C	² ₅ H ₅)Cr–H	250.2 ± 4.2	1	$(CO)_5 Re^{-CII_3}$	220 ± 8	1	$Ir(Cl)(CO)(PMe_3)_2-H$	251	1
(η	$^{5}-C_{5}H_{5})Cr(CO)_{3}-H,$	257	1	(10.8) Group 8			$\frac{\text{Ir}(\text{H})(\eta^3 - \text{C}_5\text{Me}_5)(\text{PMe}_3) - H}{H}$	310.5 ± 21	1
Ci	$(CO)_5 - H_2$	78 ± 4	1	$(CO)_4$ Fe-Fe $(CO)_5$	171.5	1	Ir(Cl)(H)(CO)(PEt ₃) ₂ -H	243.1	1
(P	$(C_6H_{11})_3)_2(CO)_3Cr-H_2$	30.5 ± 0.4	1	$(CO)_4 Fe(H)_x - H$	259.4 ± 8.4	1	Ir(Cl)(H)(CO)(PPh ₃) ₂ -H	246.9	1
(η	$^{\circ}-C_{6}H_{6}(CO)_{3}Cr-H_{2}$	251 ± 17	1	(η ⁵ -C ₅ H ₅)(CO) ₂ Fe-H	239	1	(Cl)(CO)(PPh ₃) ₂ Ir-H ₂	62.8	1
Ci	$(CO)_5 - N_2$	81±4	1	$Fe(CO)_3(N_2) - N_2$	37.7 ± 19.2	1	(Cl)(CO)(PPh ₃) ₂ Ir–CO	45.2	1
(P	$(C_6H_{11})_3)_2(CO)_3Cr-N_2$	38.9±0.8	1	$Fe(C_2H_2)(CO)_4$ -CO	88 ± 2.3	1	$Ir(H)(\eta^5-C_5Me_5)(PMe_3)-$	301	1
(η 	$-C_5 MIe_5 / (CO)_3 Cr - SH$	193	1	$Fe(CO)_2(PMe_3)-CO$	>125	1	C ₆ H ₅	321	T
C	$(CO)_5 - CO$	154.0 ± 8.4	1	$re(CO)_3(PPh_3)-CO$	<1/.8±5	1	(10.10) Group 10		
C	$(CU)_5 - CH_4$	\sim 33.5 \pm 8	1	re-NH ₃	51.4 ± 4.2	1	Ni-H _. O	~29	1
CI	$- c_6^{1} c_6^{1}$	7.0 ± 3.0	T		JUH L 29	T	Ni(CO),-N	~42	1
							· · · 3 2		

۲

۲

۲

Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.	Bond	$D^{o}_{298}/{ m kJ}~{ m mol}^{-1}$	Ref.
Ni(CO) ₃ -CO	104.6 ± 8.4	1	$Cu(C_6H_6)-C_6H_6$	27.0 ± 19.3	1	(10.12) Current 12		
Ni-CH ₃	208 ± 8	1	Ag–CH ₃	134.1 ± 6.8	1	(10.13) Group 13	150	1
$Ni-C_2H_2$	193 ± 25	1	Ag–NH ₃	8 ± 13	1	H₃B –ВН ₃	172	1
$Ni-C_2H_4$	147.3 ± 17.6	1	Ag(NH ₃)-NH ₃	62.8 ± 4.2	1	$H_3B - NH_3$	130.1 ± 4.2	1
Ni-propyne	155 ± 21	1	Au–OH	>262	1	$(CH_3)_3 B - NH_3$	57.7 ± 1.3	1
Ni–2-butyne	121 ± 21	1	Au–NH ₃	76 ± 6	1	$\mathbf{F}_{3}\mathbf{B} - \mathbf{N}(\mathbf{CH}_{3})_{3}$	130 ± 4.6	1
Pd-OH	213	1	Au-CH ₃	≥191.6	1	$CI_3B-N(CH_3)_3$	127.6	1
trans-Pt(PPh3)2(Cl)-H	307 ± 37	1	$Au-C_6H_6$	8.4	1	$\mathbf{F}_{2}\mathbf{B}-\mathbf{CH}_{3}$	397 - 418	1
[Ph,PCH,],MePt-H	104.6	1	(AI-OH	547 ± 13	1
[Ph,PCH,],MePt –OH	167.4	1	(10.12) Group 12			$AI-C_2H_2$	>54	1
[Ph_PCH_]_MePt -SH	90.0	1	\mathbf{Zn} -CH ₃	70 ± 10	1	$Cl_{3}Al-N(CH_{3})_{3}$	198.7 ± 8.4	1
Pt (η ⁵ - C ₋ H ₋)(CH ₋) ₂ -CH ₋	163 ± 21	1	$Zn(CH_3)-CH_3$	266.5 ± 6.3	1	$(CH_3)_3$ Al-N $(CH_3)_3$	130	1
cis-Pt(PEt_)_(CH_)-CH_	269 ± 13	1	$\mathbf{Zn} - \mathbf{C}_{2}\mathbf{H}_{5}$	92.0 ± 17.6	1	$(CH_3)_3$ Al $-O(CH_3)_2$	92	1
3/2(-3/-3			$\mathbf{Zn}(\mathbf{C}_{2}\mathbf{H}_{5})-\mathbf{C}_{2}\mathbf{H}_{5}$	219.2 ± 8.4	1	$(\mathbf{CH}_3)_3\mathbf{Ga}-\mathrm{O}(\mathrm{C}_2\mathrm{H}_5)_2$	50.6 ± 0.8	1
(10.11) Group 11			Cd–CH ₃	63.6 ± 10.0	1	$Cl_3Ga-S(C_2H_5)_2$	235.1	1
Cu–OH	>406	1	$Cd(CH_3)-CH_3$	234.3 ± 6.3	1	In-CH ₃	216.3	1
Cu–CO	25 ± 5	1	Hg–CH ₃	22.6 ± 12.6	1	In(CH ₃) ₁ -CH ₃	318.8	1
Cu–CH ₃	223 ± 5	1	Hg(CH ₃)-CH ₃	239.3 ± 6.3	1	In(CH ₃) ₂ -CH ₃	587.4	1
Cu–NH ₃	47 ± 15	1	ClHg–CH ₃	280.0 ± 12.6	1	$(CH_3)_3In - N(CH_3)_3$	83.3 ± 2.1	1
Cu(NH ₃)–NH ₃	83.7 ± 4.2	1	BrHg–CH ₃	270 ± 38	1	TI-OH	330 ± 30	1
$Cu-C_6H_6$	16.4 ± 12.5	1	IHg–CH ₃	258.6 ± 12.6	1			

۲

References

1. Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, FL, 2007.

2. Shuman, N. S., Ochieng, M. A., Sztáray, B., and Baer, T., J. Phys. Chem. A 112, 5647, 2008.

3. Seetula, J. A., and Eskola, A. J., Chem. Phys. 351, 141, 2008.

4. Golden, D. M., Int. J. Chem. Kinet. 41, 573, 2009.

5. Shuman, N. S., Spencer, A. P., and Baer, T., J. Phys. Chem. A 113, 9458, 2009.

TABLE 4. Enthalpies of Formation of Free Radicals and Other Transient Species

References: Yu-Ran Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, 2007.

Radical	$\Delta_{f} \mathrm{H}^{o}_{298} / \mathrm{kJ} \mathrm{mol}^{-1}$	Ref.	Radical	$\Delta_{f} H^{o}_{298} / kJ mol^{-1}$	Ref.
(1) Carbon Contared Spacing			$n-C_{3}H_{7}^{\bullet}$, n-propyl, $CH_{3}CH_{2}C^{\bullet}H_{2}$	100 ± 2	1
(1) Carbon-Centered Species	505.0 + 0.6	1	i-C ₃ H ₇ •, i-propyl, CH ₃ C•HCH ₃	88 ± 3	1
СН	595.8 ± 0.6	1	•n-C₄H₂, CH≡CCH=C•H	547.3	1
CH ₂ (triplet)	391.2 ± 1.6	1	*i-C.H., CH.=C*C=CH	499.2	1
CH_2 (singlet)	428.8 ± 1.6	1	•C H CH C=CC•H	304.5	1
•CH ₃ , methyl	146.7 ± 0.3	1	$C_4 T_5, C H_3 C = C C H_2$	216.5	1
•C₂H, acetenyl, CH≡C•	567.4 ± 2.1	1		264.4	1
$C_{2}H_{2}$, vinylidene CH $_{2}=C^{**}$	419.7 ± 16.7	1		364.4	1
$^{\circ}C_{2}H_{2}$, vinyl, CH ₂ =C $^{\circ}H$	299.6 ± 3.3	1	$^{\bullet}C_{4}H_{5}, CH_{2}=CHC^{\bullet}CH_{2}$	313.3	1
•C.H., ethyl, CH.C•H.	118.8 ± 1.3	1	$^{\bullet}C_{4}H_{7}$, CH ₃ CH=CHC $^{\bullet}H_{2}$	146 ± 8	1
•C H, propargyl, CH≡CC•H	351.9	2	$^{\bullet}C_{4}H_{7}$, $CH_{2}=CHCH_{2}C^{\bullet}H_{2}$	192.5	1
•C H CH C=C•	515 ± 13	-	${}^{\bullet}C_{4}H_{7}, CH_{2}=C(CH_{3})C{}^{\bullet}H_{2}$	137.9	1
• C_{3} $C_$	313 ± 13	2	•C ₄ H ₇ , CH ₂ =CHC•HCH ₃	136.2	1
$C_3 n_3, C n_2 = C = C n \leftrightarrow C n = C C n_2$	551.9	2	•C₄H ₇ , cyclopropylmethyl	213.8 ± 6.7	1
$C_{3}H_{3}$, cyclopro-2-en-1-yl	439.7 ± 17.2	1	•C,H,, cyclobutyl	219.2 ± 4.2	1
${}^{\bullet}C_{3}H_{5}$, allyl, CH ₂ =CHC ${}^{\bullet}H_{2}$	171.0 ± 3.0	1	n-C.H.*, n-butyl, CH_CH_CH_C*H_	77.8 ± 2.1	1
•C ₃ H ₅ , CH ₃ CH=C•H	267 ± 6	1	i_4 i_5 i_5 i_4 i_5 i_5 i_4 i_5	70 ± 4	1
•C ₃ H ₅ , CH ₃ C•=CH ₂	231.4	1	CH^{\bullet}	70 ± 1 678 + 21	1
${}^{\bullet}C_{_{3}}H_{_{5}}$, cyclopropyl	279.9 ± 10.5	1	$5 - C_4 \Pi_9$, $5 - buryl, C \Pi_3 C \Pi C \Pi_2 C \Pi_3$	40 + 2	1
			$t-C_4H_9$, t-Dutyl, $(CH_3)_3C^2$	48 ± 3	1

9-80

۲

۲

Radical	$\Delta_{f} \mathrm{H}^{o}_{298} / \mathrm{kJ} \mathrm{mol}^{-1}$	Ref.	Radical	Δ_{t} H° ₂₉₈ /kJ mol ⁻¹	Ref.
C_5H_3 , CH=C-C=CC H_2	579.1	1	$C_{7}H_{9}$, (CH ₂ =CH) ₃ C	274.0	1
•C ₅ H ₃ , (CH≡C) ₂ C•H	573.2	1	C_7H_{11} , norborn-1-yl	136.4 ± 10.5	1
$C_5H_5, CH_2=CHC\equiv CC^{\bullet}H_2$	351.5	1	•C ₇ H ₁₁ , cycloheptenyl	119.2	1
•C ₅ H ₅ , CH ₂ =CH-C•H-C≡CH	372.4	1	•C ₇ H ₁₃ , cycloheptyl	50.6 ± 4.2	1
•C ₅ H ₅ , cyclopenta-1,3-dien-5-yl	274.1 ± 7.3	1	•C ₇ H ₁₃ , cyclo-[C•(CH ₃)(CH ₂) ₅]	22.6	1
•C ₅ H ₇ , CH ₃ C≡CC•HCH ₃	272.8 ± 9.2	1	[•] C ₇ H ₁₃ , cyclo-[C [•] (CH ₂ CH ₃)(CH ₂) ₄]	47.0	1
C_5H_2 , CH=CC HC_2H_5	277.0 ± 8.4	1	•C ₇ H ₁₅ , (nC ₅ H ₁₁)(CH ₃)CH•	8.4	1
C_5H_7 , CH=CC $(CH_3)_2$	257.3 ± 9.2	1	[•] C ₇ H ₁₅ , (CH ₃) ₂ CHCHC [•] (CH ₃) ₂	-21.8 ± 5.2	1
•C ₅ H ₇ , CH ₂ =CHCH=CHC•H ₂	205.0 ± 12.6	1	$^{\circ}C_{8}H_{7}$, cubyl	831.0 ± 16.7	1
•C ₅ H ₇ , (CH ₂ =CH) ₂ C•H	208.0 ± 4.2	1	$C_{8}H_{7}C_{6}H_{5}C^{\bullet}=CH_{7}$	309.6	1
•C ₅ H ₇ , CH ₃ CH=C=CHC•H ₂	278.0	1	$C_8H_7C_6H_5CH=CH^{\bullet}$	387.0	1
•C ₅ H ₇ , spiropentyl	380.7 ± 4.2	1	•C ₈ H ₉ , C ₆ H ₅ C•H(CH ₃)	175.7 ± 7.5	1
•C ₅ H ₋ , cyclopent-1-en-3-yl	160.7 ± 4.2	1	•C ₈ H ₉ , C ₆ H ₅ CH ₇ C•H ₇	236.0 ± 7.5	1
•C ₅ H _o , cyclopentyl	105.9 ± 4.2	1	•C ₈ H ₉ , p-CH ₃ C ₆ H ₄ C•H ₂	167.4	1
•C ₅ H _a , CH ₂ =CHC•HCH ₂ CH ₃	109.6 ± 8.4	1	$^{\circ}C_{a}H_{a}$, m-CH _a C _a H _a C [•] H _a	167.4	1
•C ₅ H _a , CH ₃ CH=CHC•H(CH ₃)	92	1	$^{\circ}C_{a}H_{a}$, o-CH ₃ C ₆ H ₄ C [•] H ₂	167.4	1
•C ₅ H _a , CH ₃ CH=C(CH ₃)C•H ₂	92.0	1	•C _s H _o , 1-vinyl-cyclohexa-2,4-dienyl	247.7 ± 14.2	1
•C ₅ H _a , CH ₂ =CHC•(CH ₃) ₂	87.0 ± 8.4	1	•C H _o , 2-vinyl-cyclohexa-2,4-dienyl	249.8 ± 14.2	1
$C_{2}H_{2}, CH_{2}=C(CH_{2})C^{2}H(CH_{2})$	93.7	1	•C _s H _o , 3-vinyl-cyclohexa-2,4-dienyl	269.4 ± 14.2	1
•C _E H _a , CH ₂ =C(C•H ₂)CH ₂ CH ₂	114.2	1	•C,H,, 6-vinyl-cyclohexa-2,4-dienyl	284.5 ± 14.2	1
•C ₅ H _a , CH ₂ =CH(CH ₂),C•H ₂	179.5	1	•C _g H ₁₂ , CH ₂ =CHCH=CHC•H(CH ₂) ₂ CH ₃	130.5	1
nC _z H ₁ , , CH ₂ CH ₂ CH ₂ CH ₂ C [•] H ₂	54.4	1	•C ₀ H ₁ , CH ₂ =CHC•H(CH ₂) ₂ CH=CH ₂	130.5	1
•C ₅ H ₁₁ , (C ₂ H ₅) ₂ C•H	47.0	1	$^{\circ}C_{e}H_{12}$, bicyclooct-1-yl	92.0	1
•C _E H ₁₁ , (nC ₂ H ₂)(CH ₂)C•H	50.2	1	•C,H,,,CH,=CHC•H(CH,),CH,	49.8	1
•C _E H ₁₁ , (CH ₂),C•CH ₂	36.4 ± 8.4	1	•C,H,,, (E)-CH,CH=C•(CH,),CH,	29.7	1
•C ₅ H ₁₁ , (C ₂ H ₅)(CH ₃) ₂ C•	29	1	$^{\circ}C_{8}H_{15}$, (Z)-(CH ₃) ₂ C°CH=CHCH(CH ₃),	9.2	1
$^{\circ}C_{s}H_{s}$, phenyl	330.1 ± 3.3	1	$^{\circ}C_{e}H_{1e}$, cyclooctanyl	59.4	1
•C _c H ₋ , cyclohexa-1,3-dien-5-yl	199.2	1	$^{\circ}C_{s}H_{15}$, cyclo-[C $^{\circ}(CH_{2}CH_{2})(CH_{2})_{5}$]	10.0	1
•C ₆ H ₇ , cyclohexa-1,4-dien-3-yl	208.0 ± 3.9	5	•C ₉ H ₇ , indenyl	297.1	1
•C ₆ H ₉ , CH ₃ C≡CC•(CH ₃) ₂	221.8 ± 9.2	1	•C₀H₀, indanyl-1	204.2 ± 8.4	1
$C_{c}H_{a}$, (CH ₂ =CH) ₂ C•(CH ₃)	193.7	1	•C _a H ₁₁ , 2,6-dimethylbenzyl	124.7	1
°C ₆ H _o , cyclohexa-1-en-3-yl	119.7	1	$^{\circ}C_{9}H_{11}$, 3,6-dimethylbenzyl	124.7	1
*C ₆ H ₁₁ , CH ₂ =CH(CH ₂) ₃ C*H ₂	158.6	1	$^{\circ}C_{\circ}H_{11}$, 3,5-dimethylbenzyl	124.7	1
•C ₆ H ₁₁ , CH ₂ =CHC•H(CH ₂) ₂ CH ₃	89.0	1	$C_{q}H_{11}, C_{6}H_{5}C^{\bullet}(CH_{3})_{2}$	133.9 ± 4.2	1
${}^{\circ}C_{6}H_{11}, CH_{2}=C(CH_{3})C^{\circ}(CH_{3})_{2}$	37.7 ± 6.3	1	$^{\circ}C_{9}H_{11}, 0-^{\circ}C_{6}H_{4}C_{2}H_{5}$	279.5 ± 7.5	1
•C ₆ H ₁₁ , (CH ₃) ₂ C=C(CH ₃)C•H ₂	39.7 ± 6.3	1	•C ₉ H ₁₇ , cyclononanyl	52.3	1
*C ₆ H ₁₁ , (CH ₃) ₂ C=CHC*H(CH ₃)	47.3	1	°C ₁₀ H ₇ , naphth-1-yl	401.7 ± 5.4	1
•C ₆ H ₁₁ , (Z)-CH ₃ CH=CHC•(CH ₃) ₂	54.4	1	°C ₁₀ H ₇ , naphth-2-yl	400.4 ± 5.9	1
[•] C ₆ H ₁₁ , cyclohexyl	75.3 ± 6.3	1	$C_{10}H_{11}$, tetralin-1-yl	154.8 ± 5.0	1
nC ₆ H ₁₃ , CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ C+	33.5	1	$^{\circ}C_{10}H_{13}$, 1-phenyl-but-4-yl	192.0	1
•C ₆ H ₁₃ , (nC ₄ H ₉)(CH ₃)C•H	29.3	1	${}^{\bullet}C_{10}H_{13}$, $(C_{6}H_{5}CH_{2})(C_{2}H_{5})C^{\bullet}H$	184.5	1
•C ₆ H ₁₃ , 2-methyl-2-pentyl	3.3 ± 8.4	1	•C ₁₀ H ₁₃ , (C ₆ H ₅ CH ₂ CH ₂)(CH ₃)C•H	184.5	1
•C ₆ H ₁₃ , 3-methyl-3-pentyl	14.2	1	•C ₁₀ H ₁₃ , (C ₆ H ₅ C•HCH ₂ CH ₂ CH ₃	134.7	1
${}^{\bullet}C_{6}H_{13}$, 2,3-dimethyl-2-butyl	3.1 ± 10	1	•C ₁₀ H ₁₅ , 1-adamantyl	51.5	1
•C ₇ H ₃ , (CH≡C) ₃ C•	784.5	1	•C ₁₀ H ₁₅ , 2-adamantyl	61.9	1
C_7H_7 , benzyl, $C_6H_5C^{\bullet}H_2$	208.0 ± 1.7	1	•C ₁₀ H ₁₉ , cyclodecanyl	32.2	1
•C ₇ H ₇ , quadricyclolan-5-yl	578.6 ± 5.4	1	•C ₁₁ H ₉ , 1-naphthylmethyl	252.7	1
•C ₇ H ₇ , quadricyclolan-4-yl	587.4 ± 5.4	1	${}^{\bullet}C_{_{11}}H_{_{21}}$, cycloundecanyl	7.5	1
•C ₇ H ₇ , norborna-2,5-dien-7-yl	511.7 ± 7.9	1	•C ₁₂ H ₂₃ , cyclododecanyl	-38.5	1
•C ₇ H ₇ , cyclohepta-1,3,5-trien-7-yl	285.3 ± 12.6	1	${}^{\bullet}C_{_{13}}H_{_{9}}$, 9-fluorenyl	297.5	1
•C ₇ H ₉ , CH ₂ =CH(CH=CH) ₂ CC•H ₂	251.0	1	${}^{\bullet}C_{13}H_{11}, (C_{6}H_{5})_{2}C^{\bullet}H$	302.1 ± 4.2	1

