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Abstract Core-to-core communication is critical to the effective use of multi-core
processors. A number of software based concurrent lock-free queues have been pro-
posed to address this problem. Existing solutions, however, suffer from performance
degradation in real testbeds, or rely on auxiliary hardwareor software timers to han-
dle the deadlock problem when batching is used, making thosesolutions good in
theory but difficult to use in practice. This paper describesthe pros and cons of ex-
isting concurrent lock-free queues in both dummy and real testbeds and proposes B-
Queue, an efficient and practical single-producer-single-consumer concurrent lock-
free queue that solves the deadlock problem gracefully by introducing a self-adaptive
backtracking mechanism. Experiments show that in real massively-parallel applica-
tions, B-Queue is faster than FastForward and MCRingBuffer, the two state-of-the-art
concurrent lock-free queues, by up to 10x and 5x, respectively. Moreover, B-Queue
outperforms FastForward and MCRingBuffer in terms of stability and scalability,
making it a good candidate for fast core-to-core communication on multi-core archi-
tectures.
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1 Introduction

As multi-core architectures become ubiquitous, great efforts have been made to paral-
lelize single-threaded applications [4,19,28,34,35]. One example is that a great deal
of work applies pipeline parallelism to sequential networkapplications [7, 34, 35].
Harnessing abundant CPU resources, however, is still a big challenge. One problem
is the lack of a fast and efficient core-to-core communication mechanism on exist-
ing commodity multi-core platforms, and threads have to rely on shared memory to
exchange information [6]. Take 10Gbps network as an example, a minimal 64-byte
Ethernet frame must be processed in amortized time of 67 nanoseconds, which is
about one DRAM access time. If there is no efficient core-to-core communication,
parallelizing such network applications cannot take effect because a single memory
based core-to-core communication might offset the benefit from parallelization.

A large body of work focuses on providing core-to-core communication with
First-In-First-Out (FIFO) queues [7,12,15,18,19,27,35]. It is generally accepted that
a lock-based solution is inappropriate for applications featuring fine-grained paral-
lelism, and a lock-free design is a promising approach. Unfortunately, general pur-
pose lock-free FIFOs still do not perform adequately. For example,cache-unaware
lock-free FIFOs [14,16] take more than 1,000 CPU cycles to insert or extract an ele-
ment. To tackle this problem, FastForward [7] and subsequent research efforts [18,35]
provide single-producer-single-consumer concurrent lock-free FIFOs (abbreviated as
CLF queues from here on) to support fast core-to-core communication; all of them try
to avoid cache thrashing as much as possible. Experiments ondummy testbeds [7,18]
show that these solutions take 20 cycles on worst-case for each insert/extract opera-
tion, making CLF queues a promising candidate for fast core-to-core communication
on multi-core architectures.

When employing existing CLF queues in practice, we encountered the follow-
ing problems. (1) Peak performance in dummy testbed sometimes is misleading, and
in real applications performance of these CLF queues decreases dramatically. Ex-
perimentally we found that the claimed peak performance is achieved only when
CLF queues stores in L1 cache (Up to 97% memory accesses must be served by
L1 cache), and no cache thrashing occurs. However, in real applications, L1 cache
miss and cache thrashing are unavoidable [20, 32]. (2) Performance of existing CLF
queues drops dramatically when the number of queues increases. This performance
degradation has been observed and reported in [18, 35], but not carefully studied in
the literature. (3) Existing CLF queues are hard to use. FastForward [7] relies on pre-
defined thresholds to avoid cache thrashing, but these thresholds vary from system to
system and are hard to tune in practice. Other work [12, 18, 35] relies on batching to
achieve maximum performance. However, to avoid the deadlock problem inherent in
batching (Section 2.5), auxiliary timer and threads must beused to periodically check
the state of a CLF queue to keep the consumer alive. The auxiliary timer and threads
disturb CLF queue’s cache behavior, and complicate the system as well (Section 2.6).

This paper studies CLF queues in building up a real multi-10Gbps network pro-
cessing system where parallelism is widely used [6,7,18,35], and both the hardware
and software capabilities are stressed [5,8]. The major contributions of this paper are
as follows:
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– Existing CLF queues are evaluated on both dummy and real applications; their
strengths on dummy testbeds and weaknesses on real applications are studied.
The evaluation comes to the conclusion that for CLF queues, no further effort
should be made to pursue higher performance on dummy testbeds. In contrast,
great attention must be paid to putting them into practice.

– A fast yet practical CLF queue, named B-Queue, is proposed. B-Queue outper-
forms existing CLF queues in terms of scalability and stability and requires no
parameter tuning. All these advantages come from a novel backtracking mech-
anism that can adaptively adjust consumption to productionwithout the need of
any auxiliary mechanism or manually tuned parameters.

The remainder of this paper proceeds as follows. Section 2 provides the back-
ground and motivation of this paper. Section 3 describes B-Queue’s design, and
proves its correctness in Section 4. Section 5 evaluates theperformance of CLF
queues on dummy and real testbeds. Section 6 discusses related work and Section
7 concludes.

2 Backgrounds and Motivation

Three parallel programming techniques —task parallelism, data parallelism, and
pipeline parallelism— are widely used in parallelizing real world applications.Task
parallelismuses multiple independent and often heterogenous tasks andis usually
used for relatively long duration tasks.Data parallelismapplies the same computa-
tion to independent data elements in parallel. These two techniques, however, fail to
parallelize applications that have strict ordering requirements in computation [7]. Two
examples are network processing and stream processing where there exist a partial or
total order in computation, making them poor candidates fortask- and data-parallel
techniques [6].

