Noname manuscript No.
(will be inserted by the editor)

B-Queue: Efficient and Practical Queuing for Fast
Core-to-Core Communication

Junchang Wang - Kai Zhang - Xinan Tang -
Bei Hua

Received: date / Accepted: date

Abstract Core-to-core communication is critical to the effectives w§ multi-core
processors. A number of software based concurrent loekefoeues have been pro-
posed to address this problem. Existing solutions, howsuéfer from performance
degradation in real testbeds, or rely on auxiliary hardwargftware timers to han-
dle the deadlock problem when batching is used, making teokeions good in
theory but difficult to use in practice. This paper descrithespros and cons of ex-
isting concurrent lock-free queues in both dummy and resbesls and proposes B-
Queue, an efficient and practical single-producer-sicglesumer concurrent lock-
free queue that solves the deadlock problem gracefullytogducing a self-adaptive
backtracking mechanism. Experiments show that in real nelgsparallel applica-
tions, B-Queue is faster than FastForward and MCRingByfiertwo state-of-the-art
concurrent lock-free queues, by up to 10x and 5x, respégtivoreover, B-Queue
outperforms FastForward and MCRingBuffer in terms of dilgband scalability,
making it a good candidate for fast core-to-core commuignain multi-core archi-
tectures.
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1 Introduction

As multi-core architectures become ubiquitous, greattsffrave been made to paral-
lelize single-threaded applications [4, 19, 28, 34, 35 ®xrample is that a great deal
of work applies pipeline parallelism to sequential netwagplications [7, 34, 35].
Harnessing abundant CPU resources, however, is still aHaitlemge. One problem
is the lack of a fast and efficient core-to-core communicatieechanism on exist-
ing commodity multi-core platforms, and threads have tg ogl shared memory to
exchange information [6]. Take 10Gbps network as an exanapheinimal 64-byte
Ethernet frame must be processed in amortized time of 67ss@oods, which is
about one DRAM access time. If there is no efficient coredtecommunication,
parallelizing such network applications cannot take ¢ffmrause a single memory
based core-to-core communication might offset the berrefit fparallelization.

A large body of work focuses on providing core-to-core comination with
First-In-First-Out (FIFO) queues [7,12,15,18,19, 27, 85% generally accepted that
a lock-based solution is inappropriate for applicatioretdeing fine-grained paral-
lelism, and a lock-free design is a promising approach. Wafately, general pur-
pose lock-free FIFOs still do not perform adequately. Faneple,cache-unaware
lock-free FIFOs [14, 16] take more than 1,000 CPU cycles $erinor extract an ele-
ment. To tackle this problem, FastForward [7] and subseiqesaarch efforts [18,35]
provide single-producer-single-consumer concurrerit-foee FIFOs (abbreviated as
CLF queues from here on) to support fast core-to-core congation; all of them try
to avoid cache thrashing as much as possible. Experimeitisramy testbeds [7,18]
show that these solutions take 20 cycles on worst-case fbriaaert/extract opera-
tion, making CLF queues a promising candidate for fast toresre communication
on multi-core architectures.

When employing existing CLF queues in practice, we encaadtthe follow-
ing problems. (1) Peak performance in dummy testbed sormastismisleading, and
in real applications performance of these CLF queues dsesedramatically. Ex-
perimentally we found that the claimed peak performancecisexed only when
CLF queues stores in L1 cache (Up to 97% memory accesses ms&rized by
L1 cache), and no cache thrashing occurs. However, in rgdications, L1 cache
miss and cache thrashing are unavoidable [20, 32]. (2) Redioce of existing CLF
gueues drops dramatically when the number of queues ireseahis performance
degradation has been observed and reported in [18, 35] dbutanefully studied in
the literature. (3) Existing CLF queues are hard to use Heastard [7] relies on pre-
defined thresholds to avoid cache thrashing, but thesehibldssvary from system to
system and are hard to tune in practice. Other work [12, 1]8€3&s on batching to
achieve maximum performance. However, to avoid the de&gioablem inherent in
batching (Section 2.5), auxiliary timer and threads mustd®sl to periodically check
the state of a CLF queue to keep the consumer alive. The ayxilmer and threads
disturb CLF queue’s cache behavior, and complicate thesyas well (Section 2.6).

This paper studies CLF queues in building up a real multid@gg&network pro-
cessing system where parallelism is widely used [6, 7, 1J828fl both the hardware
and software capabilities are stressed [5, 8]. The majdribotions of this paper are
as follows:
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— Existing CLF queues are evaluated on both dummy and reaicafiphs; their
strengths on dummy testbeds and weaknesses on real ajpplcate studied.
The evaluation comes to the conclusion that for CLF queuedurther effort
should be made to pursue higher performance on dummy testbedontrast,
great attention must be paid to putting them into practice.

— A fast yet practical CLF queue, named B-Queue, is propose@uBue outper-
forms existing CLF queues in terms of scalability and sitgbénd requires no
parameter tuning. All these advantages come from a novédiaaiing mech-
anism that can adaptively adjust consumption to productidmout the need of
any auxiliary mechanism or manually tuned parameters.

The remainder of this paper proceeds as follows. Sectioro®iges the back-
ground and motivation of this paper. Section 3 describesuB«@’'s design, and
proves its correctness in Section 4. Section 5 evaluatepdhfermance of CLF
gueues on dummy and real testbeds. Section 6 discussesdralatk and Section
7 concludes.

2 Backgrounds and Motivation

Three parallel programming techniques task parallelism data parallelism and
pipeline parallelism— are widely used in parallelizing real world applicatiomask
parallelismuses multiple independent and often heterogenous taskss arsdially
used for relatively long duration task3ata parallelismapplies the same computa-
tion to independent data elements in parallel. These twanigaes, however, fail to
parallelize applications that have strict ordering reguients in computation [7]. Two
examples are network processing and stream processing tiege exist a partial or
total order in computation, making them poor candidatesdsk- and data-parallel
techniques [6].