۲

۲

۲

Radical	$\Delta_t \mathrm{H}^{\circ}_{298}/\mathrm{kJ} \mathrm{mol}^{-1}$	Ref.	Radical	$\Delta_{f} \mathrm{H}^{o}_{298} / \mathrm{kJ} \mathrm{mol}^{-1}$	Ref.
•C ₁₃ H ₁₁ , 9-methyl-9-fluorenyl	268.2	1	$^{\bullet}C_{2}HF_{4}, CHF_{2}C^{\bullet}F_{2}$	-664.8	1
$^{\circ}C_{14}H_{11}$, 9,10-dihydroanthracen-9-yl	261.0	1	•C ₂ H ₂ F ₃ , CF ₃ C•H ₂	-517.1 ± 8.4	1
$^{\circ}C_{15}H_{11}$, 9-anthracenylmethyl	337.6	1	•C ₂ H ₂ F ₃ , CHF ₂ C•HF	-456.0	1
$^{\circ}C_{15}H_{11}$, 9-phenanthrenylmethyl	311.3	1	•C ₂ H ₂ F ₃ , CH ₂ FC•F ₂	-449.8	1
•C ₁₆ H ₃₁ , CH ₂ =CHC•H(CH ₂) ₁₂ CH ₃	-118.8	1	•C ₂ H ₂ F ₂ Cl, CF ₂ ClC•H ₂	-310.9 ± 7.0	1
$C_{19}H_{15}$, trityl, $(C_6H_5)_3C^{\bullet}$	392.0 ± 8.4	1	•C ₂ H ₃ F ₂ , CH ₃ C•F ₂	-302.5 ± 8.4	1
•C ₃₅ H ₂₅ , pentamethylcyclopentadienyl	67.4	1	•C ₂ H ₃ F ₂ , CHF ₂ C•H ₂	-285.8	1
CF	255.2 ± 8	1	*C ₂ H ₃ F ₂ , CH ₂ FC*HF	-238.5	1
CF_2	-182.0 ± 6.3	1	•C ₂ H ₄ F, CH ₃ C•HF	-70.3 ± 8.4	1
FC•(O)	-161.2 ± 8.4	1	•C ₂ H ₄ F, CH ₂ FC•H ₂	-59.4 ± 8.4	1
CHF	143.0 ± 12.6	1	${}^{\bullet}C_{2}H_{2}F_{2}Cl, CF_{2}ClC{}^{\bullet}H_{2}$	-315.2 ± 6	1
CCIF	31.0 ± 13.4	1	[•] C ₂ F ₄ Cl, CF ₂ ClC [•] F ₂	-686.0	1
CCl	443.1 ± 13.0	1	•C ₂ HF ₃ Cl, CClF ₂ C•HF	-450.6 ± 12.6	1
CCl ₂	226	1	•C ₂ F ₄ Cl, CF ₃ C•FCl	-728.0	1
ClC•(O)	-21.8 ± 2.5	1	•C ₂ F ₃ Cl ₂ , CF ₃ C•Cl ₂	-564.0	1
CHCl	326.4 ± 8.4	1	•C ₂ F ₃ ClBr, CF ₃ C•ClBr	-504.2 ± 8.4	1
CClBr	267	1	•C,Cl, ClC≡C•	534 ± 50	1
CBr	510 ± 63	1	•C ₂ Cl ₃ , CCl ₂ =C•Cl	190 ± 50	1
CHBr	373 ± 18	1	•C,Cl ₂ , CCl ₃ C•Cl ₂	35.1 ± 5.4	1
CBr ₂	343.5	1	•C,HCl ₄ , CHCl,C•Cl,	23.4 ± 8.4	1
CI	570 ± 35	1	•C,HCl ₄ , CCl ₃ C•HCl	51.0	1
CI ₂	468 ± 60	1	•C,H,Cl,, CH,ClC•Cl,	26.4	1
•CF ₃	-465.7 ± 2.1	1	•C,H,Cl,, CHCl,C•HCl	46.4	1
•CHF ₂	-238.9 ± 4.2	1	•C,H,Cl,, CCl,C•H,	71.5 ± 8	1
•CH ₂ F	-31.8 ± 4.2	1	•C,H,Cl,, CH,C•Cl,	42.5 ± 1.7	1
•CCIF ₂	-279.0 ± 8.4	1	•C,H,Cl,, CH,ClC•ClH	65.3	1
•CCl ₂ F	-89.0 ± 8.4	1	•C ₂ H ₃ Cl ₂ , CHCl ₂ C•H ₂	90.1 ± 0.8	1
•CBrClF	-35.5 ± 6.3	1	•C ₂ H ₄ Cl, CH ₃ C•HCl	76.5 ± 1.6	1
•CHClF	-60.7 ± 10.0	1	•C ₂ H ₄ Cl, CH ₂ ClC•H ₂	93.0 ± 2.4	1
•CBrF ₂	-224.7 ± 12.6	1	•C ₂ H ₃ Br ₂ , CH ₃ C•Br ₂	140.2 ± 5.4	1
•CCl ₃	71.1 ± 2.5	1	${}^{\bullet}C_{2}H_{4}Br$, BrCH ₂ C ${}^{\bullet}H_{2}$	135.1	1
•CHCl ₂	87.1 ± 1.6	1	[•] C ₂ H ₄ Br, CH ₃ C [•] HBr	133.4 ± 3.4	3
•CH ₂ Cl	117.2 ± 2.9	1	•C ₂ Br, CBrC•	623.8	1
•CHBrCl	140 ± 4	1	•C ₂ Br ₃ , CBr ₂ C•Br	385.3	1
•CHBr ₂	199.1 ± 2.7	3	${}^{\bullet}C_{2}Br_{5}$, $CBr_{3}C{}^{\bullet}Br_{2}$	283.3	1
•CBr ₂ Cl	163 ± 8	1	•C ₃ H ₆ Cl, CH ₃ CH ₂ C•HCl	56.6	1
•CBrCl ₂	124 ± 8	1	•C ₃ H ₆ Cl, CH ₃ C•ClCH ₃	29.9 ± 0.6	1
•CBr ₃	214.8	1	${}^{\bullet}C_{3}H_{6}Br$, C ${}^{\bullet}H_{2}CH_{2}CH_{2}Br$	120.1 ± 1.3	1
•CH ₂ Br	171.1 ± 2.7	1	•C ₃ H ₆ Br, CH ₃ C•HCH ₂ Br	96.7 ± 5.9	1
•CI ₃	424.9 ± 2.8	1	$^{\bullet}C_{3}H_{6}Br, CH_{3}CH_{2}C^{\bullet}HBr$	107.5 ± 2.5	1
•CHI ₂	314.4 ± 3.3	1	•C ₆ F ₅	-547.7 ± 8.4	1
•CH ₂ I	229.7 ± 8.4	1	•CH ₃ O, HOC•H ₂	-17.0 ± 0.7	1
•C₂F, FC≡C•	460.0 ± 21.0	1	•CH₂ClO, HOC•ClH	-60.7 ± 7.5	1
•C ₂ Cl, ClC=C•	568 ± 26	1	•CHCl ₂ O, HOC•Cl ₂	-94.1 ± 7.5	1
$C_{2}F_{3}, CF_{2}=CF$	-192.0 ± 8.4	1	•CH ₂ ClO, ClOC•H ₂	135.6 ± 9.2	1
•C ₂ F ₂ H, CF ₂ =C•H	-92.9 ± 8.4	1	•CH ₂ BrO, BrOC•H ₂	151 ± 16	1
•C ₂ F ₂ H, CHF=C•F	-50.6 ± 8.4	1	•С ₂ H ₃ O, С•Н=СНОН	121 ± 11	1
•CCl ₂ H, CHCl=C•Cl	234.7 ± 8.4	1	•C ₂ H ₃ O, C•H ₂ CHO	13.0 ± 2	1
•CClH ₂ , CH ₂ =C•Cl	>251	1	•С ₂ H ₅ O, CH ₃ C•HOH	-54.0	1
•C ₂ F ₅ , CF ₃ C•F ₂	-892.9 ± 4.2	1	[•] C ₂ H₄ClO, CH₃C•ClOH	-108.4 ± 8.8	1
•C ₂ HF ₄ , CF ₃ C•HF	-680.8 ± 9.6	1	[•] C ₂ H ₄ ClO, C [•] H ₂ CHClOH	-73.2 ± 8.8	1

۲

۲

۲

Radical	$\Delta_{f} \mathbf{H}^{o}_{298} / \mathbf{kJ} \mathbf{mol}^{-1}$	Ref.	Radical	$\Delta_{f} H^{o}_{298}/kJ \text{ mol}^{-1}$	Ref.
•C,H,Cl,O,C•H,CCl,OH	-99.6 ± 8.8	1	iPrC(O)C•(CH ₃) ₂	-173.6 ± 20.9	1
•C ₂ H ₅ O, C•H ₂ CH ₂ OH	-31 ± 7	1	$tC_4H_9C(O)C^{\bullet}H_2$	-115.5 ± 12.6	1
•C ₂ H ₃ O, oxiran-2-yl	149.8 ± 6.3	1	PhC(O)C•H ₂	84.5 ± 12.6	1
•C ₃ H ₅ O,CH ₂ =CHC•HOH	0 ± 8.4	1	PhC(O)C•HCH ₃	41.4 ± 20.9	1
•C ₃ H ₇ O, CH ₃ CH ₂ C•HOH	-81 ± 4	1	PhC•HC(O)CH,Ph	134.3 ± 20.9	1
•C ₃ H ₇ O, (CH ₃)C•HCH ₂ OH	-78.7 ± 8.4	1	PhC(O)OC•H ₂	-69.9	1
•C ₃ H ₇ O, HOCH ₂ CH ₂ C•H ₂	-66.9 ± 8.4	1	•C(O)OH-trans	$\geq -194.6 \pm 2.9$	1
•С ₃ H ₇ O, (CH ₃) ₂ C•OH	-96.4	1	•C(O)OH-cis	-219.7	1
•C ₃ H ₇ O, •CH ₂ CH(OH)CH ₃	-62.8 ± 11.7	1	•C(O)OCH ₃	-161.5	1
•C ₄ H ₉ O, •CH ₂ C(OH)(CH ₃),	-147.3 ± 8.4	1	С•Н,С(О)ОН	-248.9 ± 12.0	1
•C,H ₅ O ₃ , C•H ₂ OCH ₂ OOH	109.6 ± 4.2	1	C•H(CH ₃)C(O)OH	-293 ± 3	1
PhCH•OH	29.3 ± 8.4	1	C•H ₂ C(O)OCH ₃	-236.8 ± 8.4	1
Ph ₂ C•OH	152.3 ± 6.3	1	C•H,C(O)OCH,CH	-260.2 ± 12.6	1
•C,H,O, CH,OC•H,	0 ± 4.2	1	C•H ₂ C(O)OPh	-28.0	1
•C,H,O, CH,OC•HCH,	-57.7 ± 8.4	1	$^{\circ}C_{4}H_{7}O$, tetrahydrofuran-2-yl	-18.0 ± 6.3	1
•C,H,O, CH,CH,OC•H,	-45.2 ± 8.4	1	•C ₄ H ₈ O, cyclopentanon-2-yl	-41.8 ± 12.6	1
•C,H,O, C•H,CH,OCH,	-7.1 ± 4.2	1	$^{\circ}C_{4}H_{7}O_{2}$, 1,4-dioxan-2-yl	-131.8 ± 12.6	1
•C ₄ H ₉ O, (CH ₃),CHOC•H ₂	-70.3 ± 7.1	1	•C ₇ H ₅ O ₇ , 2-C(O)OH-•C ₆ H ₄	-33.0	1
•C,H,O, CH,CH,OC•HCH,	-81.2 ± 4.2	1	•C ₇ H ₅ O ₇ , 3-C(O)OH-•C ₆ H ₄	-35.0	1
•C,H,O,C•H,CH(CH,)OCH,	-42.3 ± 3.8	1	•C ₇ H ₅ O ₇ , 4-C(O)OH-•C ₆ H ₄	-36.0	1
•C ₄ H ₉ O, (CH ₃) ₂ C•OCH ₃	-72.4 ± 10	1	•CH ₂ O ₂ , C•H ₂ OOH	66.1	1
•C _z H ₁ ,O, (CH ₂),COC•H ₂	-102.5 ± 8.4	1	•C,H,O,, C•H,CH,OOH	46.0 ± 4.6	1
•C,H ₂ O,, HOCH ₂ C•HOH	-220.1 ± 8.4	1	•C,H,O,, CH,CH•OOH	26.9	1
C•H=C=O, ketenyl	177.5 ± 8.8	1	•C,H,O,, CH,CH•CH,OOH	10.9 ± 5.4	1
HC•(O)	42.5 ± 0.5	1	•C ₃ H ₇ O ₂ , C•H ₂ CH(OOH)CH ₃	2.9 ± 6.3	1
C•CO	381.2 ± 2.1	1	•C ₄ H ₉ O ₂ , (CH ₃) ₂ C•CH ₂ OOH	-30.1 ± 5.4	1
CH ₃ C•(O)	-10.3 ± 1.8	1	*C ₄ H ₂ O ₂ , C*H ₂ C(CH ₂),OOH	-26.8 ± 5.4	1
CF ₃ C•(O)	-608.7	1	•C,H ₃ O ₃ , C•H,C(O)OOH	-137.9	1
CH,ClC•(O)	-21 ± 12.6	1	•CHN,	494.5	1
CHCl ₂ C•(O)	-17.6 ± 23	1	•CH ₂ N=CH ₂	263.6 ± 12.6	1
CCl ₃ C•(O)	-19.7	1	•CH,NH,	151.9 ± 8.4	1
CH ₃ CH ₂ C•(O)	-31.7 ± 3.4	1	CH ₃ C•HNH ₂	111.7 ± 8.4	1
CH ₂ CHC•(O)	88.5	1	(CH ₃) ₂ C•NH ₂	69.9 ± 8.4	1
$CH_2C(CH_3)C^{\bullet}(O)$	58.6 ± 16.7	1	•CH ₂ NHCH ₃	156.6	1
$CH_{3}CH_{2}CH_{2}C^{\bullet}(O)$	54.4 ± 4.2	1	$\cdot CH_2N(CH_3)_2$	148.0	1
$(CH_3)_2 CHC^{\bullet}(O)$	-64.0 ± 3.8	1	$(C_2H_5)_2NC^{\bullet}HCH_3$	68.6 ± 2.1	1
(CH ₃) ₃ CC•(O)	-102.9 ± 6.3	1	•CH ₂ N(CH ₃)Ph	266.0 ± 12.6	1
$C_6H_5C^{\bullet}(O)$	116.3 ± 10.9	1	•CN	439.3 ± 2.9	1
$HC(O)CH_2^{\bullet}$	10.5 ± 9.2	1	•CH ₂ CN	252.6 ± 4	1
$ClC(O)CH_2^{\bullet}$	-52.7 ± 13	1	CH ₃ C•HCN	226.7 ± 12.6	1
E-C•HClC(O)H	-27.2 ± 10.5	1	•CH ₂ CH ₂ CN	245.4 ± 12.6	1
Z-C•HClC(O)H	-23.4 ± 10.5	1	(CH ₃) ₂ C•CN	190.4 ± 12.6	1
$C^{\bullet}Cl_{2}C(O)H$	-55.6 ± 14.2	1	Ph(CH ₃)C•CN	248.5 ± 8.4	1
E-C•HClC(O)Cl	-88.7 ± 15.1	1	NCC•HCH ₂ CN	381.8 ± 12.6	1
C•H ₂ C(O)F	-273.0 ± 5.8	1	•CH ₂ NC	334.7 ± 16.7	1
Z-C•HClC(O)Cl	-84.9 ± 13.8	1	•C(O)NC	210.0 ± 10	1
$C^{\bullet}Cl_{2}C(O)Cl$	-101.7 ± 15.5	1	•C(O)NH ₂	-15.1 ± 4	1
$CH_{3}C(O)CH_{2}^{\bullet}$	-34 ± 3	1	C'NN	569 ± 21	1
CH ₃ C(O)C•HCH ₃	-70.3 ± 7.1	1	HC'NN	460 ± 8	1
$CH_{3}C(O)C^{\bullet}=CH_{2}$	113.4	1	H ₂ C•NN	292.5 ± 2.1	1
C ₂ H ₅ C(O)C•HCH ₃	-107.5 ± 20.9	1	•CH ₂ NO	157 ± 4	1