Pipeline parallelism, on the other hand, is applicable to applications which feature
a total order on computation tasks. Inpipeline parallelism, a single task is divided
into several pipeline stages each of which operates concurrently. A large amount of
work has been done to exploit pipeline parallelism in real world applications [25,29,
30], and a 3-stage-n-way pipeline model [6, 7, 18, 35] is widely used in parallelizing
network applications. High performance CLF queues are extensively studied as a
mechanism to pass data from between consecutive pipeline stages. We survey the
existing work on CLF queues in the following subsections.

2.1 Lock Based Queues

The simplest way to implement a shared queue is to use locks. However, lock based
queues are inefficient because both the producer and consumer need to acquire a lock
before accessing the queue, which prevents concurrent access to the queue even if
different slots are accessed.
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2.2 Lamport’s CLF Queue

L01: BOOL enqueue ( ELEMENT_TYPE value )
L02: {

L03: if (NEXT(head) == tail){
L04: return FAILURE ;
L05: }

L06: buffer[head] = value;
L07: head = NEXT(head);

L08: return SUCCESS ;
L09: }

L10: BOOL dequeue ( ELEMENT_TYPE *value )
L11: {

L12: if (head == tail) {
L13: return FAILURE ;

L14: }
L15: *value = buffer[tail];
L16: tail = NEXT(tail);

L17: return SUCCESS ;
L18: }

Fig. 1: Lamport’s queue

Lamport presented the first CLF queue in [17], where he provedthat under se-
quential consistency memory model, locks could be removed from single-producer-
single-consumer queues, resulting in lock-free queues. Figure 1 gives the pseudo-
code of Lamport’s CLF queue, where the exclusion of explicitsynchronization allows
the producer and consumer to concurrently access the queue.

However, since the producer and consumer use two shared variables,headand
tail, for implicit synchronization, Lamport’s CLF queue suffers fromcache thrashing.
The cache line containingheadandtail is frequently invalidated by the modification
of the two control variables, causing the cache line bouncing back and forth between
two caches. In addition to that, Lamport’s CLF queue cannot be used in architectures
with weak memory consistency models, such as PowerPC and IA64 [7].

2.3 FastForward

FastForward improves Lamport’s CLF queue by eliminating shared variables be-
tween producer and consumer. Figure 2 shows the pseudo-codeof FastForward where
headand tail become non-shared local variables (Thehead is a local variable of
the producer and thetail is a local variable of the consumer). Moreover, coupling
makes FastForward execute correctly even on processors with weak memory con-
sistency [7]. It is worth noting that cache thrashing still occurs if two buffer slots
indexed byheadandtail are located in the same cache line. To avoid cache thrash-
ing, FastForward introduces atemporal slippingmechanism (Figure 3) to ensure that
the producer and consumer are separated by a certaindistance.

The first problem of FastForward is that it requires heavy work to manually tune
parameters to achieve peak performance, and thus lacks stability in practice. The
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F01: queue_init()
F02: {

F03: buffer [0..end] = NULL;
F04: }

F05: BOOL enqueue ( ELEMENT_TYPE value )

F06: {
F07: if (NULL != buffer[head]) {
F08: return FAILURE ;

F09: }
F10: buffer[head] = value;

F11: head = NEXT(head);
F12: return SUCCESS ;
F13: }

F14: BOOL dequeue ( ELEMENT_TYPE *value )

F15: {
F16: *value = buffer[tail];

F17: if (NULL == value) {
F18: return FAILURE ;
F19: }

F20: buffer[tail] = NULL;
F21: tail = NEXT(tail);

F22: return SUCCESS ;
F23: }

Fig. 2: FastForward implementation

A01: adjust_slip() {
A02: dist = distance (producer , consumer );

A03: if (dist < DANGER) {
A04: dist_old = 0;
A05: do {

A06: dist_old = dist;
A07: spin_wait(avg_time * ((GOOD+1)-dist));

A08: dist = distance (producer , consumer );
A09: } while (dist < GOOD && dist_old < dist);
A10: }

A11: }

Fig. 3: Suggested slip adjustment routine in FastForward

efficiency oftemporal slippingheavily relies on two pre-defined thresholds,GOOD
andDANGER, and Fastforward suggests thatGOOD andDANGERshould be the
size of 6 cache lines and 2 cache lines, respectively. In experiments, however, we
found that the optimal values vary from system to system, andthe suggested values
only fit one of the three servers used in our experiments. For each system, we have to
measure FastForward for many times to get optimal values forGOODandDANGER
before applying it in practice.

One technical merit of FastForward is that whenheadand tail pointers are far
enough apart cache misses are avoided. However, the adjustment routing itself, shown
in Figure 3, touches the indexes of both producer and consumer (Line A02 and A08)
to calculate the distance betweenheadandtail pointers, inevitably incurring cache
thrashing because one of these two variables is modified by another thread. Therefore
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the adjustment routine cannot be invoked frequently, leaving to the users a question
of how often to call the adjustment routine.

2.4 Multi-line Updates

Noticing the cache thrashing issue, multi-cache-line update is proposed in [35]. The
idea is that the producer does not updateheaduntil enough data has been accumulated
to fill in one or a few cache lines. However, such aggressive batching makes the queue
prone to deadlock in real applications. We discuss the problem in next subsection
because MCRingBuffer suffers the same problem.