Pipeline parallelismon the other hand, is applicable to applications whichuiesat
a total order on computation tasks. pipeline parallelism a single task is divided
into several pipeline stages each of which operates cosmilyr A large amount of
work has been done to exploit pipeline parallelism in reallevapplications [25, 29,
30], and a 3-stage-n-way pipeline model [6, 7, 18, 35] is Widsed in parallelizing
network applications. High performance CLF queues arensitely studied as a
mechanism to pass data from between consecutive pipehigestWe survey the
existing work on CLF queues in the following subsections.

2.1 Lock Based Queues

The simplest way to implement a shared queue is to use loaksetrer, lock based
gueues are inefficient because both the producer and conseetgto acquire a lock
before accessing the queue, which prevents concurrensatcahe queue even if
different slots are accessed.
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2.2 Lamport's CLF Queue

LO1: BOOL enqueue( ELEMENT_TYPE value )

Lo2: {

L03: if (NEXT(head) == tail){
L04: return FAILURE;

LO5: }

L06: buffer [head] = value;
LO7: head = NEXT(head);

L08: return SUCCESS;

L09: }

L10: BOOL dequeue ( ELEMENT_TYPE *value )
Li1: {

L12: if (head == tail) {

L13: return FAILURE;

L14: }

L15: *value = buffer[taill;
L16: tail = NEXT(tail);

L17: return SUCCESS;

L18: }

Fig. 1: Lamport's queue

Lamport presented the first CLF queue in [17], where he prakatunder se-
guential consistency memory model, locks could be remorad Kingle-producer-
single-consumer queues, resulting in lock-free queuegirEil gives the pseudo-
code of Lamport’s CLF queue, where the exclusion of exmigitchronization allows
the producer and consumer to concurrently access the queue.

However, since the producer and consumer use two shareibiesjiheadand
tail, for implicit synchronization, Lamport’s CLF queue sué&romcache thrashing
The cache line containingeadandtail is frequently invalidated by the modification
of the two control variables, causing the cache line boupback and forth between
two caches. In addition to that, Lamport's CLF queue caneaided in architectures
with weak memory consistency models, such as PowerPC antl[[A6

2.3 FastForward

FastForward improves Lamport's CLF queue by eliminatingrst variables be-
tween producer and consumer. Figure 2 shows the pseudmtbdstForward where
headandtail become non-shared local variables (Theadis a local variable of
the producer and thtil is a local variable of the consumer). Moreover, coupling
makes FastForward execute correctly even on processdrsawgiik memory con-
sistency [7]. It is worth noting that cache thrashing stidcors if two buffer slots
indexed byheadandtail are located in the same cache line. To avoid cache thrash-
ing, FastForward introduceg@mporal slippingnechanism (Figure 3) to ensure that
the producer and consumer are separated by a celidance

The first problem of FastForward is that it requires heavykwommanually tune
parameters to achieve peak performance, and thus lackéitgtabpractice. The
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FO1: queue_init()

F02: {

F03: buffer [0..end] = NULL;

FO04: }

FO05: BOOL enqueue ( ELEMENT_TYPE value )
F06: {

FO7: if (NULL != buffer [head]) {
F08: return FAILURE;

F09: }

F10: buffer [head] = value;

F11: head = NEXT(head);

F12: return SUCCESS;

F13: }

F14: BOOL dequeue ( ELEMENT_TYPE *value )

F15: {

F16: *value = buffer[taill;
F17: if (NULL == value) {
F18: return FAILURE;

F19: }

F20: buffer[tail] = NULL;
F21: tail = NEXT(tail);
F22: return SUCCESS;

F23: }

Fig. 2: FastForward implementation

A01: adjust_slip() {

A02: dist = distance (producer, consumer);

A03: if (dist < DANGER) {

A04: dist_old = 0;

A05: do {

AO6: dist_old = dist;

AOT: spin_wait(avg_time * ((GOOD+1)-dist));
A08: dist = distance (producer, consumer);
A09: } while (dist < GOOD && dist_old < dist);
A10: }

Al11: }

Fig. 3: Suggested slip adjustment routine in FastForward

efficiency oftemporal slippingheavily relies on two pre-defined threshol@&)OD
and DANGER and Fastforward suggests tt@OOD and DANGERshould be the
size of 6 cache lines and 2 cache lines, respectively. Inrerpats, however, we
found that the optimal values vary from system to system,thacduggested values
only fit one of the three servers used in our experiments. &cn system, we have to
measure FastForward for many times to get optimal valueS@D®D andDANGER
before applying it in practice.

One technical merit of FastForward is that whHesadandtail pointers are far
enough apart cache misses are avoided. However, the adjusiouting itself, shown
in Figure 3, touches the indexes of both producer and cons{lime A02 and A08)
to calculate the distance betwele@adandtail pointers, inevitably incurring cache
thrashing because one of these two variables is modifieddtphanthread. Therefore
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the adjustment routine cannot be invoked frequently, legaw the users a question
of how often to call the adjustment routine.

2.4 Multi-line Updates

Noticing the cache thrashing issue, multi-cache-line tp@aproposed in [35]. The
idea is that the producer does not updaaduntil enough data has been accumulated
to fillin one or a few cache lines. However, such aggressitehirag makes the queue
prone to deadlock in real applications. We discuss the pmbh next subsection
because MCRingBuffer suffers the same problem.

