Reliability of Interconnection Networks Modeled by Cartesian Product Digraphs

Chao Yang and Jun-Ming Xu
Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

We determine that the connectivity and the edge-connectivity of the Cartesian product \(G_1 \times G_2 \) of two strongly connected and finite digraphs \(G_1 \) and \(G_2 \) are equal to \(\min\{n_i \lambda_2, n_2 \lambda_1, \delta^+_i + \delta^-_i, \delta^+_2, \delta^-_1 + \delta^-_2\} \) and \(\min\{n_i \lambda_2, n_2 \lambda_1, \delta^+_i + \delta^-_i + \delta^+_2, \delta^-_1 + \delta^-_2\} \), respectively, where \(n_i, \lambda_1, \lambda_2, \delta^+_i, \delta^-_i \) are the order, the connectivity, the edge-connectivity, the minimum out-degree and the minimum in-degree of \(G_i \), respectively, for \(i = 1, 2 \).

Keywords: connectivity; edge-connectivity; Cartesian product digraphs

1. INTRODUCTION

Graph theory has become one of the most powerful mathematical tools in the analysis and study of the architecture of an interconnection network. It is well known that when the underlying topology of an interconnection network is modeled by a connected graph \(G = (V, E) \), where \(V \) is the set of processors and \(E \) is the set of communication links in the network, the connectivity \(\kappa(G) \) and the edge-connectivity \(\lambda(G) \) are two important features determining reliability and fault tolerance of the network. It is also well known that, for designing large-scale interconnection networks, the Cartesian product is an important method to obtain large graphs from smaller ones, with a number of parameters that can be easily calculated from the corresponding parameters for those small initial graphs. The Cartesian product preserves many nice properties such as regularity, existence of Hamilton cycles and Euler circuits, and transitivity of the initial graphs (see, e.g., [10]). In this note, we deal with the connectivity and the edge-connectivity of the Cartesian product of graphs.

We use the symbols \(n_i, \delta_i, \lambda_i, \) and \(\lambda_i \) to denote the order, the minimum degree, the connectivity, and the edge-connectivity of a graph \(G_i \), respectively, for \(i = 1, 2 \). In 1957, Sabidussi [8] first discussed the connectivity of the Cartesian product \(G_1 \times G_2 \) of two undirected graphs \(G_1 \) and \(G_2 \) and proved that \(\kappa(G_1 \times G_2) \geq \kappa_1 + \kappa_2 \) if \(G_1 \) and \(G_2 \) are connected. In 1998, Xu [9] generalized this result to strongly connected digraphs. In 1999, Chue and Shieh [4] proved that for connected undirected graphs \(G_1 \) and \(G_2 \), \(\lambda(G_1 \times G_2) \geq \lambda_1 + \lambda_2 \).

The authors [12, 13] completely determined the connectivity and the edge-connectivity of the Cartesian product of two connected undirected graphs \(G_1 \) and \(G_2 \): namely,

\[
\kappa(G_1 \times G_2) = \min\{n_1 \kappa_2, n_2 \kappa_1, \delta_1 + \delta_2\}, \\
\lambda(G_1 \times G_2) = \min\{n_1 \lambda_2, n_2 \lambda_1, \delta_1 + \delta_2\}.
\]

Very recently, Lu et al. [6] have further considered the super edge-connectivity of Cartesian product graphs.

Balbuena et al. [1] considered a generalization of the Cartesian product of graphs, the product graph \(G_1 \times G_2 \) of two undirected graphs \(G_1 \) and \(G_2 \), and obtained

\[
\kappa(G_1 \times G_2) \geq \min\{n_1 n_2, (\delta_1 + 1) \kappa_2, \delta_1 + \delta_2\}.
\]

Moreover, they stated some sufficient conditions that guarantee these product graphs to be maximally connected or superconnected.

