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ABSTRACT Virtualization technology is the core technology of cloud computing. While virtualization
technology offers flexibility in many ways, it also introduces additional performance overhead. For network
systems, it needs to provide additional virtual switching, the virtual packet I/O, and other functions. Providing
these features requires a lot of CPU resources. As cloud services grow, more and more CPU resources are
being used to provide virtualization support, which means that fewer CPUs can be sold to tenants. Therefore,
cloud service providers have been constantly seeking more efficient virtualization solutions for network
systems. In this paper, we identify one of the main reasons for the large consumption of CPU resources in
the virtual networking system — copy and propose to use memory page remapping technology to eliminate the
copy. Moreover, to adapt to the zero-copy technology, we have integrated the technology with a mature virtual
switch software in the host and a userspace protocol stack in the virtual machine. These components together
build a more efficient network system in virtual environments. The evaluations with microbenchmarks and

macrobenchmark show that our system performs much better than the state-of-the-art solutions.

INDEX TERMS Network I/O virtualization, virtio/vhost, zero-copy vhost, virtual switch.

I. INTRODUCTION
Cloud computing is becoming more and more important in
today’s world. It brings many benefits such as flexibility, high
availability and more. One of the most critical technologies
for enabling cloud computing is system virtualization, which
refers to creating a virtual machine that can act like a real
computer with an independent operating system. In virtual-
ization, the software that creates a virtual machine is called a
hypervisor, and the host is the machine which is used by the
virtualization and the guest is the virtualized machine.
However, the virtualization technology does not only bring
benefits, but also introduce performance overhead. Because
it needs another virtualized layer to support the virtualiza-
tion environment. For the networking system virtualization,
it needs to provide virtual switching and virtual packet I/O
functions. These layers will consume a lot of physical CPU
resources. Unfortunately, in the cloud, physical CPUs are
used to be sold to customers by virtualizing them to vCPUs
(virtual CPUs). Thus, the efficiency of these virtual layers
is related to the interests of cloud service providers. To pro-
vide more efficient virtual I/O system and save more CPU
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resources, we should first profile the bottleneck of the current
virtual I/O system. Before we locate where the bottleneck is,
let’s first look at the overall architecture of the virtualized I/O
system.

A virtual I/O system mainly includes two parts, one is
the packet I/O system which is used to exchange packets
between a VM and the virtual switching system. The other is
the virtual switching system which is responsible for switch-
ing packets between the VM’s ports or the physical ports.
We mainly focus on the packet I/O system in this paper.
There are three classes of packet I/O virtualization modes,
namely the full-virtualization mode, the para-virtualization
mode and the hardware-assisted virtualization mode [16].
In the full-virtualization mode, the hypervisor emulates a full
function of hardware network interface (NIC), which can be
driven by the native driver of the hardware NIC. Thus the
guest’s operating system does not know it is in a virtualized
environment. But this solution incurs very high performance
overhead. In the para-virtualization mode, a virtual device is
driven by a split-driver, which is split into two parts, one is
in the guest OS as the frontend driver, the other is in the
host acting as the backend driver. The two drivers cooper-
ates to exchange packets between the guests and the host.
This method has better performance than the full-virtualized
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mode and flexible enough, so it is the preferred solution in
the cloud. In the hardware-assisted mode, the SR-IOV [14]
allows different VMs to share a hardware NIC via different
virtual functions (VFs). This method can supply close to
bare-metal performance but it cannot be used in the cloud
environment due to inflexibility and does not support migra-
tion. This paper focuses on the para-virtualization solution
that is commonly used in the cloud. There are multiple imple-
mentations of the para-virtualization solution and their design
principles are similar. Among them, we choose virtio [1]
which is open-source and the default para-virtualization I/O
framework for QEMU/KVM [13] as our research object.

As we discussed above, virtio adopts a para-virtualization
mode and its driver is split into two parts: the frontend driver
(virtio driver) and the backend driver (vhost driver). I/O
requests are exchanged between the two drivers via virtio
queues, which actually are a piece of shared memory between
the two drivers. Each queue contains three rings. One descrip-
tor ring to indicate where the packets locate, one avail ring
to notify the other side which descriptors are available and
one used ring to notify the other side which descriptors are
used. The notification mechanism between the two drivers
can be based on virtualized interrupts and VM exit/entry.
Because virtualized interrupt and VM exit/entry are expen-
sive operations, the performance of virtio is low when using
this method. Another method is to poll the rings instead of
interrupts. DPDK [2] virtio/vhost driver [17], [18] use this
method to achieve high performance. To the best of our
knowledge, DPDK virtio/vhost driver is the highest perfor-
mance implementation of virtio.