MO1: BOOL Insert (T element) {

MO2: afterNextWrite = NEXT(nextWrite);
MO3: if (afterNextWrite == localRead) {
MO04: if (afterNextWrite == head) {
MO5: return INSERT_FAILED;

MO06: }

MO7: localRead = head;

MO8 : }

M09 : buffer [nextWrite] = element;

M10: nextWrite = afterNextWrite;

M11: wBatch ++;

M12: if (wBatch >= batchSize) {

M13: tail = nextWrite;

M14: wBatch = 0;

M15: }

M16: return INSERT_SUCCESS;

M17: }

M18: BOOL Extract (T* element) {

M19: if (nextRead == localWrite) {
M20: if (nextRead == tail) {
M21: return EXTRACT_FAILED;
M22: T

M23: localWrite = tail;

M24: }

M25: *element = buffer [nextRead];
M26 : nextRead = NEXT(nextRead);
M27: rBatch++;

M28: if (rBatch >= batchSize) {
M29: head = nextRead;

M30: rBatch = 0;

M31: }

M32: return EXTRACT_SUCCESS;

M33: }

Fig. 4: MCRingBuffer implementation

2.5 MCRingBuffer

To make the algorithm cache-aware, MCRingBuffer [18], shdnvFigure 4, adopts
several optimization techniques, includi@gche-line ProtectiomndBatch Update
of Control VariablesThe idea is to use a lochead(Line M03) to shadow the global
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Fig. 5: Deadlock example
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Fig. 6: Deadlock Prevention in MCRingBuffer

head and most of the time only local variable is accessed to avadhe thrashing
(Line M09).

Batching improves performance but makes the algorithmetordeadlock. For
example, when processes are working with multiple MCRirffBuueues and they
form a circular chain, deadlock occurs when each processitng for others to
finish. An example is shown in Figure 5, where thr@ddyenerates and passes data
to threadT2 throughQueue 1and thread'2 generates and passes data to thiead
throughQueue 2 This scheme is widely used to synchronize two threads where
passes data 62 and gets feedbacks frof2. WhenT1 generates a few data that is
less than the size dfatchSizeand pollsQueue 2rying to get feedbacks, and at the
same timeT2 generates some feedbacks that are less than the diegabfSizeand
polls Queue ltrying to get more data, deadlock occurs.

2.6 Deadlock Prevention

Some deadlock prevention methods have been proposed ihg[LZ he basic idea
is to periodically inject garbage data into the queue to kbepconsumer alive. For
example, MCRingBuffer [18] suggests that the producerquically injects unused
elements, and then the consumer discards them (Figure @)ewdo, none of these
methods in the literature has been implemented and measnrthis subsection, we
propose some common mechanisms for deadlock preventiowatide the diffi-
culties inherent in each of the proposals. After that, we edonthe conclusion that
preventing deadlock is non-trivial and the proposals tad¢hieve this goal.

(1) A naive way to prevent deadlock is to use a timer and anlianximoni-
toring thread. This thread periodically checks whetherdhe a deadlock, and in-
jects garbage data whenever necessary. However, the eddodk-check thread
fundamentally complicates synchronization, and changgsge-producer-single-
consumer queue into a multi-producer-single-consumeungu€o the best of our
knowledge, no multi-producer-single-consumer queuekérliterature can provide
fast core-to-core communication required by fine-grairecltelism.

(2) The second way is to use a hardware/software timer thitgpeally interrupts
the producer to inject garbage data. However, as the prodwecution path may
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be interrupted, producer must be reentrant. To the bestrdfrmwledge, none of the
existing CLF queues is both lock-free and reentrant.

(3) The third way also uses a hardware/software timer, kutither periodically
informs the producer by writing a global variable insteathtdrrupting the producer.
Producer actively checks this global variable to see whdtteequeue needs a flush
operation. Unfortunately, this method cannot solve thedbbek problem shown in
Figure 5. Think about the scenario wher# tries to get data fronT2 by polling
Queue 2andT2 tries to get data fronT1 by polling Queue 1If neither queue has
enough data, both threads are busy waiting and have no ctacbeck the global
variable. Deadlock remains unsolved.

(4) A new method, discussed in [12], improves method (3) diregla callback
function that flushes all outgoing queues. The callbacktfonds called right before
the queue sleeps or polls a specific queue. For example, urd-lgy when thread
T1fails to get a new datum froifueue 2the callback function is executed to flush
Queue lby, for example, inserting garbage data. A detailed amalyisthis method,
however, shows that implementing this method is a nonairiwiork, especially for
systems that can dynamically create and destroy CLF quéwasally, this method
works by binding all the queues in the system, which increagstem complexity.
Whenever a thread fails to get a new datum, the program masteiehether to flush
the remaining queues, and which queues should be flushedalKe andecision, the
system must maintain a global data structure that propagagestatus of each queue
in the system. Therefore, this method only fits special useshecause it shifts the
responsibility of deadlock prevention to users.

To sum up, none of the above deadlock prevention methodsaipal. Even
worse, they generally cause significant performance detjoad For example, MCRingBuffer
with deadlock prevention method (3) suffers performancgragation by up to 5
times (Section 5.3).

3 B-Queue

The analysis in section 2 shows that existing CLF queues aoel ¢ theory but
difficult to use in practice. This section presents the desifjB-Queue and how
backtrackinggracefully solves the deadlock problem.

3.1 Batching

Figure 7 shows the pseudo-codesoijueuanddequeumperations. Two local con-
trol variablesheadandtail, are used to record current positions of producer and con-
sumer, respectively. Another two local control variablestchheadandbatchtail,
are used by the producer and consumer to probe a group oflaleadlots. Slots be-
tweenheadandbatchheadare safe for the producer to store data, and slots between
tail andbatchtail are safe for the consumer to read.