M01: BOOL Insert(T element ) {

M02: afterNextWrite = NEXT(nextWrite);
M03: if (afterNextWrite == localRead) {

M04: if (afterNextWrite == head) {
M05: return INSERT_FAILED;
M06: }

M07: localRead = head;
M08: }

M09: buffer[nextWrite] = element ;
M10: nextWrite = afterNextWrite;
M11: wBatch ++;

M12: if (wBatch >= batchSize) {
M13: tail = nextWrite;

M14: wBatch = 0;
M15: }

M16: return INSERT_SUCCESS;
M17: }

M18: BOOL Extract (T* element ) {
M19: if (nextRead == localWrite) {

M20: if (nextRead == tail) {
M21: return EXTRACT_FAILED;
M22: }

M23: localWrite = tail;
M24: }

M25: *element = buffer[nextRead ];
M26: nextRead = NEXT(nextRead );

M27: rBatch ++;
M28: if (rBatch >= batchSize) {
M29: head = nextRead ;

M30: rBatch = 0;
M31: }

M32: return EXTRACT_SUCCESS;
M33: }

Fig. 4: MCRingBuffer implementation

2.5 MCRingBuffer

To make the algorithm cache-aware, MCRingBuffer [18], shown in Figure 4, adopts
several optimization techniques, includingCache-line ProtectionandBatch Update
of Control Variables. The idea is to use a localhead(Line M03) to shadow the global
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Queue 1

Queue 2

T1 T2

Fig. 5: Deadlock example
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Fig. 6: Deadlock Prevention in MCRingBuffer

head, and most of the time only local variable is accessed to avoidcache thrashing
(Line M09).

Batching improves performance but makes the algorithm prone to deadlock. For
example, when processes are working with multiple MCRingBuffer queues and they
form a circular chain, deadlock occurs when each process is waiting for others to
finish. An example is shown in Figure 5, where threadT1 generates and passes data
to threadT2 throughQueue 1, and threadT2 generates and passes data to threadT1
throughQueue 2. This scheme is widely used to synchronize two threads whereT1
passes data toT2 and gets feedbacks fromT2. WhenT1 generates a few data that is
less than the size ofbatchSize, and pollsQueue 2trying to get feedbacks, and at the
same timeT2 generates some feedbacks that are less than the size ofbatchSize, and
pollsQueue 1trying to get more data, deadlock occurs.

2.6 Deadlock Prevention

Some deadlock prevention methods have been proposed in [12,18]. The basic idea
is to periodically inject garbage data into the queue to keepthe consumer alive. For
example, MCRingBuffer [18] suggests that the producer periodically injects unused
elements, and then the consumer discards them (Figure 6). However, none of these
methods in the literature has been implemented and measured. In this subsection, we
propose some common mechanisms for deadlock prevention andoutline the diffi-
culties inherent in each of the proposals. After that, we come to the conclusion that
preventing deadlock is non-trivial and the proposals fail to achieve this goal.

(1) A naive way to prevent deadlock is to use a timer and an auxiliary moni-
toring thread. This thread periodically checks whether there is a deadlock, and in-
jects garbage data whenever necessary. However, the extra deadlock-check thread
fundamentally complicates synchronization, and changes asingle-producer-single-
consumer queue into a multi-producer-single-consumer queue. To the best of our
knowledge, no multi-producer-single-consumer queues in the literature can provide
fast core-to-core communication required by fine-grained parallelism.

(2) The second way is to use a hardware/software timer that periodically interrupts
the producer to inject garbage data. However, as the producer’s execution path may
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be interrupted, producer must be reentrant. To the best of our knowledge, none of the
existing CLF queues is both lock-free and reentrant.

(3) The third way also uses a hardware/software timer, but the timer periodically
informs the producer by writing a global variable instead ofinterrupting the producer.
Producer actively checks this global variable to see whether the queue needs a flush
operation. Unfortunately, this method cannot solve the deadlock problem shown in
Figure 5. Think about the scenario whereT1 tries to get data fromT2 by polling
Queue 2, andT2 tries to get data fromT1 by polling Queue 1. If neither queue has
enough data, both threads are busy waiting and have no chanceto check the global
variable. Deadlock remains unsolved.

(4) A new method, discussed in [12], improves method (3) by adding a callback
function that flushes all outgoing queues. The callback function is called right before
the queue sleeps or polls a specific queue. For example, in Figure 5, when thread
T1 fails to get a new datum fromQueue 2, the callback function is executed to flush
Queue 1by, for example, inserting garbage data. A detailed analysis of this method,
however, shows that implementing this method is a non-trivial work, especially for
systems that can dynamically create and destroy CLF queues.Actually, this method
works by binding all the queues in the system, which increases system complexity.
Whenever a thread fails to get a new datum, the program must decide whether to flush
the remaining queues, and which queues should be flushed. To make a decision, the
system must maintain a global data structure that propagates the status of each queue
in the system. Therefore, this method only fits special use cases because it shifts the
responsibility of deadlock prevention to users.

To sum up, none of the above deadlock prevention methods is practical. Even
worse, they generally cause significant performance degradation. For example, MCRingBuffer
with deadlock prevention method (3) suffers performance degradation by up to 5
times (Section 5.3).

3 B-Queue

The analysis in section 2 shows that existing CLF queues are good in theory but
difficult to use in practice. This section presents the design of B-Queue and how
backtrackinggracefully solves the deadlock problem.

3.1 Batching

Figure 7 shows the pseudo-code ofenqueueanddequeueoperations. Two local con-
trol variables,headandtail, are used to record current positions of producer and con-
sumer, respectively. Another two local control variables,batchheadandbatch tail,
are used by the producer and consumer to probe a group of available slots. Slots be-
tweenheadandbatchheadare safe for the producer to store data, and slots between
tail andbatch tail are safe for the consumer to read.

