Geometric and electronic structure of a C$_{60}$ monolayer on Ag(100)

Xieqiu Zhang, Wei He, Aidi Zhao, Hongnian Li, Lan Chen, Woei Wu Pai, Jianguo Hou, M. M. T. Loy, Jinlong Yang, and Xudong Xiao

Department of Physics and Institute of Nano Science and Technology, Hong Kong University of Science & Technology, Hong Kong
Heifei National Laboratory for Physical Sciences at Microscapes, University of Science and Technology of China, Hefei, Anhui 230026, China

Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan

Department of Physics, Chinese University of Hong Kong, Hong Kong, China

(Received 1 February 2007; revised manuscript received 21 April 2007; published 26 June 2007)

Using scanning tunneling microscopy and spectroscopy and first principles calculations, we have systematically studied the morphological and electronic structures of a C$_{60}$ monolayer on Ag(100). Our results reveal that the bright-dim contrast has a definite geometric origin and there are two types of dim C$_{60}$ molecules, one a monomer and the other a dimer. With distinctive electronic properties and distinctive charge transfers in the differently adsorbed C$_{60}$ molecules, this C$_{60}$ monolayer is highly inhomogeneous and aperiodic.

DOI: 10.1103/PhysRevB.75.235444 PACS number(s): 73.61.Wp, 68.37.–d, 68.55.–a, 68.43.Bc

INTRODUCTION

The adsorption of C$_{60}$ monolayers on metal and semiconductor surfaces has been extensively studied in the past. Among these adsorption systems, C$_{60}$ on Ag(100) has attracted particular attention. The widely quoted charge transfer of \sim2.7 electrons from the metal substrate to each C$_{60}$ molecule as observed in an electron energy loss spectroscopy (EELS) study has stimulated great interest in the possible two-dimensional superconducting states of this system. Analogous to the bulk fulleride superconductors C$_x$K$_y$C$_{60}$ (A=K,Cs), a charge transfer of three electrons to each C$_{60}$ molecule would lead to half-filling of the lowest-unoccupied-molecular-orbital (LUMO) band and thus would meet the essential requirement for a superconducting state.

The gap opening near the Fermi level observed through photoemission spectroscopy (PES) at temperatures as high as 250 K, although seriously challenged, was speculated to be evidence of the superconducting state of this system.

Scanning tunneling microscopy (STM) has been used to investigate this system intensively on its morphology, but rarely on its electronic property. In well-annealed C$_{60}$ monolayers, a bright-dim (BD) contrast was observed in STM images, indicating that there are at least two different kinds of C$_{60}$ adsorption. However, whether the origin of this contrast is from the electronic effect, the molecular orientation, or the geometric effect upon the Ag substrate reconstruction remains controversial up to today. Combined with careful examinations of low energy electron diffraction patterns, Pai et al. identified a completely different overlayer structure than the c(6×4) structure reported in the earlier studies. They found that C$_{60}$/Ag(100) forms an incommensurate and aperiodic (111) close-packed phase with only short-range order, in addition to a geometrical origin of BD contrast. However, only the molecular orientation difference instead of the geometric origin is appreciated in a more recent study with photoemission spectroscopy.

The early report of a charge transfer of $2.7e$/C$_{60}$ from Ag(100) (Ref. 8) has been challenged by a later PES study that reports $1.7e$/C$_{60}$ for a monolayer and by a calculation that reports an even lower value for an isolated C$_{60}$ molecule. To resolve the above issues, in this paper, we combine our STM studies with first principles calculations and explicitly show that the BD contrast in C$_{60}$/Ag(100) is mainly a geometric effect. Most importantly, we demonstrate that there are two kinds of dim (D) C$_{60}$ molecules: one as monomer and the other as dimer. The electronic properties and the charge transfers are found drastically different in differently adsorbed C$_{60}$ molecules and the resulting monolayer is highly aperiodic.