For the producer, theeadandbatchheadare initialized to zero. When the pro-
ducer wants to insert an element, it first compareshsedwith batchheadto see
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QO01: BOOL enqueue ( ELEMENT_TYPE value )

Qo2: {

Q03: if (head == batch_head) {

Q04: if (buffer [MOD(head+BATCH_SIZE)])
QO05: return FAILURE;

Q06 : batch_head=M0OD(head+BATCH_SIZE);
QO7: }

Q08: buffer [head] = value;

Q09: head = NEXT(head);

Q10: return SUCCESS;

Qi1: %}

Q12: BOOL dequeue ( ELEMENT_TYPE *value )
Q13: {

Q14: if (tail == batch_tail) {

Q15: if (backtrack_deq() != SUCCESS)
Q16: return FAILURE;

Q17: }

Q18: *value = buffer[taill;

Q19: buffer[tail] = NULL;

Q20: tail = NEXT( tail );

Q21: return SUCCESS;

Q22: }

Fig. 7: B-Queue Algorithm

if there are any empty slots available (Line Q03). If amptyslot is available, it
probes the slot that IBATCH SIZE slots ahead of current position to see if a block
of BATCHSIZE emptglots could be found (Line Q03-Q06). TMEOD is a modular
operation against the queue size. The producer returnséhnaghemptyslots are
available; otherwise, thbatchheadis updated and an element is inserted into the
gueue (Line Q08-Q10). As long as theaddoes not catch up with tHeatchhead

the producer only executes the fast path (Line Q08-Q10)dertrelements.

For the consumer, it first compares thé with batchtail to check if there are any
filled slots available (Line Q14). If no filled slot is availabit probes a block dilled
slots usingbacktracking(discussed in section 3.2) (Line Q15). It retuRAdLURE f
nofilled slot is available; otherwise, it gets an element from theuguelears the slot,
and updates variabtail (Lines Q18-Q20). As long as thail does not catch up with
the batchtail, the consumer only executes the fast path (Line Q18-Q2L}tract
elements.

The basic idea behind batching is that both the producer anduener detect
a batch of available slots at a time, ideally reducing the Inemof shared memory
accesses b BATCHSIZE-1) BATCHSIZE If BATCHSIZEIis set properly, the pro-
ducer and consumer will never operate on the same cachéria€eldition to cache
thrashing avoidance, batching also facilitates hardweséefching that may greatly
improve the performance of CLF queues. Experiments shotwothintel processors
with hardware prefetching features on, as high as 99% ofecachesses are served
by L1 data cache in dummy testbeds (see Section 5.2).

B-Queue is easy to use in real applicatioBATCHSIZE can be simply set
to the size of multiple cache-lines, and performance of B@@uis insensitive to
BATCH. SIZE(Section 5.4). This is different from the system-dependaetdefined
thresholds in FastForward.
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Fig. 8: Searching for a groups of filled slots

BO1: BOOL backtrack_deq( )

B02: {

B03: batch_size = BATCH_SIZE;

B04: batch_tail = MOD(tail+batch_size-1);
BO5: while (!buffer[batch_tail]) {

BO6: spin_wait (TICKS);

BO7: if (batch_size > 1) {

B08: batch_size = batch_size >> 1;
B09: batch_tail = MOD(tail+batch_size-1);
B10: ¥

Bi1l: else

B12: return FAILURE;

B13: }

B14: return SUCCESS;

B15: }

Fig. 9: Backtracking to search for filled slots

3.2 Backtracking

A detailed analysis of deadlock prevention mechanisms contyrused in existing
CLF queues has been presented in Section 2.6. In B-Queue/eddendlock pre-
vention mechanisnhacktracking is designed foconsumeto adaptively find filled
slots if producerhalts temporarily. Figure 8 depicts thmcktrackingmechanism,
and Figure 9 presents its pseudo-code. The batching si@bl@batchsize is ini-
tialized to BATCHSIZE (Line B03), and thebatchtail is BATCHSIZE ahead of
tail (Line B04). In each run, the consumer checks the statusutier[batchtail]
where batchtail is the edge of this batching. If the slot is not filled (Line B05
batching size is halved (Line B08) amtchtail is recalculated (Line B09). This
process repeats untiuffer[batchtail] is found filled or the batching size reaches
zero. In the former case, a blockfilfed slots are found andatchtail is updated; in
the later case, no data is available &AdLURE s returned. It is worth noting that in
both caseshacktrackingcompletes within finite time, a key element in our proof of
correctness (Section 4.3).

Take Figure 8 as an example. The producer inserts two elsmadtthen halts.
The consumer first checlmiffer[tail + BATCH.SIZE-1](Detection }. Because the
slot is not filled, the consumer automatically decreaseg#tehing size and checks
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NO1: BOOL backtrack_deq( )

NO2: {

NO3: if (batch_history < BATCH_MAX) {

NO4: batch_history = MIN(BATCH_MAX, \
batch_history + INCREMENT);

NO5: }

NO6: batch_size = batch_history;

NO7: batch_tail = MOD(tail+batch_size-1);

NOS8: while (!buffer[batch_tail]) {

NO9: spin_wait( TICKS );

N10: if ( batch_size > 1 ) {

Ni1: batch_size = batch_size >> 1;

N12: batch_tail = MOD(tail+batch_size-1);

N13: ¥

Ni4: else

N15: return FAILURE;

N16: }

N17: batch_history = batch_size;

N18: return SUCCESS;

N19: }

Fig. 10: Backtracking with automatic adjustment

buffer[tail + BATCH SIZE/2-1](Detection 2. This process repeats urttilffertail+1]
is found filled Detection N.

Backtrackingprevents deadlock by removing the necessary condition afl-de
lock, circular wait. Instead of letting the producer and consumer wait for edlatro
to finish,backtrackingallows the consumer to actively decrease its batching Bize.
nary search algorithm (Line B08) is used to quickly approthetfilled slots. In the
worst casebacktrackingakeslogbATc"SI2E memory accesses to find the first hit.