Motivated by the technique in [1], in this note, we completely determine the connectivity and the edge-connectivity of the Cartesian product of two digraphs \(G_1 \) and \(G_2 \) as follows:

\[
\kappa(G_1 \times G_2) = \min\{n_1 \kappa_2, n_2 \kappa_1, \delta^+_1 + \delta^+_2, \delta^-_1 + \delta^-_2\}, \\
\lambda(G_1 \times G_2) = \min\{n_1 \lambda_2, n_2 \lambda_1, \delta^+_1 + \delta^-_2, \delta^-_1 + \delta^-_2\},
\]

where \(G_i \) is a strongly connected digraph with minimum out-degree \(\delta^+_i \) and minimum in-degree \(\delta^-_i \), for \(i = 1, 2 \).

The proofs of these results are in Section 3. In Section 2, we present some preliminaries and the definition of the Cartesian product of two digraphs.

2. PRELIMINARIES

We follow [11] for graph-theoretical terminology and notation not defined here. Let \(G = (V, E) \) be a strongly connected digraph. A subset \(S \subset V(G) \) (resp. \(B \subset E(G) \)) is said
to be a separating set (an edge-separating set) of \(G \) if \(G - S \) (resp. \(G - B \)) is not strongly connected. The connectivity of \(G \) is defined as \(\kappa(G) = \min |S| : S \text{ is a separating set of } G \) if \(G \) is not a complete digraph; and \(\kappa(G) = n - 1 \) if \(G \) is a complete digraph of order \(n \). The \textit{edge-connectivity} of \(G \) is defined as \(\lambda(G) = \min |B| : B \text{ is an edge-separating set of } G \).

Let \(D \) and \(D' \) be two disjoint nonempty proper subsets of \(V(G) \) or subgraphs of \(G \). The symbols \(N^+_D(G) \) and \(N^-_D(G) \) denote the set of out-neighbors of \(D \) and the set of in-neighbors of \(D \), \(E^+_D(G) \), and \(E^-_D(G) \) denote the set of out-going edges of \(D \) and the set of in-coming edges of \(D \), respectively, and \(E_G(D, D') \) denotes the set of edges with tails in \(D \) and heads in \(D' \). The following two facts are simple and useful for the proofs of our main results.

Remark 1. Let \(G \) be a digraph. If it is not strongly connected and has a finite number of strongly connected components, then \(G \) has at least two strongly connected components \(C \) and \(C' \) such that \(N^-_C(C) = \emptyset \) and \(N^-_C(C') = \emptyset \).

Remark 2. Let \(G \) be a digraph and let \(D \) be a nonempty proper subset of \(V(G) \). Then \(|D| + |N^-_G(D)| \geq \delta^- + 1 \) and \(|D| + |N^+_G(D)| \geq \delta^+ + 1 \). Also \(|D| + |E^+_G(D)| \geq \delta^+(G) + 1 \) and \(|D| + |E^-_G(D)| \geq \delta^-(G) + 1 \).

The Cartesian product digraph \(G_1 \times G_2 = (V, E) \) of digraphs \(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \) has the vertex set \(V = V_1 \times V_2 = \{xy : x \in V_1, y \in V_2\} \), and \((x_1, y_1, x_2, y_2) \in E \) if and only if either \(x_1 = y_1 \) and \((x_2, y_2) \in E_2 \) or \(x_2 = y_2 \) and \((x_1, y_1) \in E_1 \). Obviously, \(\delta^-(G_1 \times G_2) = \delta^-_1 + \delta^-_2 \) and \(\delta^+(G_1 \times G_2) = \delta^+_1 + \delta^+_2 \).

We now introduce some notations for convenience. For \(x \in V(G_1) \) and \(y \in V(G_2) \), the symbols \(G^2_x \) and \(G^1_y \) denote the subgraph of \(G_1 \times G_2 \) induced by \(\{x\} \times V(G_2) \) and \(V(G_1) \times \{y\} \), respectively. For a separating set \(S \) and an edge-separating set \(B \) of \(G_1 \times G_2 \), denote

\[
S_x = S \cap V(G^2_x), \quad S^y = S \cap V(G^1_y),
\]

\[
B_x = B \cap E(G^2_x), \quad B^y = B \cap E(G^1_y),
\]

\[
B_{xy} = B \cap E_G(G^2_x, G^1_y) \text{ if } (x, y) \in E(G_1).
\]