METHODS

Experiments. We performed our experiments at 77 K in an Omicron low temperature STM system with a base pressure $<1 \times 10^{-10}$ Torr. The local differential conductance (dI/dV) curves were obtained numerically from the measured I-V curves. A clean single crystal Ag(100) substrate (<0.1° miscut) was obtained by repetitive cycles of 1 keV Ar$^+$ sputtering and high temperature annealing at \sim750 K. The C$_{60}$ molecules were deposited at a rate of \sim0.1 ML/min at a substrate temperature of 600 K for 30 min, followed by additional 30 min of annealing at 600 K to remove any C$_{60}$ multilayers. The final surface was mostly covered by a full C$_{60}$ monolayer, with occasionally a little bare Ag(100) area left in a densely packed step region for checking the electronic states of the STM tips. As shown by Refs. 13 and 14, samples prepared by the above procedure have reached thermal equilibrium state in terms of inducing substrate reconstruction.

Simulations. To establish the links between our observations and the adsorption structures and charge states of different types of adsorbed C$_{60}$ molecules, we performed first-principles density functional theory calculations. A repeated-slab geometry that consisted of four layers of Ag, one layer of C$_{60}$, and a 10 Å vacuum spacer was used. Depending on the chosen configuration, each Ag layer consists of 24 to 35 Ag atoms and the C$_{60}$ layer consists of one to three molecules. Our calculations used the generalized gradient approximation with the Perdew, Burke, and Ernzerhof exchange-correlation functional.
exchange-correlation functional24 and the projector augmented-wave25,26 with a plane wave basis. The basis set cutoff was 400 eV. During the structural optimization, we fixed the atoms of the lower Ag layers in their bulk positions and only allowed the C\textsubscript{60} molecules and the top two layers of Ag atoms to fully relax until the forces were less than 50 meV/Å. To compare the results with experimental data, we present the partial density of states of the whole C\textsubscript{60} molecule and that of the topmost six C atoms within a circle of 4.4 Å, comparable with the finite tip size used in measuring the dI/dV spectra. While the experiments clearly showed no periodic structures for the C\textsubscript{60} monolayer on Ag\textsubscript{100}, in the simulations, we will have to use some kind of periodic structures that have a close similarity in spatial positions to the observations as detailed in the results section. All the calculations were performed on a super computer with 512 CPU nodes and some runs of the structural optimization have taken more than 20 days.

\section*{RESULTS AND DISCUSSION}

In Fig. 1, we show a number of STM images of the C\textsubscript{60} monolayer on Ag(001) taken at various bias voltages over the same area with a sharp tip. A number of features are noted. (i) There is a clear BD contrast among C\textsubscript{60} molecules at all biases. The number of bright and dim molecules as counted in an image with 540 molecules has a ratio of 37:63, comparable with results in Ref. 12. (ii) Among the dim C\textsubscript{60} molecules, there are two distinct types: one with a close dim neighbor separated by \textapprox 9.4 Å (labeled DD), forming a tetramer together with two bright neighbor C\textsubscript{60} molecules (labeled B), and the other with no close dim neighbor (labeled DM). The ratio of DD to DM molecules is 53:47. (iii) The internal C\textsubscript{60} molecular structures are clearly resolved at negative biases but only faintly noticeable at positive biases. As shown in Fig. 1(b), while the DD molecules show asymmetric nodal structures, the bright mol-
molecules show three lobes with two nonequivalent but nearly opposite orientations. This observation is consistent with that in Refs. 13 and 14 but somewhat different from that in Ref. 12. In the latter the clear internal features were reported only at +2 V but not at negative bias. (iv) Through a careful examination of all the STM images, we found that, either with or without the internal C\textsubscript{60} structure resolved, there is a bias-dependent BD contrast in all samples even when different tips are used [Fig. 1(e)]. The height difference is \approx1.1 Å at all negative biases but increases to \approx1.6 Å at higher positive biases.