To summarizebacktrackingis a simple yet efficient deadlock prevention mech-
anism. It gracefully solves the deadlock problem by adaptidecreasing batching
size according to producer’s speed at runtime. It is simpleahse no timer or aux-
iliary monitoring thread is required, and thus system canity is not added. It is
efficient because no garbage data is generated.

3.3 Self-Adaptive Backtracking

Batching increases latency [18, 35]. Althoulgacktrackingsolves deadlock by au-
tomatically adjusting batching size, B-Queue still susfhigh latency when the pro-
ducer is not busy. For example, when there is only one filletlislthe array and the
producer halts, the time that the consumer takes to find ed &lot could be:

loga"TeHSIZELTICKS 1)

If BATCH _SIZE is 512 and TICKS equals to 2,000 CPU cycles, the latenag high
as 18,000 CPU cyclesg3!?+2000).

To tackle this problem, self-adaptive backtracking presented in Figure 10. The
constant BATCHSIZE is replaced by a global variabbatchhistory that records
the history ofbatchsize After a successful run obacktrackdeq() the value of
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batchsizeis stored irbatchhistory(Line N17), and used as the start valudatchsize
in next run (Line NO4). In this way, when the producer is nagyguhe start value of
batchsizedecreases, so does the latency. However, when the procatbergspeed,
the value obatchsizeshould be enlarged. A possible solution is that whenbaek-
track_deq()is invoked andatchhistoryis less thaBBATCHMAX, batchhistoryin-
creases hyNCREMENT(Line NO3-N05), wheréNCREMENTcould be the size of
a cache line to avoid cache thrashing.

The biggest strength @elf-adaptive backtrackinig that it can adaptively adjust
the batching size and make a trade-off between latency arfiorpence.

4 Correctness

To prove the correctness of B-Queue, we recall that our gisdessed on a statically
allocated memoryHuffer). By correctness of B-Queue, we mean that the consumer
dequeues elements in the same order that they were enquetieel froducer. Due

to lack of space, we regard the executions of the producecansumer are consis-
tent with their program orders, respectively. Besides #lso reasonable to assume
that (1) aligned word-sized accesses (both read and wrigeqtamic, and that (2)
the buffer has a low bound of 1 and a conceptually infinite high bound bsedhe
index of the position wraps around the buffer if needed wakistance from func-
tion MOD() and NEXT() in B-Queue. These assumptions arefjadton modern
multi-core processors. We will call all these assumptidins

4.1 Safety

B-Queue is safe because it satisfies the following propertie

(1) All the elements that have been inserted by the producgrave not been
extracted by the consumer compose an array (denoted as Laangs from index
tail to head) because once an element s inserted (ifdex.), its next positiod + 1
will be the position to be inserted into, and the elementxedeby| + 1 cannot be
extracted until the element indexed blgas been extracted by the consumer.

(2) Elements are only inserted into the most significanttpmsireferenced by
head) in array L, because indekeadis a private variable of the producer, and for
each enqueue operation, the producer places an elemestposition referenced by
headand then monotonically advandesadby one.

(3) Elements are only extracted from the less significanitipos(referenced by
tail) in array L, because indetail is a private variable of the consumer, and for each
dequeue operation, the consumer extracts elements froitopagferenced byail
and then monotonically advancesl by one.

Initially, all the properties hold. By induction (Sectiorll3 we could see that they
continue to hold when B-Queue makes progress and we haveltbwihg theorem.

Theorem 1 In B-Queue, the consumer dequeues elements in the samédtatigrey
were enqueued by the producer.
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4.2 Linearizability

B-Queue has no critical section, but obviously thereliaearization point9, 10].
For enqueue() method, Line Q08 is a linearization point whiee message indicating
a successful enqueue operation is propagated. This lrad@m point takes effect
when the new value has been successfully written into theertidf the queue is
full, the enqueue() method has a linearization point whereturn a failure (Line
QO05). Similarly, for dequeue() method, Line Q16 and Q19 imedrization points. It
is worth noting that linearization point Line Q19 takes effefter the value has been
successfully read (Line Q18). Since the queue itself alweffscts the state diill or
empty the queue never enters a transient state in which the dttte queue can be
mistaken.

4.3 Liveness

B-Queue isvait-freebecause both the enqueue() and dequeue() operations are gua
anteed to complete within finite time. This property guagastthat either the pro-
ducer or the consumer that takes steps makes progress.afpkx in the scenario
where producer halts half-way through enqueuing a valdlken the consumer will
either throw aFAILURE (Line Q16) if the producer halted before storing the item
in an empty array, or it will return a value if the producerthdlafterward. There is
a while loop diagram irbacktracking(Figure 9 and Figure 10) which sometimes is
called by the consumer. This while loop, however, will eitteke finite steps to find

a hit (Section 3.1), or aftdpgSATCHSIZE memory accesses, returFAILURE that
makes the consumer return immediately. Similarly, in thenagio where consumer
halts half-way through dequeuing a value, then the produitiegither throw aFAIL-
URE (Line QO05) if the consumer halted before getting the itenmfie full array, or

it will store a value if the consumer halted afterward.

Notably, the wait-free property of B-Queue implies that BeQe is lock-free.

5 Evaluation

This section compares the performance of three CLF queast=&rward, MCRingBuffer
and B-Queue. Our experiments show that in real massiveigipbapplications with
more than six queues,

— B-Queue is about 10 times faster than FastForward;

B-Queue is 5 times faster than MCRingBuffer if the deadloavpntion mecha-
nism is on;

Backtrackingadds less than one nanosecond of delay.

1 In actually, writing value and propagating message takacefit the same time.
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5.1 Experiment Setup

Three servers with different architectures are used inxtpergments. The first server
is equipped with one Intel L5640 Westmere hex-core procassming at 2.26GHz.
Each core has a L1 cache of 64KB and a L2 cache of 256KB. A 12MBdche
is shared among all cores. The processor has an integratedmpeontroller that
supports DDR3 1333MHz memory, and 8GB memory is installed.