For a strongly connected component \(C \) of \(G - S \) (or \(G - B \)), denote

\[
C_1 = \{x \in V_1 : xy \in V(C) \text{ for some } y \in V_2\},
\]

\[
C_2 = \{y \in V_2 : xy \in V(C) \text{ for some } x \in V_1\}.
\]

Lemma 1. Let \(G_1 \) and \(G_2 \) be two strongly connected digraphs, \(S \) and \(B \) be a separating set and an edge-separating set of \(G_1 \times G_2 \), respectively, and \(C \) be a strongly connected component of \(G_1 \times G_2 - S \) (resp. \(G_1 \times G_2 - B \)) without out-neighbors. If \(C_1 \neq V_1 \), then there exists an edge \((x, x') \in E^+_G(C_1)\) such that

\[
|S_x| + |S_{x'}| \geq \delta^+_2 + 1 \quad \text{(resp. } |B_x| + |B_{x'}| \geq \delta^+_2 + 1\).
\]

Proof. Let \(G = G_1 \times G_2 \). Since \(C_1 \neq V_1 \) and \(G_1 \) is strongly connected, \(E^+_G(C_1) \neq \emptyset \) and there exist \(x \in C_1 \) and \(x' \in V_1 \setminus C_1 \) such that \((x, x') \in E^+_G(C_1)\). Let \(D = V(C) \cap V(G^2_1) \) and \(F = N^-_G(D) \cap V(G^1_2) \). Then

\[
N^+_G(D) \subseteq S_x, \quad F \subseteq S_{x'} \quad \text{(resp. } E^+_G(D) \subseteq B_x, \quad E_G(D, F) \subseteq B_{x'}\).
\]

since \(C \) has no out-neighbors in \(G - S \) (resp. \(G - B \)), which means that

\[
|S_x| + |S_{x'}| \geq |N^+_G(D)| + |F| \quad \text{(resp. } |B_x| + |B_{x'}| \geq |E^+_G(D)| + |E_G(D, F)|\).
\]

Note that \(|F| = |D| = |E_G(D, F)|\) since \((x, x') \in E(G_1)\). It follows from (2) that

\[
|S_x| + |S_{x'}| \geq |N^+_G(D)| + |D| \quad \text{(resp. } |B_x| + |B_{x'}| \geq |E^+_G(D)| + |D|\).
\]

It follows from (3) and Lemma 2 that

\[
|S_x| + |S_{x'}| \geq \delta^+_2 + 1 \quad \text{(resp. } |B_x| + |B_{x'}| \geq \delta^+_2 + 1\).
\]

as required.

3. MAIN RESULT

Theorem 1. For every two nontrivial strongly connected digraphs \(G_1 \) and \(G_2 \),

\[
\kappa(G_1 \times G_2) = \min \{n_1 \kappa_2, n_2 \kappa_1, \delta^+_1 + \delta^+_2, \delta^-_1 + \delta^-_2\}.
\]

Proof. Let \(G = G_1 \times G_2 \). Clearly,

\[
\kappa(G) \leq \min \{\delta^+_1, \delta^+_2\} = \min \{\delta^+_1 + \delta^+_2, \delta^-_1 + \delta^-_2\}.
\]

If \(G_2 \) is not a complete digraph, let \(S_0 \) be a minimum separating set of \(G_2 \). Then \(V_1 \times S_0 \) is a separating set of \(G \), which implies \(\kappa(G) \leq n_1 \kappa_2 \). If \(G_2 \) is a complete digraph, then \(\kappa_2 = \delta^+_2 \), therefore

\[
\kappa(G) \leq \delta^+_1 + \delta^+_2 \leq (\delta^+_1 + 1) \delta^+_2 \leq n_1 \kappa_2.
\]

By symmetry, we have \(\kappa(G) \leq n_2 \kappa_1 \).

So it remains to show

\[
\kappa(G_1 \times G_2) \geq \min \{\kappa_1 \kappa_2 n_1, \kappa_1 \kappa_2 n_2, \delta^+_1 + \delta^+_2, \delta^-_1 + \delta^-_2\}.
\]

Evidently, \(G \) is not a complete digraph since neither \(G_1 \) nor \(G_2 \) is trivial. Let \(S \) be a minimum separating set in \(G \).