۲

۲

۲

Radical	$\Delta_{t} \mathbf{H}^{o}_{298} / \mathbf{kJ} \mathbf{mol}^{-1}$	Ref.	Radical
•CH ₂ NO ₂	115.1 ± 12.6	1	Ph ₂ C•SO ₂ Ph
CH ₃ C•HNO ₂	61.9 ± 12.6	1	Ph ₂ C•SPh
$(CH_3)_2 C^{\bullet} NO_2$	6.3 ± 12.6	1	NC•(O)
PhC•HNO ₂	169.0 ± 12.6	1	•CNH
$C_{6}H_{6}N$, 3-NH ₂ -C ₆ H ₄	320.1	1	•CNO
[•] C ₆ H ₆ N, 4-NH ₂ -C ₆ H ₄	327.8	1	•CH ₂ SiMe ₃
[•] C ₆ H ₄ NO ₂ , 3-NO ₂ -C ₆ H ₄	340.6 ± 10.0	1	•CH ₂ C(CH ₃) ₂ SiMe ₃
$C_{6}H_{4}NO_{2}, 4-NO_{2}-C_{6}H_{4}$	302.7	1	•CP
$C_{6}H_{4}CH_{3}$, 2-Me- $C_{6}H_{4}$	315.1 ± 10.5	1	
$C_{6}H_{4}CH_{3}$, 4-Me-C ₆ H ₄	296.6 ± 9.6	1	(2) Oxygen-Centered Spe
$C_{6}H_{3}N_{2}O_{4}, 3,5-(NO_{2})_{2}-C_{6}H_{3}$	305.4	1	HO
•C ₇ H ₆ NO ₂ , 2-Me-4-NO ₂ -C ₆ H ₃	295.4 ± 8.4	1	FO•
•C ₄ H ₃ N, pyrrol-2-yl	385.8	1	CIO•
•C₄H₃N, pyrrol-3-yl	385.8	1	BrO•
•C ₄ H ₆ N, pyrrolidin-2-yl	142.7 ± 12.6	1	IO•
$^{\circ}C_{c}H_{a}N$, pyrid-2-yl	362.0	1	HOO•
•C_H,N, pyrid-3-yl	391.0	1	FOO•
•C.H.N, pyrid-4-yl	391.0	1	ClOO•
•C.H.N., piperad-2-yl	119.7	1	BrOO•
•C,H _a N _a , pyrazin-2-yl	409.2 ± 12.6	1	IOO•
•C.H.N., pyrimid-2-yl	388.0 ± 12.6	1	OFO•
$^{\circ}C H N$, pyrimid-4-yl	409.0 ± 12.6	1	OClO•
•C.H.N., pvrimid-5-vl	446.4 ± 12.6	1	Clooclo•
•CH(NO)	139.1	1	ClClO•
•C(NO)	201.2	1	NCO•
•CH C(NO)	150.6	1	CNO•
•CH CH(NO)	103.3	1	HONNO•
•CH CH C(NO)	133.9	1	sym-ClO ₃
•CH N(NO)CH $C(NO)$	173.6	1	HSO•
•CH N(NO)CH CH(NO)	126.4	1	HSOO•
•CH CH N(NO)CH C(NO)	168.6	1	CH ₃ SOO•
•CH CH ONO	37.7	1	$CF_{3}SO_{2}O^{\bullet}$
•CH (ONO)CHCH ONO	-25 5	1	NCO•
$^{\circ}CH(CH ONO)$	-57.3	1	O ₂ NO•
•CH $C(CH ONO)$	_158.2	1	ONOO•
•CH NHNO	164.8	1	HOS(O) ₂ O•
•CH N(NO)CH	149.4	1	CH ₃ O•
•CH N(NO)	210.5	1	CF ₃ O•
•CH CH N(NO)CH	144.3	1	CCl ₃ O•
•CH N(NO)CH N(NO)CH	202.1	1	CH ₂ ClO•
•CH N(NO)(CH)N(NO)CH	173.2	1	CHCl ₂ O•
$C^{\bullet}(S)H$	300.4 ± 8.4	1	CH ₂ =CH-O•
•CH SH	151.0 ± 8.4	1	CF ₃ CHFO•
•CH SCH	131.9 ± 0.4 136.8 ± 5.9	1	$C_2H_5O^{\bullet}$
•CH SDb	150.8 ± 3.9	1	CH ₃ CHClO•
•CH SOCH	208.0 ± 12.0	1	CH ₃ CCl ₂ O•
	23.8 ± 12.0	1	$nC_{3}H_{7}O^{\bullet}$
•CH SO CH	110.0 ± 10.6	1	iC ₃ H ₇ O•
•CH SO Dh	$-1/7.0 \pm 12.0$	1	(CH ₃) ₂ CClO•
	-57.5 ± 12.6	1	$nC_4H_9O^{\bullet}$
$PHC = HSO_2 CH_3$	-109.2 ± 12.6	1	sC4H9O•
rnCHSO ₂ Pn	1 ± 12.6	1	tC ₄ H ₂ O•

Radical	$\Delta_{f} H^{o}_{298} / kJ mol^{-1}$	Ref.
SO ₂ Ph	102 ± 12.6	1
SPh	435.6 ± 12.6	1
))	127.2	1
	207.9 ± 12.1	1
	323 ± 30	1
iMe ₃	-32 ± 6	1
$(CH_3)_2SiMe_3$	-125	1
	450 ± 9	1
vgen-Centered Species		
ygen centered species	37.36 ± 0.13	1
	109 ± 10	1
	101.63 ± 0.1	1
	126.2 ± 1.7	1
	115.9 ± 5.0	1
	12.30 ± 0.25	1
	25.4 ± 2	1
,	98.0 ± 4	1
	108 ± 40	1
	96.6 ± 15	1
	378.6 ± 20	1
•	95.4	1
ClO•	142 ± 12	1
•	90 ± 30	1
	184.1	1
	386.6	1
10 .	172	1
10 ₃	217.2 ± 21	1
5	-21.8 ± 2.1	1
)•	112	1
00•	76	1
0 ₂ O•	-912	1
-	184.0	1
•	73.7 ± 1.4	1
)•	82.8	1
O) ₂ O•	-511.7	1
	21.0 ± 2.1	1
	-635.1 ± 7.1	1
•	-38.1 ± 9.2	1
O•	-21.3 ± 9.2	1
O•	-32.2 ± 9.2	1
CH-O•	18.4 ± 1.3	1
IFO•	-851.0	1
•	-13.6 ± 3.3	1
HClO•	-61.9 ± 12.1	1
Cl ₂ O•	-91.6 ± 11.7	1
0•	-30.1 ± 8.4	1
)•	-48.5 ± 3.3	1
CClO•	-108.4 ± 8.4	1
0•	-62.8	1
)•	-69.5	1
)•	-85.8 ± 3.8	1

۲

2/23/10 5:29:29 PM

۲

Radical	$\Delta_{f} \mathrm{H}^{o}_{298} / \mathrm{kJ} \mathrm{mol}^{-1}$	Ref.	Radical	$\Delta_{f} H^{o}_{298} / kJ mol^{-1}$	Ref.
$CH_2 = CHCH_2O^{\bullet}$	87.0	1	•NNH	249.5	1
$C_6H_5O^{\bullet}$	48.5 ± 2.9	1	•NCO	131.8	1
o-Cl-C ₆ H ₄ O•	30.6	1	•N ₃	414.2 ± 20.9	1
$C_6Cl_5O^{\bullet}$	~63	1	•N ₂ H ₃	243.5	1
p-Cl-C ₆ H ₄ O•	~9	1	$(Z)-N_{2}H_{2}$	213.0 ± 10.9	1
o-OH-C ₆ H ₄ O•	-186.3	1	NF	209.2	1
p-OH-C ₆ H ₄ O•	-143.6	1	•NF ₂	42.3 ± 8	1
o-CH ₃ O-C ₆ H ₄ O*	-125.5	1	•NHF	112 ± 15	1
p-CH ₃ O-C ₆ H ₄ O*	-81.1	1	NBr	301 ± 21	1
C ₆ H ₅ CH ₂ O•	136.0 ± 12.6	1	HNO	107.1 ± 2.5	1
$C_{10}H_7O^{\bullet}$, naphthoxy-1	165.3	1	FNO	-65.7 ± 1.7	1
$C_{10}H_{7}O^{\bullet}$, naphthoxy-2	174.1	1	CINO	51.71 ± 0.42	1
HC(O)O•	-129.7 ± 12.6	1	BrNO	82.13 ± 0.8	1
FC(O)O•	368.0	1	INO	112.1 ± 20.9	1
CH ₃ C(O)O•	-179.9 ± 12.6	1	NCO	120.9	1
$CF_{3}C(O)O^{\bullet}$	-797.0	1	NCN	464.8 ± 2.9	1
CF ₃ OC(O)O•	-958.1 ± 16.7	1	NSi	372 ± 63	1
$C_{c}H_{5}C(O)O^{\bullet}$	-50.2 ± 16.7	1	NH,C(O)N•H	0.8 ± 12.6	1
CH ₂ OO•	20.1 ± 5.1	1	CH ₃ C(O)N•H	-6.7 ± 12.6	1
C,H,OO', CH,=CHOO'	101.7 ± 1.7	1	NH ₂ C(S)N•H	194 ± 12.6	1
C ₃ H _c OO•	-28.5 ± 9.6	1	CH ₂ C(S)N•H	173 ± 12.6	1
C,H ₂ OO•, CH ₂ =CHCH ₂ OO•	88.7	1	PhC(S)N•H	307 ± 12.6	1
iC,H.00•	-65.4 ± 11.3	1	HCON•H	49.8 ± 12.6	1
C,H,OO•, CH,CH=CHCH,OO•	82.6 ± 5.3	1	NH ₂ C(NH)N•H	250.6 ± 12.6	1
tC ₄ H ₀ OO•	-101.5 ± 9.2	1	•NHCN	319.2 ± 2.9	1
neo-C _c H _{.1} OO•	-115.5	1	CH_N•H	104.6 ± 12.6	1
HOCH_OO	-162.1	1	CH,N•H	184.1 ± 8.4	1
HOOCH,CH,OO•	100	1	tBuN•H	95.4 ± 12.6	1
C,H,CH,OO•	114.6 ± 4.2	1	C,H,CH,N•H	288.3 ± 12.6	1
c-C,H,,OO•	-25.0 ± 10.5	1	C,H,N•H	244.3 ± 4.2	1
(C,H_)N(CH3)CHOO•	-36.0 ± 12.6	1	(CH ₂) ₂ N•	158.2 ± 4.2	1
CF,00	-635.0	1	$(C_{\epsilon}H_{\epsilon})(CH_{2})N^{\bullet}$	241.0 ± 6.3	1
CF_ClOO•	-406.7 ± 14.6	1	$(C_{c}H_{c})_{\alpha}N^{\bullet}$	366.0 ± 6.3	1
CFCl_OO•	-213.7	1	1-pyrrolyl	269.2 ± 12.6	1
CH,ClOO•	-5.1 ± 13.6	1	1-pyrazolyl	413.0 ± 2.1	1
CHCLOO•	-19.2 ± 11.2	1	carbazol-9-yl	383.3 ± 8.4	1
CCl ₂ OO•	-20.9 ± 8.9	1	CH ₂ N ₂ •	215.5 ± 7.5	1
CH,CHClOO•	-54.7 ± 3.4	1	$C_{2}H_{2}N_{2}$	187.4 ± 10.5	1
CH,CCl,OO'	-63.8 ± 9.8	1	iC ₂ H ₇ N ₂ •	146.0 ± 8.4	1
CH,OCH,OO•	-142.2 ± 4.2	1	nC ₄ H ₀ N ₂ •	140.6 ± 8.4	1
CH,C(O)CH,OO•	-142.1 ± 4	1	$tC_4H_9N_2^{\bullet}$	97.5 ± 4.2	1
CH,C(0)OO•	-154.4 ± 5.8	1	(NO ₂)HN [•]	162.3	1
нооо•	>12.84	4	(CH ₂)(NO ₂)N•	139.0	1
CH_000•	33.4 ± 12.6	1	(NO ₂) ₂ N•	200.0	1
C,H,OOO•	5.4 ± 12.6	1	CH ₂ N [•] CH ₂ N(NO ₂)CH ₂	185.4	1
(3) Nitrogen-Centered Species			(4) Sulfur-Centered Species		
ON	91.04 + 0.08	1	HOS*	-6.7 ± 2.1	1
NO	33.97 ± 0.08	1	HC(O)S*	56.5	1
NO	82.05 ± 0.4	-	HS•O.	-221.8	1
NH	357 ± 1	1	HOS'O	-384.9	1
'NH.	186.2 ± 1.0	1	NCS*	300 ± 8	-
2					

۲

۲

Radical	$\Delta_{\rm f} {\rm H}^{\rm o}_{298} / {\rm kJ \ mol^{-1}}$	Ref.	Radical	$\Delta_{f} \mathbf{H}^{o}_{298} / \mathbf{kJ} \mathbf{mol}^{-1}$	Ref.
HS•	143.0 ± 0.8	1	H ₃ SiSi [•] H ₂	234 ± 6	1
CH ₃ S•	124.7 ± 1.7	1	C ₆ H ₅ Si•H ₂	274	1
$C_2H_5S^{\bullet}$	101	1	H ₃ SiSi•H	312 ± 8	1
$nC_{3}H_{7}S^{\bullet}$	80	1	MeSi•	302.2	1
iC ₃ H ₇ S•	74.9 ± 8.4	1	MeSi*H	202 ± 6	1
$tC_4H_9S^{\bullet}$	43.9 ± 8.4	1	Me ₂ Si**	135 ± 8	1
$C_6H_5S^{\bullet}$	242.7 ± 4.6	1	SiN	313.8 ± 42	1
C ₆ Cl ₅ S•	~184	1	•GeH ₃	221.8 ± 8.4	1
$C_6H_5CH_2S^{\bullet}$	246	1	GeF	-71 ± 10	1
CH ₃ S•O	-67 ± 10	1	GeF ₂	-574 ± 20	1
CH ₃ S [•] O ₂	-239.3	1	•GeF ₃	-807 ± 50	1
HSS•	115.5 ± 14.6	1	GeCl	69 ± 18	1
CH ₃ SS•	68.6 ± 8.4	1	GeCl ₂	-171 ± 5	1
$C_2H_5SS^{\bullet}$	43.5 ± 8.4	1	•GeCl ₃	-268 ± 50	1
iC ₃ H ₇ SS•	13.8 ± 8.4	1	GeBr	137 ± 5	1
$tC_4H_9SS^{\bullet}$	-19.2 ± 8.4	1	GeBr ₂	-61 ± 5	1
HOC(S)S•	110.5 ± 4.6	1	•GeBr ₃	-119 ± 50	1
HC(O)S•	56.5	1	GeI	211 ± 25	1
SF	13.0 ± 6.3	1	GeI ₂	50.2 ± 4	1
SF ₂	-296.7 ± 16.7	1	•GeI ₃	42 ± 50	1
SF ₃	-503.0 ± 33.5	1	SnF	-95 ± 7.2	1
SF_4	-763.2 ± 20.9	1	SnF ₂	-511 ± 9.2	1
SF ₅	-879.9 ± 15.1	1	•SnF ₃	-647 ± 50	1
CIS•	156.5 ± 16.7	1	SnCl	35 ± 12	1
SN	263.6 ± 105	1	SnCl ₂	-202.6 ± 7.1	1
SCI	156.5 ± 16.7	1	•SnCl ₃	-292 ± 50	1
(5) Si-, Ge-, Sn-, Pb-Centered Species			SnBr	76 ± 12	1
SiF	-20.1 ± 12.6	1	SnBr_2	-119 ± 2.8	1
SiF	-638 ± 6	1	•SnBr ₃	-159 ± 50	1
•SiF ₂	-987 ± 20	1	SnI	173 ± 12	1
SiCl	198.3 ± 6.7	1	SnI ₂	-8.1 ± 4.2	1
SiCl	-169 ± 3	1	•SnI ₃	-8 ± 50	1
•SiCl ₃	321 ± 8	6	${}^{\bullet}Sn(CH_3)_3$	132.2	1
SiBr	235 ± 46	1	$Sn(C_6H_5)_3$	518.8 ± 21	1
SiBr ₂	46 ± 8	1	РЬН	236.2 ± 19.2	1
•SiBr ₃	-201.7 ± 63	1	PbF	-80.3 ± 10.5	1
SiI	313.8 ± 42	1	PbF ₂	-435.1 ± 8.4	1
SiI ₂	92.5 ± 8.4	1	•PbF ₃	-490 ± 60	1
•SiI ₃	35.3 ± 63	1	PbCl	15.1 ± 50	1
SiH	376.6 ± 8.4	1	PbCl ₂	-174.1 ± 1.3	1
SiH ₂ (¹ A ₁)	273 ± 2	1	•PbCl ₃	-178 ± 80	1
SiH ₂ (³ B ₁)	360.7	1	PbBr	70.9 ± 42	1
•SiH ₃	200.4 ± 2.5	1	PbBr ₂	-104.4 ± 6.3	1
MeSi•H ₂	141 ± 6	1	"PbBr ₃	-104 ± 80	1
Me ₂ Si•H	78 ± 6	1	Ppi	107.4 ± 37.7	1
Me ₃ Si•	15 ± 7	1	Pbl ₂	-3.2 ± 4.2	1
•Si ₂ H ₃	~402	1	-PDI ³	22 ± 80	1

References

1. Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca, Raton, FL, 2007.