For the producer, theheadandbatchheadare initialized to zero. When the pro-
ducer wants to insert an element, it first compares theheadwith batchheadto see
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Q01: BOOL enqueue ( ELEMENT_TYPE value )
Q02: {

Q03: if (head == batch_head) {
Q04: if (buffer[MOD(head+BATCH_SIZE)])

Q05: return FAILURE ;
Q06: batch_head=MOD(head+BATCH_SIZE);

Q07: }
Q08: buffer[head] = value;
Q09: head = NEXT(head);

Q10: return SUCCESS ;
Q11: }

Q12: BOOL dequeue ( ELEMENT_TYPE *value )
Q13: {

Q14: if (tail == batch_tail) {
Q15: if (backtrack_deq() != SUCCESS )

Q16: return FAILURE ;
Q17: }

Q18: *value = buffer[tail];
Q19: buffer[tail] = NULL;
Q20: tail = NEXT( tail );

Q21: return SUCCESS ;
Q22: }

Fig. 7: B-Queue Algorithm

if there are any empty slots available (Line Q03). If noemptyslot is available, it
probes the slot that isBATCH SIZEslots ahead of current position to see if a block
of BATCHSIZE emptyslots could be found (Line Q03-Q06). TheMOD is a modular
operation against the queue size. The producer returns if noenoughemptyslots are
available; otherwise, thebatchhead is updated and an element is inserted into the
queue (Line Q08-Q10). As long as theheaddoes not catch up with thebatchhead,
the producer only executes the fast path (Line Q08-Q10) to insert elements.

For the consumer, it first compares thetail with batch tail to check if there are any
filled slots available (Line Q14). If no filled slot is available, it probes a block offilled
slots usingbacktracking(discussed in section 3.2) (Line Q15). It returnsFAILURE if
nofilled slot is available; otherwise, it gets an element from the queue, clears the slot,
and updates variabletail (Lines Q18-Q20). As long as thetail does not catch up with
the batch tail, the consumer only executes the fast path (Line Q18-Q21) to extract
elements.

The basic idea behind batching is that both the producer and consumer detect
a batch of available slots at a time, ideally reducing the number of shared memory
accesses by(BATCH SIZE-1)/ BATCH SIZE. If BATCH SIZEis set properly, the pro-
ducer and consumer will never operate on the same cache line.In addition to cache
thrashing avoidance, batching also facilitates hardware prefetching that may greatly
improve the performance of CLF queues. Experiments show that on Intel processors
with hardware prefetching features on, as high as 99% of cache accesses are served
by L1 data cache in dummy testbeds (see Section 5.2).

B-Queue is easy to use in real applications.BATCH SIZE can be simply set
to the size of multiple cache-lines, and performance of B-Queue is insensitive to
BATCH SIZE(Section 5.4). This is different from the system-dependent, pre-defined
thresholds in FastForward.
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B01: BOOL backtrack_deq( )
B02: {

B03: batch_size = BATCH_SIZE;
B04: batch_tail = MOD(tail+batch_size -1);

B05: while (!buffer[batch_tail]) {
B06: spin_wait(TICKS);

B07: if (batch_size > 1) {
B08: batch_size = batch_size >> 1;

B09: batch_tail = MOD(tail+batch_size -1);
B10: }
B11: else

B12: return FAILURE ;
B13: }

B14: return SUCCESS ;
B15: }

Fig. 9: Backtracking to search for filled slots

3.2 Backtracking

A detailed analysis of deadlock prevention mechanisms commonly used in existing
CLF queues has been presented in Section 2.6. In B-Queue, a novel deadlock pre-
vention mechanism,backtracking, is designed forconsumerto adaptively find filled
slots if producerhalts temporarily. Figure 8 depicts thebacktrackingmechanism,
and Figure 9 presents its pseudo-code. The batching size variable,batchsize, is ini-
tialized to BATCHSIZE (Line B03), and thebatch tail is BATCH SIZE ahead of
tail (Line B04). In each run, the consumer checks the status ofbuffer[batchtail] ,
wherebatch tail is the edge of this batching. If the slot is not filled (Line B05),
batching size is halved (Line B08) andbatch tail is recalculated (Line B09). This
process repeats untilbuffer[batchtail] is found filled or the batching size reaches
zero. In the former case, a block offilled slots are found andbatch tail is updated; in
the later case, no data is available andFAILURE is returned. It is worth noting that in
both cases,backtrackingcompletes within finite time, a key element in our proof of
correctness (Section 4.3).

Take Figure 8 as an example. The producer inserts two elements and then halts.
The consumer first checksbuffer[tail + BATCH SIZE-1](Detection 1). Because the
slot is not filled, the consumer automatically decreases thebatching size and checks
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N01: BOOL backtrack_deq( )
N02: {

N03: if (batch_history < BATCH_MAX) {
N04: batch_history = MIN(BATCH_MAX , \

batch_history + INCREMENT);
N05: }

N06: batch_size = batch_history;
N07: batch_tail = MOD(tail+batch_size -1);

N08: while (!buffer[batch_tail]) {
N09: spin_wait( TICKS );

N10: if( batch_size > 1 ) {
N11: batch_size = batch_size >> 1;
N12: batch_tail = MOD(tail+batch_size -1);

N13: }
N14: else

N15: return FAILURE ;
N16: }

N17: batch_history = batch_size;
N18: return SUCCESS ;
N19: }

Fig. 10: Backtracking with automatic adjustment

buffer[tail + BATCH SIZE/2-1](Detection 2). This process repeats untilbuffer[tail+1]
is found filled (Detection N).