Assume \(C_1 \neq V_1 \) and \(C_2 \neq V_2 \) for each strongly connected component \(C \) of \(G - S \). Then

\[
|S_x| \geq 1 \quad \text{for each } x \in V_1.
\]

Otherwise, there is a strongly connected component \(C' \) containing \(G^2_x \) for some \(x \in V_1 \), which implies \(C'_2 = V_2 \), a contradiction. Let \(C \) be a strongly connected component of \(G - S \) without out-neighbors. Since \(C_1 \neq V_1 \), by Lemma 1
there exist \(x \in C_1 \) and \(x' \in V_1 \setminus C_1 \) such that \(|S_x| + |S_{x'}| \geq \delta_2^+ + 1 \). It follows from (4) that

\[
|S| = |S_x| + |S_{x'}| + \sum_{z \in V_1 \setminus \{x, x'\}} |S_z| \\
\geq \delta_2^+ + 1 + (n_1 - 2) \\
\geq \delta_1^+ + 1 + (\delta_1^+ + 1) - 2 \\
= \delta_1^+ + \delta_2^+.
\]

Now, suppose there exists such a strongly connected component \(C \) of \(G - S \) where either \(C_1 = V_1 \) or \(C_2 = V_2 \). By symmetry, we can without loss of generality assume \(C_1 = V_1 \). By Lemma 1, let \(C' \neq C \) be a strongly connected component without out-neighbors in \(G - S \) (if \(C' \) has no in-neighbors, the proof is similar). Then

\[
|S_x| \geq \kappa_2 \quad \text{if} \quad x \in C'_1.
\]

If \(C'_1 = V_1 \), then from (5) we have

\[
|S| \geq \sum_{x \in C'_1 = V_1} |S_x| \geq n_1 \kappa_2.
\]

If \(C'_1 \neq V_1 \), then by Lemma 1 there exist \(x \in C'_1 \) and \(x' \in V_1 \setminus C'_1 \) such that \(|S_x| + |S_{x'}| \geq \delta_2^+ + 1 \). And we can also see that

\[
|S_z| \geq 1 \quad \text{for each} \quad z \in N^+_G(C'_1).
\]

It follows from (1), (6), and Lemma 2 that

\[
|S| \geq |S_x| + |S_{x'}| + \sum_{z \in C'_1 \setminus \{x, x'\}} |S_z| + \sum_{z \in N^+_G(C'_1) \setminus \{x'\}} |S_z| \\
\geq \delta_2^+ + 1 + |C'_1| - 1 + |N^+_G(C'_1)| - 1 \\
= \delta_1^+ + (|C'_1| + |N^+_G(C'_1)|) - 1 \\
\geq \delta_1^+ + \delta_2^+ - 1 \\
= \delta_1^+ + \delta_2^+.
\]

This completes the proof.

Corollary 1. ([13]) For every two nontrivial connected undirected graphs \(G_1 \) and \(G_2 \),

\[
\kappa(G_1 \times G_2) = \min\{n_1 \kappa_2, n_2 \kappa_1, \delta_1 + \delta_2\}.
\]

Theorem 2. For every two nontrivial strongly connected digraphs \(G_1 \) and \(G_2 \),

\[
\lambda(G_1 \times G_2) = \min\{n_1 \lambda_2, n_2 \lambda_1, \delta_1^+ + \delta_2^+, \delta_1^- + \delta_2^-\}.
\]

Proof. To prove the equality, we only need to prove that

\[
\lambda(G_1 \times G_2) \geq \min\{n_1 \lambda_2, n_2 \lambda_1, \delta_1^+ + \delta_2^+, \delta_1^- + \delta_2^-\}
\]

since the reverse inequality clearly holds. Let \(G = G_1 \times G_2 \) and \(B \) be a minimum edge-separating set of \(G \).