2. Wheeler, S. E., Robertson, K. A., Allen, W. D., Schaefer III, H. F., Bomble, Y. J., and Stanton, J. F., J. Phys. Chem. A 111, 3819, 2007.

3. Seetula, J. A., and Eskola, A. J., Chem. Phys. 351, 141, 2008.

4. Denis, P. A., and Ornellas, F. R., J. Phys. Chem. A 113, 499, 2009.

Gao, Y., DeYonker, N. J., Garrett III, E. C., Wilson, A. K., Cundari, T. R., and Marshall, P., *J. Phys. Chem. A* 113, 6955, 2009.
 Shuman, N. S., Spencer, A. P., and Baer, T., *J. Phys. Chem. A* 113, 9458, 2009.

K11100_S09.indb 86

۲

2/23/10 5:29:32 PM

۲

TABLE 5. Bond Dissociation Energies of Some Organic Molecules

۲

 $D_{_{298}}^{o}(\text{R-X})/\text{ kJ} \text{ mol}^{-1}$ of some organic compounds are listed below. All data are from Tables 1 and 3.

	X=H	F	Cl	Br	Ι	OH	OCH_3	NH_2	NO	CH_3	COCH_3	CF ₃	CCl ₃
R=H	435.7799	569.658	431.361	366.16	298.26	497.10	440.2	450.08	199.5	439.3	374.0	445.2	392.5
CH ₃	439.3	460.2	350.2	294.1	238.9	384.93	351.9	356.1	172.0	377.4	351.9	429.3	362.3
C_2H_5	420.5	447.4	352.3	292.9	233.5	391.2	355.2	352.3	171.5	370.3	347.3	—	_
$i-C_{3}H_{7}$	410.5	483.8	354.0	299.2	234.7	397.9	360.7	357.7	152.7	369.0	340.2	—	_
$t-C_4H_9$	400.4	495.8	351.9	292.9	227.2	398.3	353.1	355.6	167	363.6	329.3	—	—
C_6H_5	472.2	525.5	399.6	336.4	272.0	463.6	418.8	429.3	226.8	426.8	406.7	463.2	388.7
$C_6H_5CH_2$	375.5	412.8	299.9	239.3	187.8	334.1	_	306.7	123	325.1	299.7	365.7	_
CCl ₃	392.5	439.3	296.6	231.4	168	—	_	—	125	362.3	—	332.2	285.8
CF ₃	445.2	546.8	365.3	296.2	227.2	≤482.0	_	_	167	429.3	_	413.0	332.2
$C_{2}F_{5}$	429.7	532.2	346.0	283.3	219.2	_	_	_	_	_	_	424.3	_
CH ₃ CO	374.0	511.7	354.0	292.0	223.0	459.4	424.3	414.6	_	351.9	307.1	_	_
CN	528.5	482.8	422.6	364.8	320.1	—	_	_	204.4	521.7	—	469.0	_
$C_{6}F_{5}$	487.4	485	383.3	~328	<301.7	446.9	—	—	211.3	439.3	—	435.1	—

TABLE 6. Bond Dissociation Energies in Diatomic Cations

From thermochemistry, we have

 $D^{o}_{_{298}}(A^{_+}-B) \equiv \Delta_{f}H^{o}(A^{_+}) + \Delta_{f}H^{o}(B) - \Delta_{f}H^{o}(AB^{_+}) = D^{o}_{_{298}}(A-B) + IP(A) - IP(AB)$

Thus, $D_{298}^{\circ}(A^{+}-B)$ may be derived using the Table 1 and the ionization potentials of species A and AB. The following Table has been arranged in an alphabetical order of the atoms. The **boldface** in the species indicates the dissociated fragment.

A + D	D0 1.1/	Def	A+ D	De 1.1/	D.f	A+ D	D0 1-1/	D.f
A' -B	$D_{298}^{\circ} \text{ KJ/mol}^{-1}$	kei.	A'-B	$D_{298}^{\circ} \text{ KJ/mol}^{\circ}$	Kel.	A' -B	$D_{298}^{\circ} \text{ KJ/mol}^{-1}$	кет.
Ag^+-Ag	167.9 ± 8.7	1	Au ⁺–Be	401 ± 29	1	Be ⁺ -Ar	49.0 ± 2.4	1
Ag^+-Cl	32 ± 30	1	Au ⁺ -C	311.5 ± 7.7	4	Be ⁺−Au	410 ± 29	1
$\mathbf{Ag}^{*}-\mathbf{F}$	24 ± 27	1	Au^+-F	79	1	Be ⁺−Be	196 ± 0.5	8
$\mathbf{Ag}^{+}-\mathbf{H}$	43.5 ± 5.9	1	Au ⁺–Ge	292 ± 24	1	Be ⁺ -Cl	417 ± 50	1
Ag^+-O	123 ± 5	1	Au^+-H	213.1 ± 7.7	4	$\mathbf{Be}^{+}-\mathbf{F}$	575 ± 98	1
Ag^+-S	123 ± 13	1	Au^+-I	230~280	1	Be^+-H	307.3 ± 5.0	1
Al^+-Al	121	1	Au ⁺−Xe	130 ± 13	1	Be ⁺ -O	362.0 ± 6.2	1
Al^+-Ar	15.47	1	B ⁺ -Ar	32.7	1	$\mathbf{Bi^{+}}-\mathrm{Bi}$	199 ± 10	1
Al⁺ −Ca	148.5	1	$\mathbf{B}^+ - \mathbf{B}$	187	1	Bi ⁺ -O	174	1
Al^+-Cl	173 ± 42	1	$\mathbf{B}^{+}-\mathbf{Br}$	164 ± 21	1	Bi^+-S	179 ± 50	1
Al^+-F	314 ± 21	1	B^+-C	284 ± 58	1	Bi ⁺–Se	184 ± 29	1
Al^+-Kr	5.54	1	B^+-Cl	308 ± 21	1	Bi ⁺−Te	125 ± 50	1
Al^+-O	166.7 ± 12.0	1	B^+-F	460 ± 10	1	Bi^+-Tl	100 ± 42	1
Al^+ –Se	114 ± 49	1	B ⁺−H	198 ± 5	1	Bk ⁺ -O	610	1
$\mathbf{Ar}^{+}-\mathbf{Ar}$	130.323 ± 0.087	1	B ⁺ -O	326 ± 48	1	$\mathbf{Br}^{*}-\mathbf{Br}$	318.858 ± 0.024	1
$\mathbf{Ar}^{+}-\mathbf{He}$	2.9 ± 0.8	1	$\mathbf{B}^+-\mathbf{Pt}$	314 ± 98	1	$\mathbf{Br}^{+}-\mathbf{C}$	451.5 ± 8.6	1
$\mathbf{Ar}^{+}-\mathbf{Ne}$	7.5 ± 0.8	1	B⁺−Se	298 ± 98	1	Br ⁺ -Cl	303.000 ± 0.048	1
As^+-As	364 ± 22	1	B^+ -Si	365 ± 15	1	$\mathbf{Br}^{*}-\mathbf{F}$	251.5 ± 12.6	1
$\mathbf{As}^{+}-\mathbf{H}$	290.8 ± 3.0	1	Ba ⁺−Ar	11.85	1	$\mathbf{Br}^{+}-\mathbf{H}$	379.26 ± 2.89	1
As^+-O	495	1	Ba^+-Br	418 ± 10	1	Br ⁺ -O	365.7 ± 3.1	1
$\mathbf{As}^{+}-\mathbf{P}$	367 ± 59	1	Ba⁺–Cl	468.2 ± 10	1	C^+ -Ar	72.3	1
As^+-S	433.2 ± 12.5	1	Ba⁺–D	245.2 ± 9.6	1	C^+ -Br	398 ± 8.6	1
Au^+-Al	170 ± 30	1	Ba+-F	640 ± 29	1	$C^{+}-C$	601.9 ± 19.3	1
Au^+-Au	234.5	1	Ba^+-I	335 ± 10	1	C^{+} -Cl	614	1
Au ⁺ -B	329 ± 50	1	Ba ⁺ -O	441.4 ± 15	1	C+-F	721 ± 40	1

۲

$A^+ - B$	$D^{o}_{298} \mathrm{kJ/mol^{-1}}$	Ref.	A+-B	$D^{o}_{298} { m kJ/mol^{-1}}$	Ref.	A+-B	$D^{o}_{_{298}}{ m kJ/mol^{-1}}$	Ref.
$C^{+}-H$	397.848 ± 0.013	1	Co+-I	211.7 ± 8.4	1	Er ⁺ -Br	315.8	1
$C^{+}-N$	524.5 ± 4.2	1	Co+-Kr	68.37 ± 0.18	1	Er ⁺ -Cl	406.7	1
$C^{+}-O$	810.7 ± 0.8	1	Co ⁺ –Ne	12.8 ± 0.4	1	$\mathbf{Er}^{+}-\mathbf{F}$	546 ± 34	1
$\mathbf{C}^{+}-\mathbf{P}$	587 ± 50	1	Co ⁺ -O	317.3 ± 4.8	1	Er+-I	271.6	1
C^+-S	706.6 ± 2.1	1	Co+-S	288.3 ± 8.7	1	Er ⁺ -O	583 ± 15	1
C^+ –Se	587 ± 50	1	Co ⁺ -Si	317.1 ± 6.7	1	Es ⁺ -O	470 ± 60	1
Ca^+ -Al	144.7	1	Co ⁺ -Xe	85.7 ± 6.8	1	Eu ⁺ -Ag	85 ± 50	1
Ca^+ -Ar	12.99 ± 0.60	1	Cr ⁺−Ar	31.7 ± 3.9	1	Eu ⁺ -Au	252 ± 97	1
Ca^+ -Au	306 ± 29	1	Cr ⁺ -C	277 ± 24	1	Eu ⁺ -Br	333.8	1
Ca^+-Br	417.6 ± 10	1	Cr ⁺ -Cl	>211	1	Eu+-Cl	430.7	1
Ca ⁺–Ca	104.1	1	Cr ⁺ -Cr	129	1	Eu+-F	543 ± 29	1
Ca^+-Cl	433.4 ± 12	1	Cr ⁺ -D	135 ± 9	1	Eu+-I	290.7	1
Ca^+-F	556.5 ± 8.4	1	$\mathbf{Cr}^{+}-\mathbf{F}$	279 ± 42	1	Eu ⁺ -O	393 ± 15	1
$Ca^{+}-H$	284.2 ± 10	1	Cr⁺–H	136 ± 9	1	Eu+-S	257 ± 32	1
Ca^+-I	293.7 ± 10.8	1	Cr ⁺–He	7.8 ± 0.4	1	F ⁺ -Ar	161.1	1
Ca⁺–Kr	18.60 ± 0.72	1	Cr ⁺ –Ne	9.5 ± 0.4	1	$F^{+}-F$	325.393 ± 0.096	1
Ca ⁺ -Ne	4.95 ± 0.06	1	Cr ⁺ -O	359	1	F ⁺ -He	181.62 ± 0.08	1
Ca ⁺ -O	348 ± 5	1	Cr ⁺ -S	258.6 ± 16.4	1	F ⁺ -Kr	152.4	1
Ca ⁺−Xe	25.38 ± 0.96	1	Cr ⁺ -Si	203 ± 15	1	F ⁺ -Xe	188	1
\mathbf{Cd}^{+} –Cd	122.5 ± 10	1	Cr ⁺ -Xe	71.9 ± 10.0	1	Fe ⁺ -Ar	14.2 ± 7.7	1
Cd⁺–H	179.5	1	Cs ⁺ -Ar	8.2	1	Fe ⁺ -Br	>293	1
Ce ⁺ -Au	278 ± 34	1	Cs⁺−Br	60.5 ± 10	1	Fe ⁺ -C	356.1 ± 17.2	1
Ce ⁺ -Br	341.0	1	Cs⁺−Cl	107.4 ± 10	1	Fe ⁺ -Cl	>343	1
$Ce^{+}-C$	254 ± 96	1	Cs ⁺ -Cs	62.6 ± 9.6	1	Fe ⁺ -Co	259 ± 21	1
Ce ⁺ -Ce	207 ± 42	1	Cs^+-F	43.7 ± 10	1	Fe ⁺ -Cr	209 ± 29	1
Ce ⁺ -Cl	429.5	1	Cs ⁺−He	5.1	1	Fe ⁺ -Cu	222 ± 29	1
$Ce^{+}-F$	586 ± 63	1	Cs⁺−I	29.3 ± 10	1	Fe ⁺ -D	227	1
Ce ⁺ -I	295.5	1	Cs ⁺−Kr	15.1	1	Fe ⁺ -F	360 - 423	1
Ce ⁺ -Ir	530 ± 96	1	Cs ⁺–Na	48.1 ± 4.2	1	Fe ⁺ -Fe	272	1
$Ce^{+}-N$	494 ± 63	1	Cs ⁺−Ne	6.11	1	Fe ⁺ −H	211.2 ± 9.6	1
Ce ⁺ -O	852 ± 15	1	Cs ⁺ -O	59	1	Fe ⁺ -I	>239	1
Ce^+-Pd	255 ± 53	1	Cs ⁺−Rb	68.3 ± 10	1	Fe ⁺ −Kr	33.5 ± 6.7	1
$Ce^{+}-Pt$	467 ± 96	1	Cs ⁺−Xe	14.7	1	Fe ⁺ -N	485	1
$Ce^{+}-Rh$	423 ± 96	1	Cu ⁺ -Ar	51.9 ± 6.8	1	Fe ⁺ -Nb	285 ± 21	1
$Ce^{+}-S$	524 ± 59	1	Cu ⁺ -Cl	91 ± 10	1	Fe ⁺ -Ni	268 ± 21	1
Cl ⁺−Ar	169	1	Cu ⁺–Cu	155.2 ± 7.7	1	Fe ⁺ -O	334 ± 6	9
Cl ⁺−Cl	385.746 ± 0.096	6	Cu ⁺ −F	117 ± 21	1	Fe ⁺ -S	295.2 ± 5.8	1
Cl ⁺−D	457.284 ± 0.017	1	Cu ⁺–Ge	231 ± 23	1	Fe ⁺ -Sc	200 ± 21	1
Cl ⁺−F	291 ± 10	1	Cu⁺–H	93 ± 13	1	Fe ⁺ -Si	277 ± 9	1
Cl ⁺−H	452.714 ± 0.018	1	Cu ⁺−Kr	24.3 ± 0.8	1	Fe ⁺ -Ta	301 ± 21	1
Cl ⁺−N	650 ± 10	1	Cu ⁺ -O	133.9 ± 11.6	1	Fe ⁺ -Ti	251 ± 25	1
Cm ⁺ -O	670 ± 40	7	Cu⁺–S	203.3 ± 14.5	1	Fe ⁺ -V	314 ± 21	1
Cl⁺−O	468.0 ± 2.1	1	Cu⁺–Si	260 ± 8	1	Fe ⁺ -Xe	46.0 ± 5.8	1
Co ⁺ -Ar	52.89 ± 0.06	1	Cu ⁺−Xe	102.1 ± 5.8	1	Ga⁺–Bi	62 ± 98	1
Co ⁺ -Br	>289	1	D+-D	263.4405 ± 0.0003	1	Ga⁺–Br	56.5 ± 16	1
Co ⁺ -C	351 ± 29	1	Dy ⁺−Br	324.2	1	Ga⁺–Cl	86 ± 21	1
Co ⁺ -Cl	285 ± 12	1	Dy ⁺ -Cl	407.9	1	Ga⁺-F	136 ± 15	1
Co ⁺ -Co	269	1	Dy⁺–Cu	196 ± 42	1	Ga ⁺–Ga	126.3	1
Co+-D	199.6 ± 5.8	1	Dy ⁺ -F	535 ± 24	1	Ga⁺–I	41.6 ± 15	1
Co⁺-H	195 ± 6	1	Dy+-I	279.9	1	Ga⁺–O	46 ± 50	1
Co⁺–He	16.4 ± 0.4	1	Dy ⁺ -O	597 ± 15	1	Ga⁺–Sb	38 ± 96	1
			1 1			1		