To identify the adsorption structures of the different types of C\textsubscript{60} molecules, we used molecular-resolved scanning tunneling spectroscopy (STS) measurements. In order to avoid the position dependence of I-V spectra within the C\textsubscript{60} molecules,12,16 we used a blunt tip that was sharp enough to resolve individual C\textsubscript{60} molecules but blunt enough to average out the local density of states (DOS) without revealing the internal molecular structures [Fig. 2(a)], indicating a tip apex with comparable but smaller size than that of a C\textsubscript{60} molecule. In Fig. 2(b), a series of I-V spectra were taken following an order as indicated in Fig. 2(a) which is random among the three types of C\textsubscript{60} molecules. These I-V spectra surprisingly fall into three groups: those on the B molecules, those on the DM molecules, and those on the DD molecules. The same behaviors were routinely reproduced on different samples and with different tips. To assure the cleanliness of the tips, we checked the tip on the bare Ag regions before and after the measurements. In Fig. 2(c), the averaged differential conductance dI/dV curves for the three types of C\textsubscript{60} molecules together with that for bare Ag are plotted. Clearly, there are three main features for these molecules: first, a shoulder below -1.5 eV, corresponding to the highest occupied molecular orbital (HOMO), appears for all the molecules with only a small difference in the peak intensities; second, the LUMO+1 states around $+1.5$ eV for DM and DD, on the other hand, are very broad and show a shift towards the Fermi level from that of the B molecule; third, the major difference appears in the LUMO states. For B molecules, the LUMO shows a strong peak at \approx0.53 eV and a shoulder at \approx0.23 eV. For DM molecules, the strength of the LUMO peak at 0.53 eV is much reduced and becomes comparable to that at 0.15 eV. For the DD molecules, the spectrum in the range of -1.2 to $+1.0$ eV is practically flat. Our observations of B and DM C\textsubscript{60} molecules are consistent with those observed on Al(111) (Ref. 3) and those observed earlier on this surface.13,15 However, the dI/dV spectrum on DD molecules was observed quite differently from those on B and DM molecules. The electronic nonequivalency of the three types of C\textsubscript{60} molecules indicates that this monolayer is highly aperiodic aside from the overall close packing.14

Origin of the bright-dim contrast. Several mechanisms have been proposed to explain the BD contrast, including electronic effects,9 molecular orientations,11,15 and geometric effects upon the Ag substrate reconstruction.13,14 The dI/dV spectra shown in Fig. 2(c) indicate that the B and D molecules have practically the same electronic structure below the Fermi level. It is thus impossible to attribute the large BD contrast (≈1.1 Å) at negative biases to electronic effects. The larger height difference (≈1.6 Å) between the B and D molecules at positive biases [Fig. 1(e)] indicates that the difference in the LUMO electronic states indeed contributes to the BD contrast at positive biases.

As shown in Fig. 3, our calculation results from differently oriented C\textsubscript{60} molecules adsorbed in a $c(6\times4)$ unit cell (with spatial positions close to the STM images) on a perfect Ag(100) surface indicate that, either with the 5-6 bond (the bond between a pentagon and a hexagon) facing up, or with the 6-6 bond (the bond between two hexagons) facing up, or with an edge atom facing up (data not shown), or with some combination of them, both C\textsubscript{60}-DOS and 6C-DOS, although exhibiting some difference for the LOMO, LUMO, and LUMO+1 bands, do not show any agreement with experimental observations of the three types of dramatically different dI/dV curves [Fig. 2(c)]. The reason for considering C\textsubscript{60} molecules with either 5-6 or 6-6 bonds facing upward is from the majority of experimental observations.12-14 Therefore, purely different molecular orientations do not induce large enough differences in the electronic states to explain our experimental findings.

Thus, we must consider a model with local substrate reconstruction. While it has been agreed that the B molecule adsorbs on the nonreconstructed Ag(100) surface, it has been proposed that the D molecule adsorbs in a pit with four Ag atoms removed from the topmost substrate layer and one from the second layer (a five-atom pit, called Pit5).14 Placing an isolated C\textsubscript{60} molecule in such a pit (with either 6-6 bond or edge atom adsorption) indeed results in a broadening of the LUMO state and a shift of the LUMO and LUMO+1 states towards the Fermi level [Fig. 4(c)] as compared with the results of a C\textsubscript{60} molecule on perfect Ag(100) substrate (Pit0). Placing a C\textsubscript{60} molecule in the pit with neighboring C\textsubscript{60} molecules in a unit cell [Fig. 4(b), not a realistic unit cell but with positions similar to some local environment of the DM molecules in the STM images] retains the basic features of the isolated C\textsubscript{60} molecule [Fig. 4(d)], indicating that the interaction with the substrate is much stronger than with neighboring C\textsubscript{60} molecules and the basic electronic state features is dominated by the interaction with the substrate.
symmetry considerations, we have also considered other types of pits. Changing the pit to only one Ag atom (Pit1) removed from the topmost layer produces similar DOS to that of a C$_{60}$ molecule on a perfect surface (Pit0). A pit of only four Ag atoms (Pit4) removed from the topmost substrate layer can already result in similar DOS to that of Pit5.