Backtrackingprevents deadlock by removing the necessary condition of dead-
lock, circular wait. Instead of letting the producer and consumer wait for each other
to finish,backtrackingallows the consumer to actively decrease its batching size.Bi-
nary search algorithm (Line B08) is used to quickly approachthefilled slots. In the
worst case,backtrackingtakeslogBATCH SIZE

2 memory accesses to find the first hit.
To summarize,backtrackingis a simple yet efficient deadlock prevention mech-

anism. It gracefully solves the deadlock problem by adaptively decreasing batching
size according to producer’s speed at runtime. It is simple because no timer or aux-
iliary monitoring thread is required, and thus system complexity is not added. It is
efficient because no garbage data is generated.

3.3 Self-Adaptive Backtracking

Batching increases latency [18, 35]. Althoughbacktrackingsolves deadlock by au-
tomatically adjusting batching size, B-Queue still suffers high latency when the pro-
ducer is not busy. For example, when there is only one filled slot in the array and the
producer halts, the time that the consumer takes to find the filled slot could be:

logBATCH SIZE
2 ∗TICKS; (1)

If BATCH SIZE is 512 and TICKS equals to 2,000 CPU cycles, the latency is as high
as 18,000 CPU cycles (log512

2 ∗2000).
To tackle this problem, aself-adaptive backtrackingis presented in Figure 10. The

constant BATCHSIZE is replaced by a global variablebatchhistory that records
the history ofbatchsize. After a successful run ofbacktrackdeq(), the value of
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batchsizeis stored inbatchhistory(Line N17), and used as the start value ofbatchsize
in next run (Line N04). In this way, when the producer is not busy, the start value of
batchsizedecreases, so does the latency. However, when the producer gathers speed,
the value ofbatchsizeshould be enlarged. A possible solution is that wheneverback-
track deq()is invoked andbatchhistory is less thanBATCH MAX, batchhistory in-
creases byINCREMENT(Line N03-N05), whereINCREMENTcould be the size of
a cache line to avoid cache thrashing.

The biggest strength ofself-adaptive backtrackingis that it can adaptively adjust
the batching size and make a trade-off between latency and performance.

4 Correctness

To prove the correctness of B-Queue, we recall that our queueis based on a statically
allocated memory (buffer). By correctness of B-Queue, we mean that the consumer
dequeues elements in the same order that they were enqueued by the producer. Due
to lack of space, we regard the executions of the producer andconsumer are consis-
tent with their program orders, respectively. Besides, it is also reasonable to assume
that (1) aligned word-sized accesses (both read and write) are atomic, and that (2)
thebuffer has a low bound of 1 and a conceptually infinite high bound because the
index of the position wraps around the buffer if needed with assistance from func-
tion MOD() and NEXT() in B-Queue. These assumptions are justified on modern
multi-core processors. We will call all these assumptionsM.

4.1 Safety

B-Queue is safe because it satisfies the following properties:
(1) All the elements that have been inserted by the producer and have not been

extracted by the consumer compose an array (denoted as L and ranges from index
tail to head), because once an element is inserted (indexl in L), its next positionl +1
will be the position to be inserted into, and the element indexed by l + 1 cannot be
extracted until the element indexed byl has been extracted by the consumer.

(2) Elements are only inserted into the most significant position (referenced by
head) in array L, because indexhead is a private variable of the producer, and for
each enqueue operation, the producer places an element in the position referenced by
headand then monotonically advancesheadby one.

(3) Elements are only extracted from the less significant position (referenced by
tail) in array L, because indextail is a private variable of the consumer, and for each
dequeue operation, the consumer extracts elements from position referenced bytail
and then monotonically advancestail by one.

Initially, all the properties hold. By induction (Section 3.1) we could see that they
continue to hold when B-Queue makes progress and we have the following theorem.

Theorem 1 In B-Queue, the consumer dequeues elements in the same orderthat they
were enqueued by the producer.
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4.2 Linearizability

B-Queue has no critical section, but obviously there arelinearization points[9, 10].
For enqueue() method, Line Q08 is a linearization point where the message indicating
a successful enqueue operation is propagated. This linearization point takes effect
when the new value has been successfully written into the queue 1. If the queue is
full, the enqueue() method has a linearization point where it return a failure (Line
Q05). Similarly, for dequeue() method, Line Q16 and Q19 are linearization points. It
is worth noting that linearization point Line Q19 takes effect after the value has been
successfully read (Line Q18). Since the queue itself alwaysreflects the state offull or
empty, the queue never enters a transient state in which the state of the queue can be
mistaken.

4.3 Liveness

B-Queue iswait-freebecause both the enqueue() and dequeue() operations are guar-
anteed to complete within finite time. This property guarantees that either the pro-
ducer or the consumer that takes steps makes progress. For example, in the scenario
where producer halts half-way through enqueuing a valuex, then the consumer will
either throw aFAILURE (Line Q16) if the producer halted before storing the item
in an empty array, or it will return a value if the producer halted afterward. There is
a while loop diagram inbacktracking(Figure 9 and Figure 10) which sometimes is
called by the consumer. This while loop, however, will either take finite steps to find
a hit (Section 3.1), or afterlogBATCH SIZE

2 memory accesses, return aFAILURE that
makes the consumer return immediately. Similarly, in the scenario where consumer
halts half-way through dequeuing a value, then the producerwill either throw aFAIL-
URE (Line Q05) if the consumer halted before getting the item from a full array, or
it will store a value if the consumer halted afterward.

Notably, the wait-free property of B-Queue implies that B-Queue is lock-free.

5 Evaluation

This section compares the performance of three CLF queues: FastForward, MCRingBuffer
and B-Queue. Our experiments show that in real massively-parallel applications with
more than six queues,

– B-Queue is about 10 times faster than FastForward;
– B-Queue is 5 times faster than MCRingBuffer if the deadlock prevention mecha-

nism is on;
– Backtrackingadds less than one nanosecond of delay.