9-88

۲

Bond Dissociation Energies

$A^+ - B$	$D^{o}_{298} \mathrm{kJ/mol^{-1}}$	Ref.	$A^+ - B$	$D^{o}_{298} \mathrm{kJ/mol^{-1}}$	Ref.	$A^+ - B$	$D^{o}_{298} \mathrm{kJ/mol^{-1}}$	Ref.
Ga⁺–Te	19 ± 29	1	$\mathbf{Ir}^{+}-\mathbf{D}$	302.8 ± 5.8	1	Lu^+-I	40.7	1
$\mathbf{Gd}^{+}-\mathbf{Cd}$	122.5 ± 10	1	$\mathbf{Ir}^{+}-\mathbf{H}$	305.7 ± 5.8	1	Lu^+-O	524 ± 15	1
$\mathbf{Gd}^{+}-\mathbf{H}$	179.5	1	Ir ⁺ -O	247	1	Lu^+-Si	107 ± 13	1
$\mathbf{Ge}^{+}-\mathbf{Br}$	398 ± 42	1	$\mathbf{K}^{+}-\mathbf{Ar}$	14 ± 7	1	Mg^+ – Ar	19.20	1
$\mathbf{Ge}^{+}-\mathbf{C}$	223 ± 31	1	$\mathbf{K}^{+}-\mathbf{Br}$	35.7 ± 10.5	1	Mg^+ -Au	267 ± 29	1
Ge^+-Cl	473 ± 50	1	K^+ -Cl	51 ± 19	1	$Mg^{+}-Cl$	327 ± 6.5	1
$\mathbf{Ge}^{*}-\mathbf{F}$	565 ± 21	1	K⁺−He	6.00	1	Mg^+-D	203.6 ± 0.8	1
$\mathbf{G}\mathbf{e}^*\text{-}\mathrm{G}\mathbf{e}$	274 ± 10	1	$\mathbf{K}^{+}-\mathbf{I}$	18 ± 45	1	Mg^+-F	477 ± 50	1
$\mathbf{Ge}^{*}-\mathbf{H}$	377 ± 84	1	$\mathbf{K}^{+}-\mathbf{K}$	83.86 ± 0.15	1	Mg^+-H	190.8 ± 5.8	1
Ge ⁺ -O	344 ± 21	1	$\mathbf{K}^{+}-\mathbf{Kr}$	15.8	1	Mg^+-Kr	25.39	1
Ge^+-S	283 ± 21	1	$\mathbf{K}^{+}-\mathrm{Li}$	59.9 ± 5.9	1	Mg^+-Mg	125	1
$\mathbf{Ge}^{+}-\mathbf{Se}$	234 ± 10	1	K ⁺–Na	58.69 ± 0.08	1	Mg^+-Ne	4.9 ± 0.6	1
$\mathbf{Ge}^{*}-\mathrm{Si}$	268 ± 21	1	K ⁺−Ne	7.79	1	Mg^+-O	245.2 ± 10	1
$Ge^{\scriptscriptstyle +}{\rm -Te}$	233 ± 19	1	K ⁺ -O	13	1	$\mathbf{Mg}^{\scriptscriptstyle +}\!-\!\!\mathrm{Xe}$	53.74	1
$\mathbf{H}^{+}-\mathbf{D}$	261.1021 ± 0.0002	1	K⁺−Xe	19.5	1	Mn^+-Cl	>211	1
$\mathbf{H}^{*}\!-\!H$	259.4659 ± 0.0002	1	Kr ⁺ -Ar	55.31 ± 0.14	1	$\mathbf{Mn}^{+}-\mathbf{F}$	321 ± 24	1
$He^{\scriptscriptstyle +}-H$	123.9	1	$\mathbf{Kr}^{+}-\mathbf{H}$	464	1	$Mn^{\scriptscriptstyle +}\text{-}H$	202.5 ± 5.9	1
$He^{\scriptscriptstyle +}\text{-}He$	229.687 ± 0.019	1	Kr ⁺−He	2.1 ± 0.8	1	Mn^+-I	>211	1
$Hf^{+}-C$	311.5 ± 2.9	10	Kr ⁺ -Kr	110.967 ± 0.033	1	$\mathbf{Mn}^{+}-\mathbf{Mn}$	129	1
$\mathbf{H}\mathbf{f}^{+}-\mathbf{H}$	193.8 ± 10.6	2	$\mathbf{Kr}^{+}-\mathbf{N}$	136.9 ± 13	1	Mn^+-O	285 ± 13	1
$Hf^{+}-O$	670.4 ± 10.6	10	Kr ⁺ –Ne	3.8 ± 0.8	1	Mn^+-S	247 ± 23	1
Hg^+-Ar	22.2 ± 1.2	1	La^+-Au	436 ± 97	1	$\mathbf{Mn}^{+}-\mathbf{Se}$	165 ± 50	1
$Hg^{\scriptscriptstyle +}\text{-}H$	207	1	La^+-Br	425.9	1	Mo^+-C	442.7 ± 13.5	1
Hg^+-Hg	134	1	La^+-C	427 ± 33	1	Mo^+-F	376 ± 29	1
Hg^+-Kr	37.9 ± 1.3	1	La^+-Cl	503.6	1	$Mo^{\scriptscriptstyle +}{-}H$	170 ± 6	1
Hg^+-Xe	72.2 ± 1.3	1	La^+-F	589 ± 34	1	Mo^+-Mo	449.4 ± 1.0	1
$\mathbf{Ho^{+}}\mathbf{-}Ag$	155 ± 61	1	La^+-H	243 ± 9	1	Mo^+-O	488.2 ± 1.9	1
Ho^+-Au	250 ± 60	1	$La^{+}-I$	392.4	1	Mo^+-S	355.1 ± 5.8	1
Ho^+-Br	320.6	1	La ⁺ -Ir	356 ± 97	1	Mo^+-Xe	$>53.1\pm6.8$	1
Ho+-Cl	410.3	1	La^+-O	875 ± 25	1	N^+ -Ar	208.4 ± 9.6	1
Ho ⁺ -Cu	214 ± 35	1	La^+-Pt	522 ± 78	1	N^+-F	584 ± 42	1
Ho^+-F	542 ± 50	1	La ⁺–Rh	345 ± 97	1	N^+-H	$\geq 435.67 \pm 0.77$	1
Ho ⁺ -Ho	88 ± 96	1	La^+-S	629 ± 96	1	N^+-N	843.85 ± 0.10	1
Ho ⁺ -I	270.4	1	La ⁺ -Si	277.0 ± 9.6	1	N^+-O	115	1
Ho ⁺ -O	551 ± 25	1	Li ⁺ -Ar	33 ± 14	1	Na ⁺ -Ar	19 ± 8	1
I⁺–Br	184.90 ± 0.02	1	Li⁺–Bi	91 ± 50	1	Na⁺–Br	58.2 ± 10.6	1
I ⁺ -Cl	247.5 ± 0.4	1	Li ⁺ -Br	41.8 ± 10.6	1	Na ⁺ -Cl	20.3 ± 10	1
I ⁺ −F	262.9 ± 2.1	1	Li^+-Cl	66 ± 15	1	Na⁺–He	7.55	1
I^+-H	304.70 ± 0.10	1	Li^+-F	7 ± 21	1	Na ⁺ -I	64.9 ± 3.0	1
$I^+ - I$	262.90 ± 0.04	1	Li ⁺−He	10.66	1	Na⁺–Kr	~24.9	1
I+-O	316.3 ± 10.5	1	Li^+-I	51.1 ± 6.3	1	Na⁺–Li	95.8 ± 3.9	1
In ⁺−Br	65.2 ± 12.6	1	Li ⁺−Kr	48.1	1	Na ⁺–Na	98.64 ± 0.29	1
In ⁺ –Cl	193 ± 21	1	Li ⁺ –Li	137.3 ± 6.3	1	Na ⁺–Na	6.4	1
In ⁺ -F	148 ± 50	1	Li ⁺ –Ne	15.32	1	Na⁺–Ne	~9.04	1
ln⁺−l	51.5 ± 21	1	Li ⁺ -O	38.9 ± 9.6	1	Na ⁺ -O	37 ± 19	1
In ⁺−In	81 ± 30	1	Li ⁺ -Sb	129.6 ± 13.9	1	Na⁺–Xe	~28.6	1
In ⁺ -S	171 ± 50	1	Li ⁺ –Xe	56.4	1	Nb ⁺ -Ar	40.87 ± 0.13	1
In ⁺ –Sb	73 ± 50	1	Lu ⁺ –Br	86.1	1	Nb ⁺ -C	509 ± 15	1
In⁺–Se	118 ± 50		Lu ⁺ –Cl	180.6	1	Nb ⁺ -Fe	>251	1
In⁺–1e	41 ± 50	1	Lu ⁺ -F	3/6.8	1	Nb⁺-H	220 ± 7	1
$\mathbf{lr}^{+}-\mathbf{C}$	635.8 ± 4.8	3	Lu⁺−H	204 ± 15	1	Nb⁺–Nb	576.8 ± 9.6	1

9-89

۲

۲

A+-B	D^o kI/mol ⁻¹	Ref.
Nh ⁺ -O	688 ± 11	1
Nh ⁺ -S	5017 ± 203	1
Nb ⁺ -V	404.7 ± 0.2	1
Nb ⁺ -Xe	73.28 ± 0.12	1
Nd ⁺ -Au	75.23 ± 0.12 267 + 84	1
Nd ⁺ _Br	352.9	1
Nd^+-Cl	1002.9 AA1 A	1
Nd+_E	200.6	1
Nd+ I	509.0	1
Nd ⁺ O	596 ± 32	1
Nu -O	755 ± 15	1
Ne ⁺ -H	1239	1
Ne ⁺ −He	13.0 ± 0.8	1
Ne ⁺ -Ne	125.29 ± 1.93	1
Ni ⁺ -Ar	53.9	1
Ni ⁺–Br	>289	1
Ni⁺–C	418	1
Ni ⁺ -Cl	192 ± 4	1
Ni ⁺ -D	166.0 ± 7.7	1
Ni^+-F	≥456	1
Ni^+-H	158.1 ± 7.7	1
Ni⁺–He	12.4 ± 0.4	1
Ni^+-I	>297	1
Ni ⁺ -Ne	9.9 ± 0.4	1
Ni ⁺ -Ni	208	1
Ni ⁺ -O	275.9 ± 7.7	1
Ni^+-S	241.0 ± 3.9	1
Ni⁺–Si	326 ± 6.7	1
Np^+-F	730 ± 100	1
Np ⁺ -O	≥752	1
O ⁺ -Ar	33.8	1
O^+-F	301.8 ± 8.4	1
O ⁺−H	487.9 ± 0.34	1
O^+-N	1050.64 ± 0.13	1
O ⁺ -O	647.75 ± 0.17	1
Os⁺–H	238.9	1
Os ⁺ -O	418 ± 50	1
P ⁺ −C	512 ± 42	1
	289	1
₽+−F	490.6±8.4	1
P ⁺–H	329.6 ± 2.1	- 1
P⁺−N	483 + 21	-
P+_∩	791.3 + 8.4	1
D +_D	$7.51.3 \pm 0.4$ 4.81 ± 50	1
r =r D+ C	$\pm 301 \pm 30$	1
r -3	000 ± 54	1
	~ 000	1
ro -Br	200 ± 63	1
PD*-Cl	285 ± 63	1
PD⁺-F	347 ± 32	1
Pp+-O	247 ± 8.4	1
Pb ⁺–Pb	214 ± 29	1
Pb ⁺−S	293 ± 50	1

$A^+ - B$	$D^{o}_{298} \mathrm{kJ/mol^{-1}}$	Ref.
Pb ⁺−Se	169.4 ± 6.3	1
Pb ⁺−Te	163 ± 63	1
Pd⁺ −C	528 ± 5	1
Pd⁺ −H	208.4 ± 8.7	1
Pd⁺−O	145 ± 11	1
Pd ⁺–Pd	197 ± 29	1
Pd⁺−S	197 ± 6	1
Pd ⁺−Si	289 ± 50	1
Pr ⁺–Au	317 ± 81	1
Pr ⁺−Br	357.7	1
Pr ⁺ −Cl	445.0	1
$\mathbf{Pr}^{+}-\mathbf{F}$	557 ± 63	1
$\mathbf{Pr}^{+}-\mathbf{I}$	317.0	1
Pr ⁺ -O	796 ± 15	1
Pt ⁺−Ar	36.4 ± 8.7	1
Pt ⁺ −B	398 ± 105	1
Pt^+-C	530.5 ± 4.8	1
Pt ⁺ −Cl	249.8 ± 14.5	1
Pt⁺ −H	275 ± 5	1
Pt^+-N	326.9 ± 9.6	1
Pt⁺ −O	318.4 ± 6.7	1
$\mathbf{Pt}^+-\mathbf{Pt}$	318 ± 23	1
Pt ⁺−Si	515 ± 50	1
Pt ⁺−Xe	86.6 ± 28.9	1
$\mathbf{Pu}^{+}-\mathbf{F}$	562 ± 50	1
Pu⁺ −O	655	1
Rb ⁺−Ar	12.0	1
Rb ⁺−Br	17.6v5.1	1
Rb ⁺−Cl	10.5 ± 10.5	1
$\mathbf{Rb}^{+}-\mathbf{I}$	27 ± 42	1
Rb ⁺−Kr	14.9	1
Rb ⁺–Na	50.1 ± 3.9	1
Rb ⁺ −Ne	6.95	1
Rb ⁺ −O	29	1
$\mathbf{Rb}^+ - \mathbf{Rb}$	75.6 ± 9.6	1
Rb ⁺−Xe	21.5	1
$\mathbf{Re}^+ - \mathbf{C}$	497.7 ± 3.9	1
Re⁺ −H	224.7 ± 6.7	1
Re⁺ −O	435 ± 59	1
Rh ⁺ −C	414 ± 17	1
Rh ⁺−H	164.8 ± 3.8	1
Rh ⁺−O	295.0 ± 5.8	1
$\mathbf{Rh}^{+}-\mathbf{S}$	226 ± 13	1
$\mathbf{Ru}^+ - \mathbf{C}$	453.5 ± 10.6	1
Ru ⁺−H	160.2 ± 5.0	1
Ru⁺ −O	372 ± 5	1
Ru ⁺−S	288 ± 6	1
S^+-C	620.8 ± 1.3	1
S^+-F	343.5 ± 4.8	1
S ⁺−H	348.2 ± 1.7	1
S ⁺−N	516 ± 34	1

$A^+ - B$	$D^{o}_{298} \mathrm{kJ/mol^{-1}}$	Ref.
S^+-O	524.3 ± 0.4	1
S^+-P	573 ± 21	1
S^+-S	522.4 ± 0.5	1
$\mathbf{Sc}^{+}-\mathbf{C}$	326 ± 6	1
$\mathbf{Sc}^{+}-\mathbf{Cl}$	410 ± 42	1
$\mathbf{Sc}^{*}-\mathbf{F}$	605 ± 32	1
$\mathbf{Sc}^{*}-\mathbf{Fe}$	201 ± 21	1
$\mathbf{Sc}^{+}-\mathbf{H}$	235 ± 8	1
Sc ⁺ -O	689 ± 5	1
$\mathbf{Sc}^{+}-\mathbf{S}$	529.7 ± 17.4	1
Sc⁺–Se	475.8 ± 8.4	1
Sc+-Si	242.3 ± 10.5	1
Se^+-F	364 ± 42	1
Se⁺-H	304	1
Se ⁺ -P	514 ± 25	1
Se+-S	392 ± 19	1
Se⁺–Se	413 ± 19	1
Si⁺–Au	175 ± 50	1
Si⁺–B	351 ± 15	1
Si⁺–Br	276 ± 96	1
Si⁺–C	365 ± 50	1
Si ⁺ -Cl	591.0 ± 0.6	1
Si ⁺ -F	684.1 ± 5.4	1
Si⁺-H	316.6 ± 2.1	1
Si ⁺ -O	478 ± 13.4	1
Si ⁺ -P	272 ± 50	1
Si⁺–Pd	237 ± 50	1
Si ⁺ -Pt	525 ± 50	1
Si ⁺ -S	387.5 ± 6.0	1
Si⁺–Si	334 + 19	1
Si ⁺ -Te	347 ± 50	1
Sm ⁺ -Br	343 3	1
$Sm^+ - Cl$	435.4	1
Sm ⁺ -F	620.9	1
Sm ⁺ -I	299.1	1
Sm ⁺ -O	569 ± 15	1
Sn ⁺ -Br	335 ± 50	1
Sn ⁺ -Cu	184 ± 96	1
Sn ⁺ -F	364 ± 29	1
$Sn^+ = 0$	281 ± 10	1
Sn ⁺ -S	201 ± 10 240 ± 19	1
Sn ⁺ -Se	174 ± 63	1
Sn ⁺ -Sn	193	1
Sn ⁺ -Te	168.7 + 8.4	1
Sr ⁺ -Ar	13.32 ± 2.92	1
Sr ⁺ -Br	378.1 + 8.4	1
Sr^+-C^1	427 + 8.4	1
Sr ⁺ -F	615 ± 50	1
Sr ⁺ -H	209 ± 5	1
Sr ⁺ -I	308.2	1 1
Sr ⁺ -Kr	18.13 ± 6.94	1
		-