The second server has two Intel E5620 Westmere quad-cotegsars running
at 2.4GHz. Each E5620 processor has a shared L3 cache antgraiad memory
controller that supports DDR3 1066MHz memory, with 4GB meyrinstalled. Two
E5620 processors are connected by a QuickPath Intercof@bt[24] at 5.86GT/s.
Cores within the same CPU die (callgibling core3 communicate through L3 cache,
andnon-sibling corecommunicate through QPI.

The third server is equipped with two Intel E7310 quad-cooeessors running at
1.6GHz. Each E7310 is composed of two replicas of dual-caréuies; each mod-
ule has two cores and a shared 4MB L2 cache. Front Side Busdstasconnect
processors with the memory controller that supports DDR2Vi8z memaory with
4GB memory installed. Cores within the same modsibling core$ communicate
through L2 cache, andon-sibling corecommunicate through FSB.

All the three servers run 64-bit Linux 2.6.39 kernel, and@hé- queues are com-
piled by GCC 4.5.1 with -O2 option. Without optimization apts, the compiler’s
goal is to reduce the cost of compilation and to make debugmioduce the expected
results [1]. Turning on optimizations (-O1 and higher) nattee compiler attempt to
improve the performance by compiling all statements at ¢meesingle output object
file, and allow the compiler to adopt optimizations suclyasss-branch-probability
andmerge-constantd ] to reduce code size and execution time. Experimentaky,
found that with optimization flag -O1, -O2 or -O3, all the CL&awyes (FastForward,
MCRingBuffer and B-Queue) perform around three times fa$tan versions com-
piled without an optimization flag. To make a fair comparisaihthe CLF queues
are compiled with -O2 option in experiments because optition flags belonging
to -O3 level do not benefit CLF queues.

For the MCRingBuffer queue, we sent our implementation ® d@higinal au-
thor for code review and received confirmation that our impgatation is identi-
cal to what he did in [18]. For the FastForward queue, we veckan implementa-
tion from the original author. B-Queue has been releasee@theé GPL licencé.
For FastForward and MCRingBuffer, optimizations are agphs much as possible
to make a fair comparison. Those include cache line pratedfi8] and warm-up
of queues before operation [7]. Performance critical patens of FastForward are
tuned manually in each experiment to get the best performanc

In each run, the producer thread inserts one trillion elemi@mo the CLF queue,
and the consumer thread gets these elements in order. Baed tis bound to a
dedicated core, with the producer and consumer runningftareiit cores. Hardware
basedlime Stamp Countgf 1] in X86 is used to record the value of RDTSC register
before and after the one trillion enqueue() and dequeu&atipns to calculate the

2 http://sourceforge.net/p/bqueue/code
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total CPU cycles. The time of a single enqueue() or dequeyeation is calculated
by dividing the total execution time with one trillion andethsubtracting workloads.
It is worth noting that reading RDTSC register is not a seziiad) instruction. The
read operation neither waits for all the previous insttdito finish before reading
the counter, nor prevents subsequent instructions frortirejao execute before the
read operation is performed [11]. Therefore, there are sdev@tions in the total
number of CPU cycles. Nevertheless, the deviation of asiegtjueue() or dequeue()
operation is negligible, as the number of total CPU cycletiviiled by one trillion.
For other architectural statistics (such as cache miss atsplOProfile [3] is used
to collect hardware performance counters. Each experahdata is averaged on 30
trials.

5.2 Performance Evaluation on Dummy Testbed
In this subsection, we measure the performance of the tHrtEeyGeues on a dummy

testbed, and analyze the necessary requirements for aghmeak performance. The
gueue size is set to contain 2,048 elements, and the batcls 256 elements.

Table 1: Peak performance of CLF queues

CLF queue E5620 E7310 L5640
FastForward 14 15 14
MCRingBuffer 12 12 12
B-Queue 12 12 12

(a) On die (CPU cycles)

CLF queue E5620 E7310 L5640
FastForward 27 36 -
MCRingBuffer 15 31 -
B-Queue 13 31 -

(b) Cross die (CPU cycles)

Average cycles per operation for on-die communication (tweads reside on
the same die) and cross-die communication (two threadderesi different dies)
are listed in Table 1(a) and 1(b), respectively. Table lfays that in the best case
(on-die communication), all the three queues achieve pesformance with each
enqueue/dequeue operation taking a dozen of CPU cyclesnarebver the peak
performance is platform independent. In the cross-die agkCRingBuffer and B-
Queue use batching to amortise the overhead induced by-d®asterconnection,
and outperform FastForward in both servers. Performana# tife three queues de-
creases on E7310 because the cross-die communicatiosestitbe FSB on E7310.
New generation point-to-point interconnects (QPI [24]nfréntel and HyperTrans-
port [13] from AMD corporation) provide much higher bandwicnd lower latency.

3 We did not experiment this on L5640 because this server Hgoe processor.
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Table 2: Cache behaviour of queues on E5620
CLF queue L1 hit L2 hit L3 hit Sibling System

FastForward 96.99%  0.32% 0.00% 2.69% 0.00%
MCRingBuffer 99.83%  0.00% 0.00% 0.17% 0.00%
B-Queue 99.89%  0.02% 0.00% 0.09% 0.00%

(a) On die (sibling cores)

CLF queue L1 hit L2 hit L3 hit Sibling System

FastForward 97.97%  0.16% 0.16% 0.00% 1.70%
MCRingBuffer 99.90%  0.01% 0.00% 0.00% 0.09%
B-Queue 99.94%  0.02% 0.00% 0.00% 0.04%

(b) Cross die

In addition to that, new servers (E5620) uses larger CPUeacil higher mem-
ory frequency. Those features significantly benefit corentriock free applications
running on multi-core servers.