FIG. 3. (Color online) Differently oriented C$_{60}$ adsorption configurations on perfect Ag(100) surface and their corresponding DOS (including C$_{60}$-DOS and 6C-DOS). (a) configurations with 5-6 bond facing up and (b) their corresponding C$_{60}$-DOS and 6C-DOS; (c) configurations with 6-6 bond facing up and (d) their corresponding C$_{60}$-DOS and 6C-DOS.

Comparing with experimental dI/dV spectra [replotted in the inset of Fig. 4(c)], we can thus assign the DM molecule as adsorbed in a four-atom or five-atom pit, confirming the geometric origin of the BD contrast. Thus, our results unambiguously support the suggestion that the apparent BD contrast has a dominant geometric origin, as concluded from the ob-
The calculated different electronic DOS for B and DM molecules indeed predicts a different BD contrast when imaged at either negative or positive bias voltages, consistent with experimental observation.

C₆₀-C₆₀ dimer. Bringing two C₆₀ molecules to a distance of ~9.3 Å might induce a strong interaction to form bonds. The shortest C₆₀-C₆₀ distance observed in the STM images is ~9.4 Å for the two neighboring DD molecules. We thus consider the possibility of dimerization of the DD molecules. Two kinds of dimers, one with a single-bond (DD-I) and another with a double-bond (DD-II) between the two C₆₀ molecules, were investigated by placing them into two neighboring five-atom pits with a separation of 8.67 Å along the [110] direction. Again, the chosen unit cell does not match the experimental observation but only mimics the local structure. The free-standing counterparts of these two dimers have been extensively studied previously using different level of theoretical approximations. The C₆₀-DOS and 6C-DOS are both plotted in Figs. 5(c) and 5(d). Compared to the DOS of a B molecule adsorbed on a perfect surface in the same unit cells, both dimers still show a pronounced HOMO peak at ~1.3 eV, but the LUMO+1 band is significantly broadened and only remains visible as a broad peak in the 6C-DOS. The LUMO band is also broadened and shifted towards the Fermi level in the C₆₀-DOS, but it becomes invisible in the 6C-DOS for DD-I. The difference in the 6C-DOS between DM and DD-I is that the LUMO band shows a small but visible peak for DM but no peaks for DD-I, indicating a stronger interaction between the two C₆₀ molecules in the dimer. While the nonrelaxed pits separate by only 8.67 Å, the C₆₀-C₆₀ distance for the two molecules in the relaxed geometry is found to be 9.26 Å for DD-I and 9.19 Å for DD-II. The good agreement between the calculated 6C-DOS and the dI/dV spectra, together with the good agreement in the C₆₀-C₆₀ distance, supports our proposed model of the formation of dimers, likely with a DD-I structure rather than a DD-II structure, although the calculation favors adsorption of the latter energetically to some extent.

The assignment of the DD-I instead of the DD-II structure to the DD molecule is further supported by the observed asymmetry in the nodal structure of the DD molecules [Fig. 4].
1(b)], namely, the two lobes in the same \(\text{C}_{60} \) molecule have different brightness and the images of the two \(\text{C}_{60} \) molecules within the same dimer have no mirror symmetry with respect to the plane bisecting them. As can be seen in Fig. 5(a), with the 6-6 bond facing upwards, this dimer DD-I indeed provides a broken symmetry between the two pentagons that are responsible for the two lobes in the nodal structure,12,14 consistent with the images. The observed asymmetry in Fig. 1 is not an artifact since no such asymmetry is found for DM in the same image and a similar asymmetry is observed in the orthogonally oriented domains. With the two \(\text{C}_{60} \) molecules sitting in two neighboring pits at a short distance of \(\sim 9.4 \) Å, comparable to the calculated equilibrium distance of 9.26 Å for \(\text{C}_{60} \) polymerization,27 it is not surprising that the surface strain energy and the thermal energy can induce dimerization.