K11100_S09.indb 90

۲

2/23/10 5:29:40 PM

۲

$\mathbf{A}^+ - \mathbf{B}$	$D^{o}_{298} { m kJ/mol^{-1}}$	Ref.	$A^+ - B$	$D^{o}_{298}{ m kJ/mol^{-1}}$	Ref.	$A^+ - B$	$D^{o}_{298} { m kJ/mol^{-1}}$	Ref.
Sr ⁺ -Ne	4.52 ± 9.6	1	Tl^+-I	133 ± 21	1	Xe^+-H	355	1
$Sr^{+}-O$	298.7	1	$Tl^{+}-Tl$	22 ± 50	1	Xe^+-Kr	41.65 ± 0.08	1
$\mathbf{Sr}^{+}-\mathbf{Sr}$	108.5 ± 1.6	1	Tm^+-Br	312.2	1	Xe^+-N	66.4 ± 9.6	1
Ta^+-C	369.4 ± 3.9	10	Tm^+-Cl	407.9	1	Xe^+-Ne	2.1 ± 0.8	1
Ta^+-H	230 ± 6	1	Tm^+-F	537 ± 16	1	Xe^+-Xe	99.6	1
Ta^+-O	688.7 ± 11.6	10	$Tm^{+}-I$	266.8	1	Y^+-C	281 ± 12	1
Ta⁺ −⁻Ta	666	1	Tm^+-O	482 ± 15	1	$\mathbf{Y}^{+}-\mathbf{F}$	677 ± 21	1
$\mathbf{T}\mathbf{b}^{+}-\mathbf{C}\mathbf{u}$	245 ± 34	1	$\mathbf{U}^{+}-\mathbf{Br}$	345 ± 29	1	$\mathbf{Y}^{+}-\mathbf{H}$	260.5 ± 5.8	1
Tb^+-O	722 ± 15	1	$\mathbf{U}^{+}-\mathbf{C}$	300 ± 96	1	Y^+-O	718 ± 25	1
$\mathbf{Tc}^{+}-\mathbf{H}$	197.5	1	U^+ -Cl	431 ± 34	1	$\mathbf{Y}^{+}-\mathbf{Pt}$	466 ± 192	1
$Tc^{+}-O$	>167	1	$\mathbf{U}^{+}-\mathbf{D}$	283.4 ± 9.6	1	$\mathbf{Y}^{+}-\mathbf{S}$	533.9 ± 8	1
Te^+-H	305 ± 12	1	$\mathbf{U}^{+}-\mathbf{F}$	668 ± 29	1	$\mathbf{Y}^{+}-\mathbf{Si}$	243 ± 13	1
Te ⁺ -O	339 ± 50	1	$\mathbf{U}^{+}-\mathbf{H}$	284 ± 8	1	$\mathbf{Y}^{+}-\mathbf{T}\mathbf{e}$	360 ± 96	1
Te^+-P	415 ± 97	1	$\mathbf{U}^{*}-\mathbf{N}$	~485	1	$\mathbf{Y}^{\scriptscriptstyle +}\!-\!\mathbf{Y}$	281 ± 21	1
Te ⁺ -Se	342 ± 19	1	U ⁺ -O	757 ± 42	1	$\mathbf{Y}\mathbf{b}^{*}-\mathbf{B}\mathbf{r}$	307.4	1
Te+-Si	339.6	5	$\mathbf{U}^{+}-\mathbf{P}$	186	1	$\mathbf{Y}\mathbf{b}^{*}-\mathbf{Cl}$	399.6	1
Te ⁺ -Te	278 ± 29	1	U^+-S	518 ± 29	1	$\mathbf{Y}\mathbf{b}^{*}-\mathbf{F}$	557.5 ± 14.4	1
$\mathbf{T}\mathbf{h}^{+}-\mathbf{C}\mathbf{l}$	499 ± 29	1	V ⁺ -Ar	39.39 ± 0.12	1	$\mathbf{Y}\mathbf{b}^{*}-\mathbf{I}$	262.0	1
$\mathbf{T}\mathbf{h}^{+}-\mathbf{F}$	682 ± 29	1	$V^{+}-C$	373 ± 13.5	1	Yb ⁺ −O	376 ± 15	1
Th ⁺ -O	875 ± 16	1	$V^{*}-D$	202 ± 6	1	$\mathbf{Y}\mathbf{b}^{*}-\mathbf{Y}\mathbf{b}$	238 ± 96	1
$\mathbf{T}\mathbf{h}^{+}-\mathbf{P}\mathbf{t}$	388 ± 193	1	V ⁺ -Fe	314 ± 21	1	$\mathbf{Zn}^{+}-\mathrm{Ar}$	28.7 ± 1.2	1
$\mathbf{Th}^{+}-\mathbf{Rh}$	504 ± 67	1	$V^{+}-H$	202 ± 6	1	$\mathbf{Z}\mathbf{n}^{*}-\mathbf{H}$	216 ± 15	1
Ti^+-C	395 ± 23	1	V ⁺ -Kr	49.46 ± 0.18	1	Zn^+-O	161.1 ± 4.8	1
Ti ⁺ -Cl	426.8	1	$V^{*}-N$	448.6 ± 5.8	1	$\mathbf{Zn}^{+}-\mathbf{S}$	198 ± 12	1
$Ti^{+}-F$	≥456	1	V ⁺ -Nb	403.5 ± 0.2	1	$\mathbf{Zn}^{+}-\mathrm{Si}$	274.1 ± 9.6	1
Ti^+-H	226.6 ± 10.6	1	$V^{+}-O$	581.6 ± 9.6	1	$\mathbf{Zn}^{+}-\mathbf{Zn}$	60 ± 19	1
$Ti^{+}-N$	501 ± 13	1	$V^{+}-S$	358.9 ± 8.7	1	$\mathbf{Zr}^{+}-\mathbf{Ar}$	36.09 ± 0.24	1
Ti ⁺ -O	667 ± 7	1	V ⁺ -Si	229 ± 15	1	$\mathbf{Z}\mathbf{r}^{+}-\mathbf{C}$	445.8 ± 15.4	1
Ti^+-Pt	82 ± 96	1	$V^{*}-V$	302	1	$\mathbf{Z}\mathbf{r}^{*}-\mathbf{H}$	218.8 ± 9.6	1
$Ti^{+}-S$	461.1 ± 6.8	1	V ⁺ -Xe	66.4 ± 0.6	1	$\mathbf{Z}\mathbf{r}^{*}-\mathbf{N}$	443 ± 46	1
Ti⁺–Si	249 ± 16	1	W^+-C	463.0 ± 8.7	10	$Zr^{+}-O$	753 ± 11	1
Ti⁺–Ti	229	1	$\mathbf{W}^{+}-\mathbf{F}$	444 ± 96	1	$\mathbf{Z}\mathbf{r}^{+}-\mathbf{S}$	549.0 ± 9.6	1
Tl ⁺−Br	52 ± 50	1	$\mathbf{W}^{+}-\mathbf{H}$	222.5 ± 5	1	$\mathbf{Zr}^{+}-\mathbf{Zr}$	407.0 ± 9.6	1
Tl ⁺−Cl	26 ± 4	1	W^+-O	656.9 ± 6.8	10			
Tl^+-F	13 ± 21	1	Xe^+ -Ar	13.4	1			

References

۲

1. Luo, Y. R., Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca, Raton, 2007.

2. Parke, L. G., Hinton, C. S., and Armentrout, P. B., Int. J. Mass Spectrom. 254, 168, 2006.

3. Li, F.-X., Zhang, X.-G., and Armentrout, P. B., Int. J. Mass Spectrom. 255/256, 279, 2006.

4. Li, F.-X., and Armentrout, P. B., J. Chem. Phys. 125, 133114/1, 2006.

5. Chattopadhyaya, S., Pramanik, A., Banerjee, A., and Das, K. K., J. Phys. Chem. A 110, 12303, 2006.

6. Li, J., Hao, Y., Yang, J., Zhou, C., and Mo, Y., J. Chem. Phys. 127, 104307/1, 2007.

7. Gibson, J. K., Haire, R. G., Santos, M., Pires de Matos, A., and Marçalo, J., J. Phys. Chem. A 112, 11373, 2008.

8. Merritt, J. M., Kaledin, A. L., Bondybey, V. E., and Heaven, M. C., Phys. Chem. Chem. Phys. 10, 4006, 2008.

9. Schröder, D., J. Phys. Chem. A 112, 13215, 2008.

10. Hinton, C. S., Li, F.-X., and Armentrout, P. B., Int. J. Mass Spectrom. 280, 226, 2009.

۲

¢

TABLE 7. Bond Dissociation Energies in Polyatomic Cations

۲

This Table has been arranged on the basis of the Periodic Table with the IUPAC notation for Groups 1 to 18, see inside front cover of this *Handbook*. The **boldface** in the species indicates the dissociated fragment.

Bond	$Do_{98}^2/{\rm kJ}~{\rm mol}^{-1}$	Ref.	Bond	$Do^{2}_{98}/{ m kJ}~{ m mol}^{-1}$	Ref.
			K⁺–adenine	95.1 ± 3.2	1
(1) Group 1	05.0		K⁺–indole	104.6 ± 12.6	1
Li*-H ₂	27.2	1	K⁺–Phe (phenylalanine)	150.5 ± 5.8	1
Li ⁺ -CO	57 ± 13	1	K⁺−Tyr (tyrosine)	165.0 ± 5.8	1
$Li^{+}-H_{2}O$	139±8	1	Rb ⁺−H ₂ O	66.9 ± 12.6	1
Li ⁺ -NH ₃	156 ± 8	1	Rb*–NH ₃	78.2	1
Li*-CH ₄	130	1	Rb ⁺ -CH ₃ CN	86.6 ± 1.3	1
Li ⁺ -CH ₃ OH	156±8	1	Rb ⁺ −C ₆ H ₅ OH	70.2 ± 3.7	1
Li ⁺ -CH ₃ OCH ₃	167 ± 10	1	Cs ⁺ −H ₂ O	57.3	1
Li ⁺ –pyridine	183.0 ± 14.5	1	Cs ⁺ -C ₆ H ₅ NH ₂	70.8 ± 4.5	1
Li ⁺ –Gly (glycine)	220 ± 9	1			
Na ⁺ -H ₂	10.4 ± 0.8	1	(2) Group 2		
Na ⁺ -N ₂	33.5	1	$CH_3Be^+-CH_3$	192.9 ± 13.4	1
Na ⁺ -CO	31 ± 8	1	tert-C(CH ₃) ₃ Be ⁺ - $tert$ -C(CH ₃) ₃	121.8 ± 13.4	1
Na ⁺ -CO ₂	66.5	1	Mg⁺−OH	314 ± 33	1
Na ⁺ -SO ₂	79.1	1	Mg ⁺ -CO	43.1 ± 5.8	1
Na ⁺ -O ₃	52.3	1	Mg ⁺ -CO ₂	58.4 ± 5.8	1
Na^+-H_2O	91.2 ± 6.3	1	Mg ⁺ -H ₂ O	122.5 ± 12.5	1
$Na^{+}(H_2O)-H_2O$	82.0 ± 5.8	1	Mg ⁺ -NH ₃	158.9 ± 11.6	1
$Na^{+}(H_2O)_2 - H_2O$	66.1	1	$Mg^{+}-CH_{4}$	29.8 ± 6.8	1
$Na^{+}(H_2O)_3 - H_2O$	52.7 ± 0.8	1	Mg ⁺–MeOH	147.6 ± 6.8	1
$Na^+(glycine) - H_2O$	75.1 ± 5.3	1	$Mg^+-C_6H_6$	155.2	1
$Na^+(glutamine) - H_2O$	52 ± 1	1	Mg ⁺ –pyridine	200.0 ± 6.4	1
Na ⁺ -NH ₃	106.2 ± 5.4	1	Mg ⁺−imidazole	243.9 ± 10.4	1
Na ⁺ -HNO ₃	86.2	1	$Mg^{2+}(H_2O)_5-H_2O$	101.3	1
Na^+-CH_4	30.1	1	$Mg^{2+}(Me_2CO)_5-Me_2CO$	93.3	1
Na ⁺ –CH ₃ OH	98.8 ± 5.7	1	Ca ⁺ -OH	435.1 ± 14.5	1
Na ⁺ –CH ₃ CN	125.5 ± 9.6	1	Ca^+-H_2O	117.2	1
$Na^{+}-C_{2}H_{4}$	44.6 ± 4.4	1	$Ca^+-C_6H_6$	134	1
Na ⁺ –CH ₃ OCH ₃	101.4 ± 5.7	1	Ca ⁺ –imidazole	186.3 ± 3.9	1
$Na^+-CH_3C(O)H$	114.4 ± 3.4	1	$Ca^{2+}(H_2O)_4-H_2O$	110.0 ± 5.9	1
Na ⁺ - MeCOMe	131.3 ± 4.1	1	Ca²⁺(Me₂CO) ₅ -Me ₂ CO	101.3	1
$Na^+-C_6H_6$	97.0 ± 5.9	1	Sr ⁺ -CO	20.3	1
Na ⁺ –pyrrole	103.7 ± 4.8	1	$\mathbf{Sr}^{+}-\mathbf{CO}_{2}$	41.9	1
Na ⁺ -Gly (glycine)	166.7 ± 5.1	1	$\mathbf{Sr}^{*}-\mathbf{H}_{2}\mathbf{O}$	144.3	1
Na ⁺ –Ala (alanine)	167 ± 4	1	$\mathbf{Sr}^{+}-\mathbf{C}_{6}\mathbf{H}_{6}$	117	1
Na+-GlyGly (glycylglycine)	203 ± 8	1	$Sr^{2+}(H_2O)_5-H_2O$	87.4	1
$\mathbf{K}^{+}-\mathbf{H}_{2}$	6.1 ± 0.8	1	Ba ⁺ -OH	530.7 ± 19.3	1
$K^{+}-CO_{2}$	35.6	1	$Ba^{2+}(H_2O)_4-H_2O$	90.8	1
$\mathbf{K}^{+}-\mathbf{H}_{2}\mathbf{O}$	74.9	1	(2) Crown 2		
$K^{+}(H_{2}O)_{2}-H_{2}O$	67.4	1	(3) Group 5	22.0 ± 1.2	1
$K^{+}(H_{2}O)_{3}-H_{2}O$	55.2	1		23.0 ± 1.3	1
$\mathbf{K}^{+}(\mathbf{H}_{2}\mathbf{O})_{4}$ - $\mathbf{H}_{2}\mathbf{O}$	11.8	1		412 ± 22	1
$\mathbf{K}^{+}(\mathbf{H}_{2}\mathbf{O})_{5}-\mathbf{H}_{2}\mathbf{O}$	44.8	1	$\mathbf{S}\mathbf{C} - \mathbf{C}\mathbf{H}_{3}$	233 ± 10 240 ± 20	1
$\mathbf{K}^{+}(\mathbf{H}_{2}\mathbf{O})_{6}-\mathbf{H}_{2}\mathbf{O}$	41.8	1	$\mathbf{SC} = \mathbf{C}_2 \mathbf{\Pi}_2$	240 ± 20	1
$K^{+}-NH_{3}$	79 ± 7	1	$\mathbf{SC} - \mathbf{C}_2 \mathbf{\Pi}_4$	≥131 222 ± 21	1
$K^{+}-C_{6}H_{6}$	80.3	1	$\mathbf{SC} - \mathbf{C}_6 \mathbf{H}_6$	222 ± 21	1
			SC [*] -H ₂ O	131	1

۲

۲

Bond Dissociation Energies

Bond	$Do^2_{98}/\text{kJ} \text{ mol}^{-1}$	Ref.	Bond	$Do^{2}_{98}/{ m kJ}~{ m mol}^{-1}$	Ref.
Sc ⁺ –NH	483 ± 10	1	V*–CH	470 ± 5	1
$Sc^{+}-NH_{2}$	347 ± 5	1	V*-CH ₂	326 ± 6	1
Sc ⁺ -pyridine	231.5 ± 10.3	1	V*-CH ₃	193 ± 7	1
Y^+-CH_2	398 ± 13	1	$V^{*}-C_{2}H_{2}$	172 ± 8	1
Y ⁺ -CH ₃	249 ± 5.0	1	$V^{+}-C_{2}H_{4}$	124 ± 8	1
$Y^{+}-C_{2}H_{2}$	218 ± 13	1	$V^{*}-(\eta^{5}-C_{5}H_{5})$	530.7	1
$Y^{+}-C_{2}H_{4}$	>138	1	$V^{+}-C_{6}H_{6}$	234 ± 10	1
Y ⁺ -CO	29.9 ± 10.6	1	V*–CO	114.8 ± 2.9	1
Y ⁺ -CS	137.0 ± 7.7	1	V*–CO ₂	72.4 ± 3.8	1
$Y^{+}(O)$ -CO ₂	86 ± 5	1	$V^{*}-H_{2}O$	149.8 ± 5.0	1
La ⁺ -CH	523 ± 33	1	V*–NH	423 ± 29	1
$La^{+}-CH_{2}$	401 ± 7	1	$V^{*}-NH_{2}$	293 ± 6	1
$La^{+}-CH_{3}$	217 ± 15	1	V*–NH ₃	192 ± 11	1
$La^+-C_2H_2$	262 ± 30	1	V^* –pyridine	218.7 ± 13.5	1
$La^{+}-C_{2}H_{4}$	192.5	1	V^{*} -imidazole	${\leq}243.4\pm8.0$	1
Lu^+-CH_2	$>230\pm6$	1	Nb^+-H_2	61.9	1
Lu^+-CH_3	176 ± 20	1	Nb ⁺ -CH	581 ± 19	1
U ⁺ (F)–F	552 ± 44	1	Nb ⁺ -CH ₂	428.4 ± 8.7	1
$U^{+}(F)_{2}-F$	523 ± 38	1	Nb ⁺ -CH ₃	198.8 ± 10.6	1
$U^{+}(F)_{3}-F$	381 ± 19	1	Nb ⁺ -CH ₃ NH ₂	134	1
$U^{+}(F)_{4}-F$	243 ± 17	1	$Nb^+-C_3H_6$	117.7	1
$U^{+}(F)_{5}-F$	26 ± 11	1	$(\mathbf{NbFe})^{+}-\mathbf{C}_{3}\mathbf{H}_{4}$	>163	1
(4) C 4			Nb ⁺ -CO	95.5 ± 4.8	1
(4) Group 4			Nb ⁺ -CS	242.2 ± 10.6	1
Ti+-CH	$4/8 \pm 5$	1	$Nb_{7}^{+}-N_{2}$	<215	1
II⁺−CH ₂	391 ± 15	1	Ta*-CH	561.5 ± 15.4	6
II ⁺ −CH ₃	213.8 ± 3	1	Ta ⁺ -CH ₂	464.1 ± 2.9	6
TI'-CH ₄	70.3 ± 2.5	1	Ta ⁺ -CH ₃	259.5 ± 13.5	6
$\Pi^{+} - C_2 H_2$	213 ± 13	1	$Ta^{+}-C_{6}H_{6}$	251~301	1
$\Pi^{*} = C_{2}H_{4}$	146 ± 11	1			
$\Pi^{+} = C_6 H_6$	259 ± 9	1	(6) Group 6	220 1 10	1
Ti+ U.O	117.7 ± 5.8	1	$(CO)_{6}CF^{-}H$	230 ± 10	1
\mathbf{T}_{2}	137.7 ± 3.9	1	$(1 - C_5 n_5)(NO)(CO)_2 CF - 11$	207.1 ± 14	1
TI -INII	400 ± 12	1	$Cr = \Pi_2$	31.0 ± 2.1	1
	330 ± 13 107 ± 7	1		294 ± 29	1
Tit-pyriding	197 ± 7 217.2 ± 0.2	1		210 ± 4	1
Ti+_imidazole	$< 232.4 \pm 9.3$	1	$Cr^{+}-CH$	110 ± 4 170 ± 10	1
7 r ⁺ _CH	568 ± 13	1	Cr^{+} -indole	170 ± 10 196.6 ± 16.7	1
Zr ⁺ _CH	303 ± 13	1	$\mathbf{C}\mathbf{r}^{+}=\mathbf{C}\mathbf{O}$	100.0 ± 10.7	1
$\mathbf{Z}\mathbf{r}^{+}$ -CH	2277 ± 96	1	Cr*-OH	298 ± 14	1
$\mathbf{Z}\mathbf{r}^{+}-\mathbf{C}\mathbf{H}$	227.7 ± 9.0 273 ± 14	1	Cr*-H 0	1326 ± 88	1
$\mathbf{Z}\mathbf{r}^{+}-\mathbf{C}\mathbf{O}$	273 ± 14 77 + 10	1	$Cr^{+}-N$	132.0 ± 0.0 59 + 4	1
Zr - CS	257.6 ± 10.6	1		183 ± 10	1
Hf ⁺ -CH	492.1 ± 14.5	2	$(CO) Mo^+-H$	260 ± 9	1
Hf ⁺ -CH	4216+68	2	Мо ⁺ -СН	513.3 ± 13.5	1
Hf ⁺ -CH	$2.04.5 \pm 25.1$	2	Mo ⁺ -CH	344.4 + 10	1
Hf^+-CH	150.6	-	Mo ⁺ -CH	151.5 ± 8.7	1
	100.0	-	Mo ⁺ -CO	193.9 ± 9.6	1
(5) Group 5			Mo *-CO	49.2 ± 7	1
(CO) ₆ V ⁺ -H	220 ± 14	1	Mo ⁺ -CS	162 + 18	1
$V^{+}-H_{2}$	42.7 ± 2.1	1	Mo ⁺ -CS	67.5 ± 12.5	1
			2		