In the backend, each vhost is usually connected to a virtual
switch (vSwitch) for packet switching. The most commonly
used vSwitch is OpenvSwitch [19]. According to our exper-
iments, the vhost consumes a lot of CPU cycles. There-
fore, Improving the vhost’s performance can save more CPU
resource for the cloud provider.

To test the vhost’s performance, we use a simple
vSwitch [20] (forwarding by destination MAC address)
implementation. We conduct the experiment on a server using
nine cores (referring section VII-A for the configuration),
one runs DPDK vSwitch (with eight vhost ports), each of
the other eight cores runs a DPDK packet-generator [21]
using DPDK virtio driver in the guest. The eight frontends
communicate with pairs through the DPDK vSwitch. We use
eight frontend drivers to prevent the frontend from becoming
the bottleneck. The experiment result shows that a core can
provide a forwarding rate of 10.08 Mpps (packet per second)
for 64-bytes packets and 4.16 Mpps for 1514-bytes packets.
Then, we continue to analyze the real cause of performance
degradation when transmitting large packets. We measure the
time of different processing stages in vhost, and find that
34.7% of the CPU cycles were spent on data copy when
transmitting 64-byte packets, and the proportion was 78.5%
in the case of 1514-byte packets. Moreover, there are jumbo
frames [24] that are much larger than 1514-bytes to be for-
warded. More CPU cycles will be consumed when copying
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such packets. Therefore, the data copy is one major bottleneck
in the virtual packet I/O process.

A naive method to eliminate data copy is to use shared
memory between the virtual machines. But this method will
introduce extra security problem. For example, a VM can
access a packet that does not belong to it. Reference [8]
uses this method to construct a high performance networking
system for virtualization environments. But the high-speed
zero-copy data delivery can only work between trusted
VMs. Therefore, we propose another zero copy design that
can achieve high performance without introducing security
issues. Based on the design, we develop a high performance
networking system for virtual machines. Our work’s key
contributions are:

1. A new zero copy design for virtual packet I/O that
can achieve high performance packet delivery between VMs
while keeping VMs’ memory isolated.

2. ZCopy-vhost, which is a zero copy high-performance
virtual packet I/O library is implemented based on DPDK.

3. Based on ZCopy-vhost, a high-performance networking
system (integrating a virtual switching system and a TCP/IP
stack) is developed.

The rest of this paper is organized as follows. Section II
introduce the background. Section III explores the design
space of the zero-copy solution. Section IV and section V
introduce the design and the implementation details respec-
tively. Section VII evaluates the performance of our system.
Section VIII introduces related works and section IX con-
cludes.

We note that our zero copy design in this paper first
appears in IEEE Conference on Local Computer Networks
(2017) [26]. Our initial conference paper consists of the
design idea of the zero copy solution and a simple prototype
to validate the idea. Now we have constructed a whole net-
working system (including switching system and the TCP/IP
networking stack) for VMs based on the zero copy design
and the system can achieve higher performance compared to
state-of-the-art approach. Moreover, we have added jumbo
frames [24] transmitting support in the design, which can
improve transmitting efficiency greatly.

Il. BACKGROUND
A. KVM & VIRTIO
Kernel-based Virtual Machine (KVM) is a virtualization
module in the Linux kernel that allows the kernel to act as
a hypervisor. QEMU [6] is a free and open-source emulator,
which generally work with KVM to provide a virtualization
platform. It exploits KVM to manage the CPU and memory
resources. For a VM, each vCPU is emulated by a QEMU
thread and runs on the physical CPU. A memory-backend-
file is mapped to QEMU and serve as the VM’s memory.
So, the hypervisor can access all memory address in the
VM. Moreover, if another process want to access the VM’s
memory, it needs to map to memory-backend-file too.

Virtio is a standard framework for I/O virtualization in
KVM. It can support virtualization in network, storage and so
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on. For network virtualization, virtio mainly consists a virtio
device, a frontend driver (virtio driver) and a backend driver
(vhost). The two drivers are reside in the VM and the host
respectively. Their job is to complete the packet transmission
between the VM and the host. the virtio queue in the virtio
device are used to exchange information between the two
drivers. The drivers of virtio is constantly developing for high
performance. There are two versions of virtio implementa-
tion now, the kernel version and the userspace version. The
userspace version (such as DPDK virtio/vhost) use polling
instead of interrupts to achieve higher performance.

B. COPY IN DPDK VIRTIO/VHOST

Intel DPDK is a Data Plane Development Kit that consists
of libraries to accelerate packet processing. It uses many
optimizations such as hugepage, polling and batch processing
to reduce the overhead of data processing.