Charge transfer. It is a challenge to analyze the charge transfer from \(dI/dV \) spectra that contain information only on the top portion of the \(\text{C}_{60} \) molecules. The charge transfer has often been estimated by the band-filling of the \(\text{C}_{60} \)’s LUMO.
states through shifts of the LUMO (Refs. 9 and 17) or LUMO+1 (Ref. 31) bands. This is valid only if the interaction does not strongly modify the band shapes and change the energetic separation between the LUMO and LUMO+1 bands. As seen in Figs. 2 and 5, in the case of dimers, both the LUMO band and the LUMO+1 band are drastically distorted from those of the isolated C60 molecules. Thus, reliable estimates of the charge transfer from our experimental data become impossible. To calculate the charge transfer, we adopt a procedure devised by Lu et al.,16 in which an \(xy \)-integrated differential electron density curve against the \(z \) coordinate is plotted in order to determine the boundary between the C60 molecule and the substrate. In the case of a pit, a nonplanar interface that mimics the C60 geometry in the pit must be adopted [inset of Fig. 6(a)]. The curve in Fig. 6(a) gives the integrated electron charge below such an interface as a function of the \(z \) position of the interface for two C60 molecules in DD-I structure. The calculated maximum values of the charge transfer for B, DM, DD-I, and DD-II are, respectively, 0.07, 0.25, 0.17, and 0.18 electrons per C60 molecule. Our results for the B molecules are similar but smaller than what Lu et al. reported (0.15e) for an isolated C60 molecule on Ag(100).16 For DM and DD, the stronger interaction with substrate indeed enhances the charge transfer. As seen from Figs. 6(b) and 6(c), the change in electron charge density is significantly larger and is over a bigger region for the C60 molecule placed in a five-atom pit than it on a perfect surface. Nevertheless, under all circumstances, our calculated values are still significantly less than those deduced from EELS (Ref. 8) and PES.9

Our experiments and simulations have clearly demonstrated the inhomogeneity and aperiodicity of the electronic properties of this C60 monolayer. This raises questions about the validity of the description of the energy band structure, which usually can only describe a periodic structure, of the C60 monolayer on Ag(100) and calls for reinterpretation of the photoemission spectroscopic data.9,10,15 Since PES is sensitive only to energy states below the Fermi level,9,17 only the LUMO states of DM and DD molecules may have been probed in those work. The deduced charge transfer must correspond to these molecules rather than to the full monolayer. The 0.9 electron transfer deduced from the LUMO band filling, rather than the 1.7 electron transfer deduced from linear extrapolations of K coverages at half and full LUMO band filling as reported in the same paper,9 may be much closer to reality. Our results also do not support the previous speculation of superconductivity in C60/Ag(001).

FIG. 6. (Color online) (a) The integrated electron charge below the interface as a function of the moving interface position and (inset) a sketch of C60 in a five-atom pit with contour lines indicating the possible interface between C60 and the pit surface for the charge transfer calculations. (b) Calculated isodifferential electron density (white contours) at \(6 \times 10^{-4} \) e/Å\(^3\) for a C60 molecule in Pit0 and Pit5.

CONCLUSION

In conclusion, we have studied the morphologic and electronic structure of C60 monolayer on Ag(100) with both STM/STS measurements and first principles simulations. Our STM images and STS spectra confirm that the major BD contrast comes from geometric effect and the dim molecules are sitting in local pits induced by adsorption. In addition to the dim monomer C60 molecule, the measured \(dI/dV \) spectra and the calculated 6C-DOS indicate the formation of C60 dimer when two C60 molecules are sitting in two neighboring pits with a separation of 8.67 Å. The charge transfer for B, DM, and DD molecules are quite different. All these evidence a highly inhomogeneous monolayer. Thus, we cannot expect a high superconducting \(T_c \) based on the low DOS near Fermi level and the inhomogeneous structure. The band structural analysis of this monolayer is also problematic.

ACKNOWLEDGMENTS

This work was supported by the William Mong Solid State Clusters Laboratory, the Research Grants Council of Hong Kong (Grant No. HKUST6164/01P), and the National Natural Science Foundation of China (Grant No. 10429402).

O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997).