۲

9-93

۲

Bond	$Do_{98}^{2}/\text{kJ} \text{ mol}^{-1}$	Ref.	Bond	$Do_{98}^2/{\rm kJ}~{\rm mol}^{-1}$	Ref.
Mo*–NH	<385	1	$Fe^{+}-N_{2}$	53 ± 4	1
Mo ⁺ -pyrrole	>289	1	Fe ⁺ -NH ₃	184 ± 12	1
(CO) ₆ W⁺−H	257 ± 9	1	Fe ⁺ -CS ₂	166.1 ± 4.6	1
W+-CH	580 ± 27	1	Fe ⁺ –imidazole	246.1 ± 13.8	1
$W^{+}-CH_{2}$	456.4 ± 5.8	1	Fe ⁺–SiH	254 ± 13	1
W ⁺ -CH ₃	\sim 222.9 \pm 9.6	1	Fe ⁺ -SiH ₂	181 ± 9	1
(PMe ₃) ₃ (CO) ₃ W ⁺ -H	259.4	1	Fe ⁺ -SiH ₃	183 ± 9	1
W⁺–pyrrole	>209	1	$\mathbf{Ru}^{*}(\eta^{5}-\mathbf{C}_{5}\mathbf{H}_{5})_{2}-\mathbf{H}$	292 ± 16	1
			$(\eta^{5}-C_{5}Me_{5})_{2}Ru^{+}-H$	284.5	1
(7) Group 7	152 10	1	Ru ⁺−CH	501.7 ± 11.6	1
(CO) ₅ MIN ⁻ -H	$1/2 \pm 10$	1	$\mathbf{Ru}^{+}-\mathbf{CH}_{2}$	344.4 ± 4.8	1
$Mn^{+}-H_{2}$	7.9±1.7	1	$\mathbf{Ru}^{+}-\mathbf{CH}_{3}$	160.2 ± 5.8	1
Mn^+-CH_2	295 ± 13	1	Ru+–CS	253 ± 20	1
$Mn' - CH_3$	215 ± 10	1	OsO ₄ ⁺ -H	552 ± 13	1
$Mn^{+}(CO)_{5} - CH_{3}$	132 ± 15	1			
$\operatorname{Mn}^{+}(\operatorname{CO})_{5}^{-}\operatorname{CH}_{4}$	>30	1	(9) Group 9	045 10	1
$\mathbf{Mn}^{+} - (\eta^{3} - C_{5}\mathbf{H}_{5})$	326.1 ± 9.6	1	$(\Pi^3 - C_5 H_5)(CO)_2 CO^4 - H$	245 ± 12	1
$\mathbf{Mn}^{+} - \mathbf{C}_{6}\mathbf{H}_{6}$	145 ± 10	1	(CH ₃ OD)Co ⁺ -H	147.6 ± 7.7	1
Mn ⁺ -OH	332 ± 24	1		76.1 ± 4.2	1
Mn ⁺ -CO	25 ± 10	1	$(\eta^{3}-C_{5}H_{5})Co^{*}-H_{2}$	67.8	1
$Mn^{+}-H_{2}O$	121.8 ± 5.9	1	Co ⁺ -CH	420 ± 37	1
Mn^+-CH_3OH	134 ± 29	1	Co ⁺ -CH ₂	317 ± 5	1
$\mathbf{Mn}^* - \mathbf{OC(CH}_3)_2$	159 ± 14	1	Co ⁺ -CH ₃	203 ± 4	1
Mn ⁺ -CS	80.0 ± 21	1	Co ⁺ -CH ₄	96.7	1
Mn^+-NH_2	254 ± 20	1		243 ± 67	1
$\mathbf{Mn}^{+}-\mathbf{NH}_{3}$	147 ± 8	1		$1/3.7 \pm 6.7$	1
$\mathbf{Tc}^{+}-\mathbf{CH}_{2}$	<464	1	$Co^{+}-H_{2}O$	164.4 ± 5.9	1
$\mathbf{Ic}^* - \mathbf{C}_2 \mathbf{H}_2$	<320	1	Co [*] -CS	259 ± 33	1
$\operatorname{Re}^{*}(\operatorname{CH}_{3})(\operatorname{CO})_{5}-\operatorname{H}$	294 ± 13	1		96.2 ± 7.1	1
$(PMe_3)(CO)_2Ke^+-H$	300.4	1	Co ⁺ -NH ₂	247 ± 7	1
(8) Group 8			Co [*] -NH ₃	219 ± 16	1
Fe ⁺ (O)–H	444 ± 17	1	$Co^* - CH_3CN$	$>255 \pm 17$	1
Fe ⁺ (CO)–H	120 ± 23	1	$Co^{+}-P(CH_{3})_{3}$	$2/8 \pm 11$	1
$Fe^{+}(H_2O)-H$	215 ± 14	1	$Co^{+}-P(C_2H_5)_3$	339±16	1
$Fe^{+}(\eta^{5}-C_{5}H_{5})-H$	193 ± 21	1	$(CH)Kh^{2}-H$	$3/2 \pm 21$	1
$(CO_2)_5 Fe^+ - H$	299 ± 15	1	$(\eta^{3}-C_{5}H_{5})(CO)_{2}Kh^{2}-H$	287 ± 12	1
Fe ⁺ -H ₂	45.2 ± 2.5	1	Rh*-CH	444 ± 12	1
Fe ⁺ CH	423 ± 29	1		356 ± 8	1
Fe ⁺ -CH ₂	$\leq 342 \pm 2$	1		142±6	1
Fe ⁺ -CH ₃	229 ± 5	1		167 ± 21	1
$Fe^{+}-CH_{4}$	73.2	1	$K\Pi^{-}$ - CS	234 ± 19	1
$\mathbf{Fe}^{+}-\mathbf{C}_{2}\mathbf{H}_{2}$	159.0 ± 2.1	1	$(CO)(1)^2 - C_5 H_5)(PPH_3)IF - H$	208.2	1
$\mathbf{Fe}^{+}-\mathbf{C}_{2}\mathbf{H}_{3}$	238 ± 10	1		298.3	1
$\mathbf{Fe}^{+}-\mathbf{C}_{2}\mathbf{H}_{4}$	145 ± 11	1	IF CH	666.7 ± 22.2	3
$\mathbf{Fe}^{+}-\mathbf{C}_{2}\mathbf{H}_{5}$	233 ± 9	1		4/4./ ± 2.9	3
$\mathbf{Fe}^{+}-\mathbf{C}_{2}\mathbf{H}_{6}$	64 ± 6	1		$313.0 \pm 1/.4$	3 1
Fe ⁺ -OH	366 ± 12	1	$\Pi^{-} - C_2 \Pi_4$	234.3	1
Fe ⁺ -CO	129.3 ± 3.9	1	(10) Group 10		
Fe ⁺ D–CO	53 ± 13	1	(CO) ₄ Ni ⁺ -H	248 ± 9	1
$Fe^{+}-CO_{2}$	74.3 ± 7.7	1	$(\eta^{5}-C_{5}H_{5})(NO)Ni^{+}-H$	315 ± 14	1
Fe^+-H_2O	128.9 ± 0.8	1	$(\eta^{5}-C_{5}H_{5})(\eta^{5}-C_{5}H_{5})Ni^{*}-H$	215 ± 13	1

K11100_S09.indb 94

۲

9-94

2/23/10 5:29:46 PM

۲

9-95

Bond	$Do_{98}^{2}/\text{kJ mol}^{-1}$	Ref.	Bond	$Do_{98}^{2}/kJ \text{ mol}^{-1}$	Ref.
Ni ⁺ -H ₂	72.4 ± 1.3	1	$Ag^{+}-O_{2}$	29.7 ± 0.8	1
Ni ⁺ -CH	301.0 ± 11.6	1	Ag ⁺ -CO	89 ± 5	1
Ni ⁺ -CH ₂	306 ± 4	1	$Ag^{+}-H_{2}O$	134 ± 8	1
Ni ⁺ -CH ₃	169.8 ± 6.8	1	Ag ⁺ -CS	152 ± 20	1
Ni ⁺ -CH ₄	96.5 ± 4	1	$Ag^{+}-NH_{3}$	170 ± 13	1
Ni ⁺ -OH	235 ± 19	1	Au^+-CH_2	357.0 ± 6.8	5
Ni*-CO	175 ± 11	1	Au ⁺ -CH ₃	209.4 ± 23.2	5
Ni ⁺ -CO ₂	104 ± 1	1	$Au^+-C_2H_4$	344.5	1
$Ni^{+}-H_{2}O$	183.7 ± 3.3	1	$Au^+ - C_6H_6$	289 ± 29	1
Ni ⁺ -CS	234.5 ± 9.6	1	Au ⁺ -CO	201 ± 8	1
Ni ⁺ -N ₂	110.9 ± 10.5	1	Au^+-H_2O	164.0 ± 9.6	1
Ni*–NO	227.6 ± 7.5	1	Au^+-H_2S	230 ± 25	1
Ni*–NH ₂	232.5 ± 7.7	1	Au ⁺ -NH ₃	297 ± 29	1
Ni ⁺ -NH ₃	238 ± 19	1	Au ⁺ –PH ₃	402 ± 33	1
Pd ⁺−CH	536 ± 10	1	(10) (7 10		
$\mathbf{Pd}^{+}-\mathbf{CH}_{2}$	463 ± 3	1	(12) Group 12	15 7 1 1 7	1
Pd ⁺ -CH ₃	258 ± 8	1	$\mathbf{Z}\mathbf{n}^{*}-\mathbf{H}_{2}$	15.7 ± 1.7	1
$\mathbf{Pd}^{+}-\mathbf{CH}_{4}$	170.8 ± 7.7	1	$\mathbf{Zn}^{+}-\mathbf{CH}_{3}$	280 ± 7	1
Pd*–CS	200 ± 14	1	Zn ⁺ -OH	127.2	1
$\mathbf{Pd}^{+}-\mathbf{C}_{2}\mathbf{H}_{2}$	$>28.9\pm4.8$	1	$\mathbf{Z}\mathbf{n}^{+}-\mathbf{H}_{2}\mathbf{O}$	163	1
Pt^+-H_2	146.7 ± 11.6	1	Zn ⁺ -NO	76.2 ± 9.6	1
Pt+-CH	536.4 ± 9.6	1	$\mathbf{Z}\mathbf{n}^{+}$ -pyrimidine	209.6 ± 7.7	1
$Pt^{+}-CH_{2}$	471	1	$Zn^{+}-CS$	149 ± 23	1
Pt^+-CH_3	257.6 ± 7.7	1	$Cd^{+}-CH_{3}$	228 ± 3	1
$Pt^{+}-CH_{4}$	170.8 ± 7.7	1	$Cd^*(CH_3) - CH_3$	109 ± 3	1
Pt^+-O_2	64.6 ± 4.8	1	$Cd^{+}-C_{6}H_{6}$	136 ± 19	1
Pt+-CO	218.1 ± 8.7	1	Hg^+-CH_3	285 ± 3	1
Pt^+-CO_2	59.8 ± 4.8	1	$Hg^{+}(CH_{3})-CH_{3}$	96 ± 3	1
$Pt^{+}-NH_{3}$	274 ± 12	1	(13) Group 13		
$\mathbf{Pt}^{+}-\mathbf{C}_{2}\mathbf{H}_{4}$	229.7	1	B ⁺ -H ₂	15.9 ± 0.8	1
(11) Crown 11			HB^+-H_2	61.5 ± 2.1	1
(11) Group 11	510 ± 0.4	1	$(CH_3)_2B^+-CH_3$	32.6 ± 4.2	1
	51.9 ± 0.4	1	Al ⁺ -H ₂	5.6 ± 0.6	1
	207.3 ± 0.8	1	Al*-N ₂	5.6	1
	111 ± 7	1	Al ⁺ -CO ₂	≥29.3	1
$Cu^{+}-C_{2}\Pi_{2}$	$>21.2 \pm 9.0$ 176 ± 14	1	Al ⁺ -H ₂ O	104 ± 15	1
$Cu^{+} C H$	170 ± 14	1	Al*–MeOH	139.7	1
$Cu^{+}-C_{6}\Pi_{6}$	218.0 ± 9.0	1	Al+-EtC(O)Et	191.2	1
Cut N	149 ± 7	1	$Al^+-C_6H_6$	147.3 ± 8.4	1
$Cu = N_2$	39 ± 30	1	Al*–pyridine	190.3 ± 10.3	1
	109.0 ± 4.8	1	Al ⁺–phenol	154.8 ± 16.7	1
$Cut = \Pi_2 O$	100.7 ± 7.5 102 ± 12	1	Al*–imidazole	232.4 ± 8.2	1
$Cu = NH_2$	192 ± 15 227 ± 15	1	Ga ⁺ -NH ₃	122.5	1
Cu^{+} CS	237 ± 13	1	In ⁺ -NH ₃	111.0	1
Cu ⁺ -SiH	230.3 ± 11.0 246 ± 27	1	(14) Crown 14		
Cu+_SiH	270 ± 27 >231 + 7	1	(14) Group 14	055 + 15	1
Cu ⁺ -SiH	-2.31 ± 7 97 + 25	1	$C_{58} - C_{2}$	700 ± 10 5	1
$\Delta \alpha^+ - CH$	27 ± 23	1	$C_{60} - C_2$	022.0 ± 12.5	1
$\Lambda g^+ - CH$	-107 ± 4	1	$C_{62} - C_2$	040.2 ± 10.6	1
$\Lambda_{\mathbf{g}} = C \Pi_{3}$	65.0 ± 4.0	1	$U_{78} - U_2$	938.8 ± 10.6	1
$\Lambda_{\mathbf{g}} = \mathbb{C}_2^{\Pi_5}$	167 ± 10	1		5/4./49	1
$ng = C_6 I_6$	107 1 19	T	$C_6 H_5 - H$	$3/6.3 \pm 4.8$	1