To support packet I/O virtualization, DPDK implements a
virtio driver and a vhost library. The virtio driver is respon-
sible for receiving packets from the virtio device or transmit
packets from the upper application to the virtio device. And
the vhost library runs in the host, which is responsible for
receiving packets from the virtio device to the host or transmit
packets from the host to the virtio device. Usually, a vhost
library is integrated with a virtual switch, which is responsible
for switching packets between different ports. A virtio device
is usually treated as a port of the virtual switch. For the
convenience of the narrative, we will refer to the backend
process as DPDK-vhost.

DPDK-vhost [17] communicates with QEMU through a
UNIX domain socket. To access the VM’s memory (mainly
for packets, packet descriptors, etc.), DPDK-vhost maps
QEMU’s memory-backend-file into its address space. More-
over, the QEMU’s memory is allocated on huge pages, thus
the address translation from guest physical address (GPA) to
vhost virtual address (VVA) can be done by adding a constant
offset to the GPA (i.e., VVA = GPA + constant_offset).

Figure 1 shows that a packet is copied twice when
exchanged between two VMs. Let us see why these copies
exist in the virtual packet I/O. When vSwitch receives a
packet, it should first determine the packet’s destination
(a VM in this example), and then forwards the packet to the

Upper application @

DPDK virtio driver ‘

DPDK vhost DPDK vhost
Virtual Switch CoPY vSwitc’}E‘packet buffer COPY

|

Upper application @

DPDK virtio driver ‘

Guest 0S 1
Guest 0S 2

Host OS

FIGURE 1. Data copy in the DPDK-vhost.
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destination. A packet cannot go to the destination without
its destination being resolved by the vSwitch. As the virtual
switch process runs in the host software, the data copy is
necessary to forwarding the packet. AccelNet [7] offloads
the virtual switch process to the hardware NIC, but it is not
a pure software solution. Reference [8] allocates a piece of
shared memory between VMs to receive packets, but it brings
insecurity problem, because a VM could access a packet
that does not belong to it. Before presenting our solution
to eliminating this copy, we would like to introduce some
relevant principles of address translation in the VM.

C. ADDRESS TRANSLATION & EXTENDED PAGE TABLE
Traditionally, for a process in the host, virtual address is
translated to physical addresses according to the page table of
the process. This translation is done by the MMU (memory
management unit) hardware. However, when virtual layers
are introduced, the translation became complicated. For a
process in a VM, it requires two layers of address trans-
lation to translate the guest’s virtual address to the host’s
physical address. The first layer of translation is to translate
GVA (guest virtual address) to GPA (guest physical address)
according to the page table of the process. This page table
is managed by the guest OS. The second layer of trans-
lation is to translate GPA to HPA (host physical address)
according to the EPT (extended page table) of the VM. The
extended page table is managed by the hypervisor. accord-
ingly, the MMU is upgraded to support two-layers address
translation. As shown in Figure 2, the guest operating system
still maintains mappings from GPN (guest page number) to
GFEN (guest frame number) in the process’s page table, and
the hypervisor maintains mappings from GFN (guest frame
number) to (HFN) host frame number in VM’’s extended page
table. Each VM has an extended page table. MMU translates
addresses according to the process’s page table and the VM’s
extended page table.

D. OTHERS
To support virtual switching function, the zero-copy vhost
is integrated with Open vSwitch [19], which is a production
quality virtual switch. It is also the classic vSwitch in the
OpenStack, which is a well-known open source solution for
private and public clouds. Some work about the memory man-
agement needs to be done to integrate with Open vSwitch.

Meanwhile, a protocol stack is also needed to support
running applications. To construct a high performance and
stable network system, we choose F-stack [32] as our pro-
tocol stack, which is a user space network TCP/IP protocol
stack based on DPDK. It has advantages such as high per-
formance and low latency. The TCP/IP stack is ported from
the kernel of FreeBSD, which means it is robust. Moreover,
F-stack has been deployed in various products in Tencent
Cloud [32].

Jumbo frames [24] are Ethernet frames with large size.
Conventionally, the payload of an Ethernet frame should not
exceed 1500 bytes, which is limited by the MTU (maximum
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FIGURE 2. Address translation in a VM.

transfer unit). Jumbo frames can carry up to 9000 bytes of
payload. This feature can bring in many benefits to com-
puter networking, such as reducing overheads and CPU
cycles, improving the end-to-end TCP performance. Thus the
feature is supported by more and more hardware devices.
Although the feature is naturally supported in traditional vir-
tio/vhost solution, it needs extra care in Zcopy-vhost. Because
Zcopy-vhost limits each packet’s payload size to 4096 bytes.