1 In actually, writing value and propagating message take effect at the same time.
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5.1 Experiment Setup

Three servers with different architectures are used in the experiments. The first server
is equipped with one Intel L5640 Westmere hex-core processor running at 2.26GHz.
Each core has a L1 cache of 64KB and a L2 cache of 256KB. A 12MB L3cache
is shared among all cores. The processor has an integrated memory controller that
supports DDR3 1333MHz memory, and 8GB memory is installed.

The second server has two Intel E5620 Westmere quad-core processors running
at 2.4GHz. Each E5620 processor has a shared L3 cache and an integrated memory
controller that supports DDR3 1066MHz memory, with 4GB memory installed. Two
E5620 processors are connected by a QuickPath Interconnect(QPI) [24] at 5.86GT/s.
Cores within the same CPU die (calledsibling cores) communicate through L3 cache,
andnon-sibling corescommunicate through QPI.

The third server is equipped with two Intel E7310 quad-core processors running at
1.6GHz. Each E7310 is composed of two replicas of dual-core modules; each mod-
ule has two cores and a shared 4MB L2 cache. Front Side Bus is used to connect
processors with the memory controller that supports DDR2 667MHz memory with
4GB memory installed. Cores within the same module (sibling cores) communicate
through L2 cache, andnon-sibling corescommunicate through FSB.

All the three servers run 64-bit Linux 2.6.39 kernel, and theCLF queues are com-
piled by GCC 4.5.1 with -O2 option. Without optimization options, the compiler’s
goal is to reduce the cost of compilation and to make debugging produce the expected
results [1]. Turning on optimizations (-O1 and higher) makes the compiler attempt to
improve the performance by compiling all statements at onceto a single output object
file, and allow the compiler to adopt optimizations such asguess-branch-probability
andmerge-constants[1] to reduce code size and execution time. Experimentally,we
found that with optimization flag -O1, -O2 or -O3, all the CLF queues (FastForward,
MCRingBuffer and B-Queue) perform around three times faster than versions com-
piled without an optimization flag. To make a fair comparison, all the CLF queues
are compiled with -O2 option in experiments because optimization flags belonging
to -O3 level do not benefit CLF queues.

For the MCRingBuffer queue, we sent our implementation to the original au-
thor for code review and received confirmation that our implementation is identi-
cal to what he did in [18]. For the FastForward queue, we received an implementa-
tion from the original author. B-Queue has been released under the GPL licence2.
For FastForward and MCRingBuffer, optimizations are applied as much as possible
to make a fair comparison. Those include cache line protection [18] and warm-up
of queues before operation [7]. Performance critical parameters of FastForward are
tuned manually in each experiment to get the best performance.

In each run, the producer thread inserts one trillion elements into the CLF queue,
and the consumer thread gets these elements in order. Each thread is bound to a
dedicated core, with the producer and consumer running on different cores. Hardware
basedTime Stamp Counter[11] in X86 is used to record the value of RDTSC register
before and after the one trillion enqueue() and dequeue() operations to calculate the

2 http://sourceforge.net/p/bqueue/code
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total CPU cycles. The time of a single enqueue() or dequeue()operation is calculated
by dividing the total execution time with one trillion and then subtracting workloads.
It is worth noting that reading RDTSC register is not a serializing instruction. The
read operation neither waits for all the previous instructions to finish before reading
the counter, nor prevents subsequent instructions from starting to execute before the
read operation is performed [11]. Therefore, there are somedeviations in the total
number of CPU cycles. Nevertheless, the deviation of a single enqueue() or dequeue()
operation is negligible, as the number of total CPU cycles isdivided by one trillion.
For other architectural statistics (such as cache miss numbers), OProfile [3] is used
to collect hardware performance counters. Each experimental data is averaged on 30
trials.

5.2 Performance Evaluation on Dummy Testbed

In this subsection, we measure the performance of the three CLF queues on a dummy
testbed, and analyze the necessary requirements for achieving peak performance. The
queue size is set to contain 2,048 elements, and the batch size is 256 elements.

Table 1: Peak performance of CLF queues

CLF queue E5620 E7310 L5640

FastForward 14 15 14
MCRingBuffer 12 12 12
B-Queue 12 12 12

(a) On die (CPU cycles)

CLF queue E5620 E7310 L5640

FastForward 27 36 –
MCRingBuffer 15 31 –
B-Queue 13 31 –

(b) Cross die (CPU cycles)

Average cycles per operation for on-die communication (twothreads reside on
the same die) and cross-die communication (two threads reside on different dies)
are listed in Table 1(a) and 1(b), respectively. Table 1(a) shows that in the best case
(on-die communication), all the three queues achieve peak performance with each
enqueue/dequeue operation taking a dozen of CPU cycles, andmoreover the peak
performance is platform independent. In the cross-die case3, MCRingBuffer and B-
Queue use batching to amortise the overhead induced by cross-die interconnection,
and outperform FastForward in both servers. Performance ofall the three queues de-
creases on E7310 because the cross-die communication stresses the FSB on E7310.
New generation point-to-point interconnects (QPI [24] from Intel and HyperTrans-
port [13] from AMD corporation) provide much higher bandwidth and lower latency.