۲

۲

Bond	$Do_{98}^2/kJ \text{ mol}^{-1}$	Ref.	Bond	$Do_{98}^2/{\rm kJ}~{\rm mol}^{-1}$	Ref.
$C_2H_3^+-Cl$	249 ± 1.0	7	$C_{6}F_{6}^{+}-C_{6}F_{6}$	30.1 ± 4	1
$C_2H_5^+-Br$	206.3 ± 1.0	7	$C_{60}^{+}-C_{60}^{+}$	35.89 ± 7.72	1
$C_6H_5^+-Br$	266.3	1	PhSiH ₂ ⁺ -H	159	1
$C_{2}H_{3}^{+}-I$	196.2 ± 1.4	7	Si ⁺ (CH ₃) ₃ -Cl	178.5 ± 1.9	1
$CH_{3}^{+}-H_{2}^{-}$	186	1	SiH ₃ ⁺ -CO	≥151	1
$CH_{5}^{+}-H_{2}$	7.9 ± 0.4	1	SiF ₃ ⁺ -CO	174.1 ± 1.3	1
$C_{2}H_{5}^{+}-H_{2}$	17	1	(CH ₃) ₃ Si ⁺ -H ₂ O	125.9 ± 7.9	1
CH ₃ ⁺ -O ₂	80 ± 7	4	$(CH_3)_3Si^+-NH_3$	194.6	1
$CO^{+}-N_{2}$	67.5 ± 19.3	1	Si ⁺ (CH ₃)(Cl) ₂ -CH ₃	60.8 ± 2.9	1
$H_2CH^+-N_2$	31.8	1	Si ⁺ (CH ₃) ₂ (Cl)–CH ₃	41.5 ± 1.9	1
CO+-CO	173.7 ± 14.6	1	Si ⁺ -CH ₃	413.9 ± 5.8	1
CO ⁺ (CO)–CO	52.3	1	Si ⁺ (CH ₃)-CH ₃	123 ± 48	1
CO ⁺ (CO) ₂ –CO	30.2	1	Si ⁺ (CH ₃) ₂ -CH ₃	513 ± 27	1
CO ⁺ (CO) ₃ –CO	18.4	1	Si ⁺ (CH ₃) ₃ -CH ₃	66.6 ± 5.8	1
$(CO_2)^+ - CO_2$	70.3	1	(CH ₃) ₃ Si ⁺ -CH ₃ OH	164.0	1
(CO ₂)*(CO ₂)-CO ₂	34.7	1	$(CH_3)_3Si^+ - (C_2H_5)_2O$	184.9	1
$(CO_2)^+(CO_2)_2^CO_2$	21.3	1	$(CH_3)_3Si^+-C_6H_6$	100.0	1
$(CO_{2})^{+}(CO_{2})_{3}-CO_{2}$	20.1 ± 1.3	1	(CH ₃) ₃ Si ⁺ -CH ₃ NH ₂	231.8	1
CH ₃ ⁺ -N ₂ O	221.3	1	(CH ₃) ₃ Ge ⁺ -H ₂ O	119.7 ± 2.1	1
CH ₃ ⁺ -SO ₂	253.6	1	$(\mathbf{C}_{2}\mathbf{H}_{5})_{3}\mathbf{G}\mathbf{e}^{+}-\mathbf{H}_{2}\mathbf{O}$	104.2 ± 2.1	1
CH ₃ ⁺ -OCS	239.3	1	(CH ₃) ₃ Sn ⁺ -NH ₃	154	1
CH ₃ ⁺ -CS ₂	251.9	1	(CH ₃) ₃ Sn ⁺ -H ₂ O	108	1
CH ₃ ⁺ -H ₂ O	279	1	(CH ₃) ₃ Sn ⁺ -(CH ₃) ₂ CO	157	1
CH ₃ ⁺ (H ₂ O)–H ₂ O	106.3	1	$(CH_3)_3Sn^+-C_3H_5SH$	143	1
CH ₃ ⁺ (H ₂ O) ₂ –H ₂ O	87.9	1	Pb ⁺ −H ₂ O	93.7	1
CH ₃ ⁺ (H ₂ O) ₃ -H ₂ O	61.9	1	Pb ⁺ -NH ₃	118.4 ± 0.8	1
CH ₃ ⁺ (H ₂ O) ₄ -H ₂ O	48.5	1	Pb ⁺−CH ₃ OH	97.5 ± 0.8	1
CH ₃ ⁺ -H ₂ S	344.8	1	Pb ⁺ -CH ₃ NH ₂	148.1 ± 1.3	1
CH ₂ ⁺ -CH ₂ O	303.0 ± 2.9	1	$\mathbf{Pb}^{+}-\mathbf{C}_{6}\mathbf{H}_{6}$	110 ± 2	1
CH ₃ ⁺ -NH ₃	431.4	1			
(CH ₃) ⁺ -CH ₃	209.2 ± 4.2	1	(15) Group 15		_
CH ₃ ⁺ -CH ₄	166.5	1	H_2N^+-H	544.43 ± 0.10	1
CF ₃ ⁺ -CH ₄	19.0	1	$H_{3}N^{+}-H$	515.1	1
(CH ₅) ⁺ -CH ₄	28.7 ± 1.3	1	Me ₃ N ⁺ −H	376	1
$\mathbf{C}_{6}\mathbf{H}_{6}^{+}-\mathbf{C}\mathbf{H}_{4}$	12.0	1	Et ₃ N ⁺ -H	362	1
CH ₃ ⁺ -CH ₃ F	230	1	(imidazole) ⁺ –Zn	216.1 ± 3.9	1
CH ₃ ⁺ -CF ₃ Cl	221	1	$N_2H^+-H_2$	24.7 ± 0.8	1
CH ₃ ⁺ -CH ₃ Cl	259	1	ON*-O ₂	14.2	1
<i>tert</i> -C ₄ H ₉ ⁺ -CH ₃ OH	63	1	N*-N ₂	303.8	1
tert-C ₄ H ₉ ⁺ -CH ₃ CN	85	1	ON*-N ₂	21.3	1
$tert-C_4H_9^+-SO_2F_2$	43.5	1	N ₂ ⁺ -N ₂	102.3 ± 14.6	1
$CH_3^+-C_2H_3O$	338.7 ± 2.9	1	$HN_2^+ - N_2$	60.7	1
CH ₃ ⁺ -CF ₃ ClOCl	252	1	N ₃ ⁺ -N ₂	18.8 ± 1.3	1
$tert - C_4 H_9^+ - (CH_3)_2 S$	185	1	$O_2N^+-N_2$	19.2 ± 1.3	1
<i>tert-C</i> ₄ H ₉ ⁺ -C ₂ H ₅ OH	85	1	$H_4N^*-N_2$	54 ± 21	1
$tert-C_4H_9^+-C_3H_8$	27.6	1	ON+-NO	59.4 ± 0.8	1
$tert-C_4H_9^+-t-C_4H_9Cl$	339	1	UN*-CO	27.2 ± 1.3	1
tert-C ₄ H ₉ ⁺ -(CH ₃) ₃ CH	30.1	1	$ON^{+}-O_{3}$	<58	1
$tert-C_4H_9^+-C_6H_6$	92	1	ON^*-CO_2	32.2	1
$(C_6H_6)^+ - C_6H_6$	73.6	1	$N_2 O^* - ON_2$	72.8 ± 6.3	1
(C ₆ H ₆) ⁺ –indole	54.8	1	$NO^{+}-ON_{2}$	36.4 ± 0.8	1
			$(HON_2)^+ - ON_2$	69.9 ± 4	1

K11100_S09.indb 96

2/23/10 5:29:49 PM

Bond Dissociation Energies

Bond	<i>Do</i> ² ₉₈ /kJ mol ⁻¹	Ref.	Bond	$Do_{98}^2/kJ \text{ mol}^{-1}$	Ref.
ON^+-H_2O	95	1	(H ₃ O)*–CO ₂	64.0	1
ON ⁺ (H ₂ O)–H ₂ O	67.4	1	(H ₃ O) ⁺ (CO ₂)−CO ₂	51.9	1
ON ⁺ (H ₂ O) ₂ –H ₂ O	56.5	1	(H ₃ O) ⁺ (CO ₂) ₂ –CO ₂	43.9	1
$H_4N^+-H_2O$	86.2 ± 4.2	1	(H ₃ O) ⁺ (CO ₂) ₃ -CO ₂	18.0	1
$H_4N^+(H_2O)-H_2O$	72.8 ± 4.2	1	O ₂ ⁺ -ON ₂	56.1 ± 4	1
$H_4N^+(H_2O)_2-H_2O$	57.3 ± 4.2	1	(H ₃ O)*-ON ₂	70.7 ± 6.5	1
$H_4N^+(H_2O)_3-H_2O$	51.0	1	(H ₃ O)⁺(H ₂ O)−ON ₂	50.6 ± 2.1	1
$H_4N^+(H_2O)_4-H_2O$	44.4	1	(H ₃ O) ⁺ (H ₂ O) ₂ -ON ₂	42.7 ± 2.1	1
(glycine)H ⁺ -H ₂ O	77.2 ± 11.0	1	O ₃ *-O ₃	67.5 ± 39	1
(tryptophan)H ⁺ -H ₂ O	31.2 ± 2.5	1	OCIO+–OCIO	246 ± 48	1
(tryptophanylglicine)H ⁺ -H ₂ O	56.0 ± 5.3	1	$O_{2}^{+}-H_{2}O$	>67	1
$H_4N^+-H_2S$	47.7	1	$(OH)^{+}(H_2O)_2 - H_2O$	87.4	1
H ⁺ (NH ₃)–NH ₃	108.8	1	$(OH)^+(H_2SO_4)(H_2O)_4-H_2O$	56.9	1
$H^{+}(NH_{3})_{2}-NH_{3}$	69.5	1	$(OH)^+(H_2SO_4)(H_2O)_5-H_2O$	49.8	1
$H^{+}(NH_{3})_{3}-NH_{3}$	57.3	1	$(OH)^+(H_2SO_4)(H_2O)_6-H_2O$	44.8	1
$H^{+}(NH_{3})_{4}-NH_{3}$	49.0	1	(H ₂ O)⁺−H ₂ O	164.0	1
$H^{+}(NH_{3})_{5}-NH_{3}$	29.3	1	(H ₃ O)*–H ₂ O	140.2	1
$H^{+}(NH_{3})_{6}-NH_{3}$	27.2	1	$(H_3O)^*(H_2O)-H_2O$	93.3	1
NH ₄ ⁺ -CH ₄	15.0	1	(H ₃ O) ⁺ (H ₂ O) ₂ − H ₂ O	71.1	1
ON+-CH ₃ OH	97.6	1	(H ₃ O) ⁺ (H ₂ O) ₃ − H ₂ O	64.0	1
O ₂ N ⁺ -CH ₃ OH	80.3 ± 9.6	1	(H ₃ O) ⁺ (H ₂ O) ₄ – H ₂ O	54.4	1
(CH ₃ CNH) ⁺ -CH ₃ CN	130.1 ± 9.6	1	(H ₃ O) ⁺ (H ₂ O) ₅ − H ₂ O	49.0	1
(pyridineH)*-pyridine	105.4 ± 4	1	(H ₃ O) ⁺ (H ₂ O) ₆ −H ₂ O	43.1	1
(valine H)+-valine	86.6 ± 8.4	1	(HCOOH)H ⁺ –H ₂ O	100.8	1
(betainH) ⁺ –betaine	139.9 ± 4.8	1	CH ₃ OH ₂ ⁺ -H ₂ O	115.6	1
$\mathbf{H}_{4}\mathbf{P}^{+}-\mathbf{H}_{2}\mathbf{O}$	54.4	1	CH ₃ CHOH ⁺ -H ₂ O	104.6	1
(H ₄ P)⁺−PH ₃	48.1	1	(CH ₃) ₂ OH ⁺ -H ₂ O	100.4	1
AsH ₂ ⁺ -H	257	1	(tetrahydrofuranH) ⁺ –H ₂ O	82.8	1
I ₂ As ⁺ -acetone	106 ± 17	1	$(furanH)^{+}-H_{2}O$	43.5	1
I ₂ As ⁺ –benzene	77 ± 17	1	furane ⁺ –H ₂ O	41.0	1
Bi^+-H_2O	95.4	1	(phenol) ⁺ -H ₂ O	78.0	1
$Bi^{+}-NH_{3}$	149	1	$(1-naphthol)^{+}-H_{2}O$	66.4	1
$Bi^{+}-C_{6}H_{6}$	≤149	1	$H_3O^+-HC(O)H$	137.7	1
(16) Course 16			$H_3O^+-NH_3$	229.3	1
(16) Group 16	14.6 ± 2.1	1	$H_3O^+(NH_3)-NH_3$	77.0	1
$(\mathbf{H}_3\mathbf{O})^* - \mathbf{H}_2$	14.0 ± 2.1	1	$H_{3}O^{+}(NH_{3})_{2}$ -NH ₃	71.5	1
$0^{+} - 0_{2}$	179.5	1	$H_3O^+(NH_3)_3$ - NH_3	62.8	1
$O(O_2)_1 - O_2$	20.9	1	$H_{3}O^{+}-PH_{3}$	144	1
$O(O_2)_2 = O_2$	20.2 ± 0.1	1	$H_3O^+-SO_3$	74	1
$O_2 = O_2$	36.3 ± 2.1	1	(HCOOH)*-HCOOH	96.5 ± 9.6	1
$O_2(O_2) - O_2$	24.0 ± 1.3	1	$H_3O^+-CH_4$	33.5	1
$O_2 (O_2)_2 = O_2$	10.4 ± 0.8	1	(CH ₃ OH) ⁺ –CH ₃ OH	115.8 ± 19.3	1
$O_2 (O_2)_3 - O_2$	9.0 ± 0.8	1	CH ₃ OH ₂ ⁺ -CH ₃ OH	136.4	1
$O_2 (O_2)_4 - O_2$	3.0 ± 0.8 7 0 + 1 2	1	$H_{3}O^{+}-CH_{3}CN$	195.4	1
$O_2 (O_2)_5 O_2$, ., <u> </u>	1	furan +–furan	94.1	1
$\mathbf{O}^{+}\mathbf{N}_{2}$	201. 1 226	1	BH ⁺ –B, B = tetrahydofuran	125.1	1
$(H O)^{+} - N$	22.0 22.0 + 2.1	± 1	S^+-CS_2	166	1
$(\Pi_3 O) = \Pi_2$ O +-N	12.2 ± 2.1	1	$CS^{+}-CS_{2}$	150.6	1
$\mathbf{v}_4 = \mathbf{v}_2$ $\mathbf{O}^+ = \mathbf{C} \mathbf{O}^-$	31.8	1	$CS_2^+-CS_2$	104.2	1
$0_{2} = 0.0$	41.0 + 2.1	± 1	$HCS_2^+-CS_2$	46.4	1
$C_2 = CO_2$	11.0 ± 2.1 65 3 + 4	1 1	$OS^{+}-SO_{2}$	57.7	1
$\overline{}_2$ $\overline{}_2$	55.0 ± r	-			

9-97

۲

۲

Bond	$Do_{98}^2/{\rm kJ}~{\rm mol}^{-1}$	Ref.	Bond	$Do^2_{98}/\mathrm{kJ}\ \mathrm{mol}^{-1}$	Ref.
$O_2S^+-SO_2$	63.6	1	He ⁺(He) ₂ −He	2.7 ± 0.6	1
OCS+-OCS	100.0	1	Ne ⁺ (Ne)–Ne	10.3 ± 0.6	1
OCS^+-CO_2	72.0	1	Ne ⁺ (Ne) ₂ –Ne	3.3 ± 0.6	1
SO ₂ ⁺ -CO ₂	42.7	1	Ar ⁺ (Ar)–Ar	20.4 ± 0.6	1
$H_3S^+-H_2O$	91.6	1	$\mathbf{Ar}^{+}(\mathbf{Ar})_{2}^{-}\mathbf{Ar}$	7.0 ± 0.6	1
thiopheneH ⁺ –H $_2O$	42.7	1	$Ar^{+}(N_{2})$ -Ar	25.1	1
$H_3S^+-H_2S$	53.6 ± 6.3	1	$Ar^{+}(N_{2})(Ar)$ -Ar	7.1	1
$H_3S^+-CH_4$	16.3	1	$Ar^{+}(N_{2})(Ar)_{2}$ -Ar	7.1	1
$(CH_3)_2Se^{+}-Se(CH_3)_2$	$\sim 95 \pm 3$	1	Kr⁺(Kr) −Kr	23.3 ± 0.6	1
$(CH_3)_2 Te^{+} - Te(CH_3)_2$	97 ± 2	1	$\mathbf{Kr}^{+}(\mathbf{Kr})_{2}^{-}\mathbf{Kr}$	9.0 ± 0.6	1
(17) Carrow 17			Xe ⁺ (Xe)–Xe	25.2 ± 0.6	1
(17) Group 17	> 100		$\mathbf{Xe}^{+}(\mathbf{Xe})_{2}^{-}\mathbf{Xe}$	11.0 ± 0.6	1
HF ⁺ -HF	≥138	1	$Ar^{+}-H_{2}$	93.7	1
$(H_2CI)^+ - CI$	39.6	1	$Ar^{+}-N_{2}$	127.6	1
HCI+-HCl	83.9	1	$Ar^{+}(N_{2})-N_{2}$	31.0	1
Cl^+-CCl_3	446.7 ± 9.6	1	$Ar^{+}(N_{2})$ – N_{2}	10.9	1
$Cl^{+}-C_{2}H_{3}$	685.0 ± 4.8	1	Ar ⁺ -CO	75 ± 17	1
HBr ⁺ –HBr	96	1	Ar ⁺ (CO)–CO	13	1
I ⁺ -CH ₃	330.0	1	Kr ⁺ -CO	103.3 ± 7.5	1
I ⁺ (CH ₃ I)–CH ₃	51.1	1	Kr [*] -CO	79.1 ± 2.9	1
$I^{+}(CH_{3}I)_{2}-CH_{3}$	112.9	1			-
(18) Group 18					
He ⁺ (He) ₁ –He	17.6	1			

۲

References

1. Luo, Y. R., Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, FL, 2007.

2. Parke, L. G., Hinton, C. S., and Armentrout, P. B., Int. J. Mass Spectrom. 254, 168, 2006.

3. Li, F.-X., Zhang, X.-G., and Armentrout, P. B., Int. J. Mass Spectrom. 255/256, 279, 2006.

4. Meloni, G., Zou, P., Klippenstein, S. J., Ahmed, M., Leone, S. R., Taatjes, C. A., and Osborn, D. L., J. Am. Chem. Soc. 128, 13559, 2006.

5. Li, F.-X., and Armentrout, P. B., J. Chem. Phys. 125, 133114/1, 2006.

6. Parke, L. G., Hinton, C. S., and Armentrout, P. B., J. Phys. Chem. C 111, 17773, 2007.

7. Shuman, N. S., Ochieng, M. A., Sztáray, B., and Baer, T., J. Phys. Chem. A 112, 5647, 2008.

9-98

۲

۲