Suppose that \(C_1 \neq V_1 \) and \(C_2 \neq V_2 \) for each strongly connected component \(C \) of \(G - B \). Then

\[
|B_x| \geq 1 \quad \text{for each} \quad x \in V_1 \quad \text{and} \quad |B'_y| \geq 1 \quad \text{for each} \quad y \in V_2.
\]

Thus,

\[
|B| = \sum_{x \in V_1} |B_x| + \sum_{y \in V_2} |B'_y| \geq n_1 + n_2 \geq \delta_1^+ + \delta_2^+ + 2.
\]

Now, suppose there exists such a strongly connected component \(C \) of \(G - B \) where either \(C_1 = V_1 \) or \(C_2 = V_2 \). By symmetry, we can without loss of generality assume \(C_1 = V_1 \). Let \(C' \neq C \) be a strongly connected component without out-neighbors in \(G - B \). Note that

\[
|B_x| \geq \lambda_2 \quad \text{for} \quad x \in C'_1.
\]

If \(C'_1 = V_1 \), then from (7) we have

\[
|B| \geq \sum_{x \in C'_1 = V_1} |B_x| \geq n_1 \lambda_2.
\]

If \(C'_1 \neq V_1 \), then by Lemma 1 there exists an edge \((x, x') \in E^+_G(C'_1) \) such that \(|B_x| + |B_{x'}| \geq \delta_2^+ + 1 \). And we can also see that

\[
|B_x| \geq 1 \quad \text{for each} \quad e \in E^+_G(C'_1).
\]

It follows from (1), (8), and Lemma 2 that

\[
|B| \geq |B_x| + |B_{x'}| + \sum_{z \in C'_1 \setminus \{x, x'\}} |B_z| + \sum_{e \in E^+_G(C'_1) \setminus \{e'\}} |B_e| \\
\geq \delta_2^+ + 1 + |C'_1| - 1 + |E^+_G(C'_1)| - 1 \\
= \delta_1^+ + (|C'_1| + |E^+_G(C'_1)|) - 1 \\
\geq \delta_1^+ + (\delta_1^+ + 1) - 1 \\
= \delta_1^+ + \delta_2^+.
\]

This completes the proof.

Corollary 2. ([12]) For every two nontrivial connected undirected graphs \(G_1 \) and \(G_2 \),

\[
\lambda(G_1 \times G_2) = \min\{n_1 \lambda_2, n_2 \lambda_1, \delta_1 + \delta_2\}.
\]

4. REMARKS

It is well known that the Cartesian product \(G_1 \times G_2 \) of two graphs \(G_1 \) and \(G_2 \) gives an important method for designing large-scale interconnection networks. For example, the very popular, versatile, and efficient hypercube \(Q_n \) can be expressed as \(Q_n = K_2 \times K_2 \times \cdots \times K_2 \), where \(K_2 \) is a complete graph of order two. In this note, we completely determine the connectivity and the edge-connectivity of \(G_1 \times G_2 \) for two strongly connected digraphs \(G_1 \) and
G_2, which are equal to $\min\{n_1\kappa_2, n_2\kappa_1, \delta_1^+ + \delta_1^-, \delta_2^+ + \delta_2^-\}$ and $\min\{n_1\lambda_2, n_2\lambda_1, \delta_1^+ + \delta_1^-, \delta_2^+ + \delta_2^-\}$, respectively; these generalize two corresponding results for undirected graphs, namely Corollary 1 and Corollary 2. As another application, we immediately obtain $\kappa(Q_n) = \lambda(Q_n) = n$.

We note that Chartrand and Harary [3] introduced permutation graphs. For a graph G and a permutation π of $V(G)$, the permutation graph G^π is defined by taking two disjoint copies of G and adding a matching joining each vertex v in the first copy to $\pi(v)$ in the second copy. The connectivity and edge-connectivity of G^π were studied in [2, 5, 7]. It is clear that permutation graphs cannot contain the Cartesian product graphs. However, if we take π in G^π as the identity permutation, then the permutation graph $G^\pi = G \times K_2$.

We also note that Balbuena et al. [1] defined the product graph $G_1 \times G_2$ of two undirected graphs G_1 and G_2, which is a generalization of both the Cartesian product graphs and the permutation graphs. Thus, it is interesting to determine the connectivity and edge-connectivity of $G_1 \times G_2$.

REFERENCES