OProfile analyzes the cache behavior of the three CLF queithsassistance
of hardware performance counters including L1 data cactse(lhl hit), L2 cache
hits (L2 hit), L3 cache hitsl(3 hit), number of misses served by sibling core’s cache
(Sibling) and the systenSystern Table 2 presents the cache behavior of CLF queues
on E5620. The cache behavior on other two machines has asimghd. Table 2
shows that all of the three CLF queues have extremely highit.date, and up to
96.99% memory accesses are served by L1 cache. That explayneported peak
performance can only be achieved on dummy testbeds, whevedtking set is small
and nearly all of the memory accesses can be served by L1.cache

However, real applications (Section 5.3) usually havedargemory footprint or
use multiple CLF queues at the same time. In these casespitkég set of a CLF
gueue could not be held in the L1 cache, thereby causapgcity cache missemd
coherency cache missg0, 32]. Take E5620 as an example, a L1 cache hit costs 2
CPU cycles, a L2 cache hit costs 10 CPU cycles, a L3 cachetit d® CPU cycles,
and a memory access costs up to 200 CPU cycles. Apparent8/cadhe hit alone
may prevent a CLF queue from achieving the claimed peak pagoce reported in
the literature. In other words, a CLF queue that behavesamadlummy testbeds will
not behave the same in real applications. We demonstrateithext subsection.

Network Output

Fig. 11: Parallel multi-10Gbps networking system
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5.3 Performance Evaluation on Real Testbed

In this subsection, we evaluate the three CLF queues in aapgdication. We use
CLF queues to build a real multi-10Gbps network processysgesn that involves
Layer 2 to Layer 7 (L2-L7) functions, including a TCP/IP dtdoom Libnids [2], a
port-independent protocol identifier, and a HTTP parsetr analyzes HTTP traffic.
Figure 11 illustrates the pipelined organization of theeys There are three pipeline
stages in the system:

— Input Stage(shown IP in Figure 11): One core in this stage receives gacke
from 10Gbps network interface cards (NIC) through an optédiLinux NIC
driver [8], and then performs load balance by distributimg packets among mul-
tiple pipelines.

— Application Stagg¢shown AP in Figure 11): Each core in this stage gets packets
by polling a CLF queue that connects it to the IP core. Thearitggms a complete
Layer 2 to Layer 7 network processing using the run-to-ceatiquh model, and
sends the results to OP core through another CLF queue.

— Output Stagdshown OP in Figure 11): One core in this stage checks the CLF
queues in a round-robin manner to collect the results.

T T T T T T T T T
FastForward FastForward
MCRingBuffer(sane) MCRingBuffer(sane) &
MCRingBuffer(deadlock) MCRingBuffer(deadlo
200 | B-Queue ww— _| 200 | B-Queue 4

150 —

100 100 -

CPU Cycles per Operation
CPU Cycles per Operation

50

Concurrent Queue on System Concurrent Queue on System

(a) E5620 (b) E7310

Fig. 12: CLF queue performance in 1-to-N scenarios

Table 3: Cache behaviour with seven queues
L1 hit L2 hit L3 hit Sibling  System

FastForward 79.28% 850% 0.83% 532% 6.07%
MCRingBuffer ~ 99.66% 0.00%  0.03%  0.07%  0.24%
B-Queue 99.79% 0.03% 0.01% 0.10% 0.07%
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The queue size is set to contain 2,048 elements, and thediatcis 256 elements
for MCRingBuffer and B-Queue. Figure 12(a) and 12(b) préfamperformance of
different CLF queues in our parallel system built on E5620 Bi310, respectively.
Since there are multiple CLF queues in the system, we enhd@éingBuffer by
adding the deadlock prevention mechanism (3) discusseddtio® 2.6. To prevent
an element from being permanently stalled in the queue, artand an auxiliary
thread are added to periodically indicate the producerjexigarbage data, and the
garbage data is discarded by the consumer. The original MgBRiffer is denoted
as MCRingBuffer(deadlockin Figure 12, and the enhanced MCRingBuffer with
deadlock prevention mechanism is denotet&RingBuffer(sanePerformance of
MCRingBuffer(sane) depends on the frequency on which ggelukata is inserted;
generally lower frequency results in better performandédnger latency. To deliver
all of the 2,048 elements in the queue at peak rate withorgdoting extra latency,

the auxiliary thread signals the producer every 10 microsds élzcycéeiif;‘;”z*zo‘“})
in E5620. '

Both Figure 12(a) and Figure 12(b) show that as the numbet&f@tieues (AP
cores) increases, performance of FastForward and MCRiifgfRsane) decreases
dramatically. Performance of FastForward starts to deere@#ghen two queues are
used. The reason is that the pre-defined thresholds onlystigisys with one queue.
When multiple queues are used, these pre-defined thresdrelds longer applicable,
and cache thrashing occurs. For example, the L1 cache &iofétastForward drops
from 96.99% in Table 2(a) to 79.28% in Table 3, and the costnoérqueue() or
dequeue() operation increases from 10+ CPU cycles to 15€lexy

Readers may notice that MCRingBuffer without deadlock prgion (denoted as
MCRingBuffer(deadlock)) performs as well as B-Queue inufggl2. The reasons
are that (1) MCRingBuffer(deadlock) fortunately does mutur a deadlock in this
testbed, and that (2) aggressive batching favors consednput in this experiment.
We list MCRingBuffer(deadlock) to make a fair comparisormwéver, one should
not use MCRingBuffer without deadlock prevention mechamiis practice (Section
2.5). Figure 12 shows that MCRingBuffer with a deadlock préion mechanism is
not efficient in practice. Performance of MCRingBuffer(gpstarts to decrease when
more than three queues are used, and degrades 5 times wkergseues are used.
The performance degradation is mainly ascribed to the garbata and the deadlock
prevention mechanism that introduces system overheaddikiext switches.