3 We did not experiment this on L5640 because this server has only one processor.
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Table 2: Cache behaviour of queues on E5620

CLF queue L1 hit L2 hit L3 hit Sibling System

FastForward 96.99% 0.32% 0.00% 2.69% 0.00%
MCRingBuffer 99.83% 0.00% 0.00% 0.17% 0.00%
B-Queue 99.89% 0.02% 0.00% 0.09% 0.00%

(a) On die (sibling cores)

CLF queue L1 hit L2 hit L3 hit Sibling System

FastForward 97.97% 0.16% 0.16% 0.00% 1.70%
MCRingBuffer 99.90% 0.01% 0.00% 0.00% 0.09%
B-Queue 99.94% 0.02% 0.00% 0.00% 0.04%

(b) Cross die

In addition to that, new servers (E5620) uses larger CPU cache and higher mem-
ory frequency. Those features significantly benefit concurrent lock free applications
running on multi-core servers.

OProfile analyzes the cache behavior of the three CLF queues with assistance
of hardware performance counters including L1 data cache hits (L1 hit), L2 cache
hits (L2 hit), L3 cache hits (L3 hit), number of misses served by sibling core’s cache
(Sibling) and the system (System). Table 2 presents the cache behavior of CLF queues
on E5620. The cache behavior on other two machines has a similar trend. Table 2
shows that all of the three CLF queues have extremely high L1 hit rate, and up to
96.99% memory accesses are served by L1 cache. That explainswhy reported peak
performance can only be achieved on dummy testbeds, where the working set is small
and nearly all of the memory accesses can be served by L1 cache.

However, real applications (Section 5.3) usually have larger memory footprint or
use multiple CLF queues at the same time. In these cases, the working set of a CLF
queue could not be held in the L1 cache, thereby causingcapacity cache missesand
coherency cache misses[20, 32]. Take E5620 as an example, a L1 cache hit costs 2
CPU cycles, a L2 cache hit costs 10 CPU cycles, a L3 cache hit costs 40 CPU cycles,
and a memory access costs up to 200 CPU cycles. Apparently, a L3 cache hit alone
may prevent a CLF queue from achieving the claimed peak performance reported in
the literature. In other words, a CLF queue that behaves wellon dummy testbeds will
not behave the same in real applications. We demonstrate this in next subsection.

IP  CORE ... ... ... ... ... ...
Network Output

AP  CORE

AP  CORE

AP  CORE

OP  CORE

AP  COREB−Queue

B−Queue

B−Queue

B−Queue

B−Queue

B−Queue

B−Queue

B−Queue

Multi−10Gbps Network Input

Fig. 11: Parallel multi-10Gbps networking system
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5.3 Performance Evaluation on Real Testbed

In this subsection, we evaluate the three CLF queues in a realapplication. We use
CLF queues to build a real multi-10Gbps network processing system that involves
Layer 2 to Layer 7 (L2-L7) functions, including a TCP/IP stack from Libnids [2], a
port-independent protocol identifier, and a HTTP parser that analyzes HTTP traffic.
Figure 11 illustrates the pipelined organization of the system. There are three pipeline
stages in the system:

– Input Stage(shown IP in Figure 11): One core in this stage receives packets
from 10Gbps network interface cards (NIC) through an optimized Linux NIC
driver [8], and then performs load balance by distributing the packets among mul-
tiple pipelines.

– Application Stage(shown AP in Figure 11): Each core in this stage gets packets
by polling a CLF queue that connects it to the IP core. Then it performs a complete
Layer 2 to Layer 7 network processing using the run-to-completion model, and
sends the results to OP core through another CLF queue.

– Output Stage(shown OP in Figure 11): One core in this stage checks the CLF
queues in a round-robin manner to collect the results.
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Fig. 12: CLF queue performance in 1-to-N scenarios

Table 3: Cache behaviour with seven queues

L1 hit L2 hit L3 hit Sibling System

FastForward 79.28% 8.50% 0.83% 5.32% 6.07%
MCRingBuffer 99.66% 0.00% 0.03% 0.07% 0.24%
B-Queue 99.79% 0.03% 0.01% 0.10% 0.07%
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The queue size is set to contain 2,048 elements, and the batchsize is 256 elements
for MCRingBuffer and B-Queue. Figure 12(a) and 12(b) present the performance of
different CLF queues in our parallel system built on E5620 and E7310, respectively.
Since there are multiple CLF queues in the system, we enhanceMCRingBuffer by
adding the deadlock prevention mechanism (3) discussed in Section 2.6. To prevent
an element from being permanently stalled in the queue, a timer and an auxiliary
thread are added to periodically indicate the producer to inject garbage data, and the
garbage data is discarded by the consumer. The original MCRingBuffer is denoted
as MCRingBuffer(deadlock)in Figure 12, and the enhanced MCRingBuffer with
deadlock prevention mechanism is denoted asMCRingBuffer(sane). Performance of
MCRingBuffer(sane) depends on the frequency on which garbage data is inserted;
generally lower frequency results in better performance but longer latency. To deliver
all of the 2,048 elements in the queue at peak rate without introducing extra latency,
the auxiliary thread signals the producer every 10 microseconds ((12cycles/datum)∗2048

2.4∗109Hz
)

in E5620.

Both Figure 12(a) and Figure 12(b) show that as the number of CLF queues (AP
cores) increases, performance of FastForward and MCRingBuffer(sane) decreases
dramatically. Performance of FastForward starts to decrease when two queues are
used. The reason is that the pre-defined thresholds only fit systems with one queue.
When multiple queues are used, these pre-defined thresholdsare no longer applicable,
and cache thrashing occurs. For example, the L1 cache hit rate of FastForward drops
from 96.99% in Table 2(a) to 79.28% in Table 3, and the cost of an enqueue() or
dequeue() operation increases from 10+ CPU cycles to 150+ cycles.