B-Queue aims at efficiency and usability. We design B-Queitle the notion
that no running system dependent parameters should bevéa/ahd that no extra
system complexity should be added. Figure 12 shows that enfermance of B-
Queue hardly decreases even if seven queues are used, rtdGx#¥% of memory
accesses go to the main memory (Table 3). This experimentiasnates that B-
Queue is an efficient and robust core-to-core communicatiechanism that may
act as a building block for fine-grained parallelism.
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5.4 Parameters in B-Queue

In this section, we evaluate how queue size, batch size, anklead affect the per-
formance of B-Queue. We run the experiment on the E5620 swiitle one queue.
As B-Queue is insensitive to the location of producer andsaarer, we only give out
the experimental data obtained in on-die case.

18 T T T T

16

3,200 cycles

14 Ry

12

CPU Cycles per Operation

512 1024 2048
Queue Size

Fig. 13: Performance of B-Queue with different queue sizebworkloads

25 T T T T

T T
On die(without backtracking) ———
On die(with backtracking
Cross die(without backtracking)
Cross die(with backiracking)

20 [

CPU Cycles per Operation

32
Batch size (elements)

Fig. 14: Performance of B-Queue with backtracking

Figure 13 presents the average CPU cycles per operationdan() or dequeue()).
In each iteration, the consumer gets an element from theequewl then waits for
some given CPU cycles to simulate the workload. Five quezesdi128, 256, 512,
1024 and 2048 elements) and six dummy workloads (0, 200, 8@®, 1,600, and
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3,200 CPU cycles) are used. It is clear that B-Queue is iitsent both queue size
and workload.

Figure 14 shows the average CPU cycles per operation thatd+€(with and
without backtracking takes when different batch sizes are used. We use the evalu-
ation method described in Section 5.2. Figure 14 shows ltteapérformance of B-
Queue increases with a larger batch size, and the maximuerpemce is achieved
when batch size equals to 256. To evaluate the overheadaktracking we turn
off backtrackingand do the same experiments. Experimental data showbalckt
trackingadds less than two CPU cycles (that is one nanosecond on a 28HY of
overhead in both on-die and cross-die cases.

Experiments in Section 5.2, Section 5.3, and this sectiowshat B-Queue is
insensitive taqueue sizeworkload number of concurrent threagdand thdocation of
producer and consumelMoreover, the deadlock prevention mechanibaktrack-
ing, barely introduces overhead.

In dummy testbeds, FastForward and MCRingBuffer have canséntilar con-
clusionsin respective papers. With dummy workload andglsi@LF queue, FastForward
is insensitive to workload, queue size and core allocati®ec(ion 5.4 in [7]), and
MCRingBuffer is almost insensitive with respect to queusescore allocation and
batch size (Evaluation 1 and 2 in [18]). In summary, all the&CLF queues (FastForward,
MCRingBuffer and B-Queue) perform quite well in dummy testb with a sin-
gle CLF queue, which is even comparable to hardware comste-communication
mechanisms [19]. However, Section 5.3 shows that perfocmahFastForward and
MCRingBuffer decrease dramatically in real applicationkis set of experiments
and analysis demonstrates that no further effort should déento improve CLF
gueues on dummy testbeds. In contrast, the community slocid on problems in
putting these CLF queues into practice.

6 Related Work

Since queues are widely used in multithreaded programsaoimmnaunication, there
are a wide array of studies on concurrent lock-free queuk4 21,23, 33]. Most of
these studies focus on multiple-producer and/or multjglesumer queues. However,
these queues often have limited performance, as a largepoftwork has to be done
to avoid ABA problem [22]. For example, a single enqueue afi@n may take more
than one microsecond [14].

Being a special case, single-producer-single-consuni®8C3 CLF queue is a
promising candidate for high speed core-to-core commtioitg7, 12,17,18,27,31,
35], as it fundamentally avoids the ABA problem. So far, eaelware SPSC CLF
gueues are studied and reported in [7, 18, 35], and the ILihizattion is reported
in[12].

General purpose CLF queues commonly use linked list thatimes|dynamic
memory management and may result in poor cache locality &imd synchroniza-
tion [14, 16, 21, 31]. By exchanging data between producdrcamsumer through a
statically allocated array, ring-buffer based queues§73%] can exploit cache local-
ity and facilitate the hardware cache prefetching.
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Another approach is hardware queues [15, 19, 26] that peowistructions for
enqueue and dequeue operations to reduce the overheadvedirgofjueues. How-
ever, hardware queues require to modify processors, andmfsose challenges to
the operating system as the queue state must be preseresd aontext switch. To
date, hardware queues mainly exist in simulators, and nétleeageneral purpose
processors supports this feature yet.

7 Conclusion and Future Work

This paper presents B-Queue, a cache-aware CLF queuetfoofasto-core commu-

nication. Batch operation and backtracking are incormatategantly, where batch-
ing allows B-Queue to get high performance by avoiding cdbheshing, and back-
tracking prevents deadlock by adaptively adjust the batgtistance according to the
production speed. No running system parameter is used, @sgistem complexity

is added. B-Queue improves the performance of existing Gldugs in terms of sta-
bility, scalability and it is simpler to use. The efficienciy®-Queue is demonstrated
on a real testbed where multiple B-Queues are used.

Real applications featuring fine-grained parallelism regjpractical and efficient
lock-free data structures. However, most lock-free datacsires are very good in
theory but difficult to use in practice and hard to tune forhgerformance. All ex-
isting solutions including B-queue are only partial sauas to this important research
topic. This is an open area that requires continuing atianti
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