Readers may notice that MCRingBuffer without deadlock prevention (denoted as
MCRingBuffer(deadlock)) performs as well as B-Queue in Figure 12. The reasons
are that (1) MCRingBuffer(deadlock) fortunately does not incur a deadlock in this
testbed, and that (2) aggressive batching favors consecutive input in this experiment.
We list MCRingBuffer(deadlock) to make a fair comparison. However, one should
not use MCRingBuffer without deadlock prevention mechanism in practice (Section
2.5). Figure 12 shows that MCRingBuffer with a deadlock prevention mechanism is
not efficient in practice. Performance of MCRingBuffer(sane) starts to decrease when
more than three queues are used, and degrades 5 times when seven queues are used.
The performance degradation is mainly ascribed to the garbage data and the deadlock
prevention mechanism that introduces system overhead likecontext switches.

B-Queue aims at efficiency and usability. We design B-Queue with the notion
that no running system dependent parameters should be involved and that no extra
system complexity should be added. Figure 12 shows that the performance of B-
Queue hardly decreases even if seven queues are used, and only 0.07% of memory
accesses go to the main memory (Table 3). This experiment demonstrates that B-
Queue is an efficient and robust core-to-core communicationmechanism that may
act as a building block for fine-grained parallelism.
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5.4 Parameters in B-Queue

In this section, we evaluate how queue size, batch size, and workload affect the per-
formance of B-Queue. We run the experiment on the E5620 server with one queue.
As B-Queue is insensitive to the location of producer and consumer, we only give out
the experimental data obtained in on-die case.
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Figure 13 presents the average CPU cycles per operation (enqueue() or dequeue()).
In each iteration, the consumer gets an element from the queue, and then waits for
some given CPU cycles to simulate the workload. Five queue sizes (128, 256, 512,
1024 and 2048 elements) and six dummy workloads (0, 200, 400,800, 1,600, and
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3,200 CPU cycles) are used. It is clear that B-Queue is insensitive to both queue size
and workload.

Figure 14 shows the average CPU cycles per operation that B-Queue (with and
without backtracking) takes when different batch sizes are used. We use the evalu-
ation method described in Section 5.2. Figure 14 shows that the performance of B-
Queue increases with a larger batch size, and the maximum performance is achieved
when batch size equals to 256. To evaluate the overhead ofbacktracking, we turn
off backtrackingand do the same experiments. Experimental data shows thatback-
trackingadds less than two CPU cycles (that is one nanosecond on a 2GHzCPU) of
overhead in both on-die and cross-die cases.

Experiments in Section 5.2, Section 5.3, and this section show that B-Queue is
insensitive toqueue size, workload, number of concurrent threads, and thelocation of
producer and consumer. Moreover, the deadlock prevention mechanism,backtrack-
ing, barely introduces overhead.

In dummy testbeds, FastForward and MCRingBuffer have come to similar con-
clusions in respective papers. With dummy workload and a single CLF queue, FastForward
is insensitive to workload, queue size and core allocation (Section 5.4 in [7]), and
MCRingBuffer is almost insensitive with respect to queue size, core allocation and
batch size (Evaluation 1 and 2 in [18]). In summary, all the three CLF queues (FastForward,
MCRingBuffer and B-Queue) perform quite well in dummy testbeds with a sin-
gle CLF queue, which is even comparable to hardware core-to-core communication
mechanisms [19]. However, Section 5.3 shows that performance of FastForward and
MCRingBuffer decrease dramatically in real applications.This set of experiments
and analysis demonstrates that no further effort should be made to improve CLF
queues on dummy testbeds. In contrast, the community shouldfocus on problems in
putting these CLF queues into practice.

6 Related Work

Since queues are widely used in multithreaded programs for communication, there
are a wide array of studies on concurrent lock-free queues [14,16,21,23,33]. Most of
these studies focus on multiple-producer and/or multiple-consumer queues. However,
these queues often have limited performance, as a large portion of work has to be done
to avoid ABA problem [22]. For example, a single enqueue operation may take more
than one microsecond [14].

Being a special case, single-producer-single-consumer (SPSC) CLF queue is a
promising candidate for high speed core-to-core communication [7,12,17,18,27,31,
35], as it fundamentally avoids the ABA problem. So far, cache-aware SPSC CLF
queues are studied and reported in [7, 18, 35], and the ILP optimization is reported
in [12].

General purpose CLF queues commonly use linked list that requires dynamic
memory management and may result in poor cache locality and extra synchroniza-
tion [14, 16, 21, 31]. By exchanging data between producer and consumer through a
statically allocated array, ring-buffer based queues [7,18,35] can exploit cache local-
ity and facilitate the hardware cache prefetching.
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Another approach is hardware queues [15, 19, 26] that provide instructions for
enqueue and dequeue operations to reduce the overhead of software queues. How-
ever, hardware queues require to modify processors, and also impose challenges to
the operating system as the queue state must be preserved across context switch. To
date, hardware queues mainly exist in simulators, and none of the general purpose
processors supports this feature yet.

7 Conclusion and Future Work

This paper presents B-Queue, a cache-aware CLF queue for fast core-to-core commu-
nication. Batch operation and backtracking are incorporated elegantly, where batch-
ing allows B-Queue to get high performance by avoiding cachethrashing, and back-
tracking prevents deadlock by adaptively adjust the batching distance according to the
production speed. No running system parameter is used, and no system complexity
is added. B-Queue improves the performance of existing CLF queues in terms of sta-
bility, scalability and it is simpler to use. The efficiency of B-Queue is demonstrated
on a real testbed where multiple B-Queues are used.

Real applications featuring fine-grained parallelism require practical and efficient
lock-free data structures. However, most lock-free data structures are very good in
theory but difficult to use in practice and hard to tune for high-performance. All ex-
isting solutions including B-queue are only partial solutions to this important research
topic. This is an open area that requires continuing attention.
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