IIl. DESIGN SPACE EXPLORATION

As described in subsection II-B, DPDK vhost needs two
copies to transmit a packet from a guest to another. The
copies are hard to eliminate because the virtual switching
process must be done in the host. Fortunately, page remapping
can be used to remove data copy. Instead of copy data from
the source process’s memory to the destination process’s
memory, page remapping transmit data by mapping the pages
to the destination process, which only involves minor mod-
ifications to the page tables. However, modification to the
page tables is also a CPU cost operation. Because the page
table is managed by the kernel and system calls are needed to
enter the kernel. Generally, system calls can consume a lot of
CPU. Therefore, in order to amortize the overhead of system
calls, batch processing is required. Moreover, it also needs
complicated memory management because the page size is
fixed and the data may span multiple pages. In order to avoid
starting from scratch, we do some changes to DPDK-vhost to
meet our needs.

Firstly, In each guest, there exist two packet buffers. One
is used to store the packets to be sent and the other is used to
receive packets. To switch packets between different guests,
DPDK-vhost allocates a block of memory as packet swap area
in the host. Since we are going to use page remapping instead
of data copy, the packet swap area is no longer necessary.
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Moreover, to remap the pages in different guests, we need to
manage all the pages in all guests’ packet buffers. As each
guest’s packet buffer is mapped into the address space of
DPDK-vhost individually, these packet buffers are usually
not contiguous in the vhost’s address space and in the physical
address. However, managing non-contiguous pages is ineffi-
cient and complicated. To this end, we remap all the pages in
all packet buffers to a piece of memory area that is continuous
both in vhost’s address space and in physical address.

Secondly, since page remapping requires one-page size of
data to be moved at a time, only one packet can be placed in
a page. If two or more packets are placed in the same page,
they will be switched to the same destination since the page
remapping can only move a page size of data at a time. But
their destinations may be different. Moreover, to remapping
pages, the relationship of GFN (guest frame number) and
HFN (host frame number) must be maintained. And the EPT
needs to be modified to make the page remapping take effect.

Thirdly, in DPDK, packets are managed by the mbuf struct,
which is designed to have an mbuf header followed by a
fixed-size area for the packet data. This design only needs one
operation to allocate/free the whole memory representation
of a packet. However, the design is not suitable for page
remapping. As mbuf headers are placed together with packet
data, they will also be remapped to the destination if page
remapping happens. But the mbuf headers should not be sent
out, because they are management struct. Therefore, the mbuf
struct should be redesigned to separate mbuf header from
packet data.

IV. DESIGN

A. PAGE SIZE FOR A PACKET

Remapping a page need to modify the EPT (extended
page table). EPT support three different page sizes on
x86_64 CPU [10]. the sizes are 4KB, 2MB and 1GB respec-
tively. Generally, the maximum Ethernet frame size is 1518B
and each page can only hold one packet at most. Obviously,
the page size of 2MB and 1GB are not suitable for holding
a packet. Therefore, We use a 4KB-page to hold a packet.
Although this design suffers a 50% packet buffer memory loss
compared to DPDK-vhost that uses 2KB buffer for holding a
packet, the loss is acceptable in modern computers with large
memory since the total packet buffer is small. For the conve-
nience of narration, when we talk about a page, we mean a
4KB page that contains a packet buffer.

However, some Ethernet frames can be large than 4KB. For
example, the frame size of jumbo frame [24] can be up to
9000 bytes, which needs at most 3 pages (3 * 4096 > 9000)
to store it. We chain these pages in the mbuf header. They
will be treated as one packet in the switching process, and
their remapping process will be done together.

B. PAGE MAPPING
As analyzed in section III, all packet buffers in guests are
remapped to a piece of memory area that is continuous both
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in vhost’s address space and in physical address. we call
this memory area host swapping area (HSA). The HSA is
managed by pages. Each page holds one packet at most. Pages
in HSA cannot be swapped out by the OS. Therefore, for
an address in HSA, there exists a constant offset between
its VVA (vhost virtual address) and the HPA (host physical
address). i.e. VVA = HPA + constant_offset.

In the guest, the packet buffer is called GSA (guest swap-
ping area). Each page in GSA is mapped to the HSA. The
backend maintains a (GFN, HFN) mapping table for each
guest. The mapping relationship is shown in Figure 3. Gen-
erally, the GFN can be calculated through the guest physical
address in the virtio ring. the backend needs to find which
HFN is mapped by the GFN. To provide O(1) lookup time,
the mapping table must be realized efficiently. So the HSA
and GSA are designed continuous in host physical memory
and in guest physical memory respectively. Therefore the
mapping table can be realized as an array. For example,
the mapping (GFN,, HFN,) can be indexed in the array
with index_number = GFN, — GFNy, where GFNj is the
minimum GFN of the GSA, and the corresponding value will
be HFN;.

GSA of Guest A: GSA of Guest B:

\ iy,

Mapped by
EPT of Guest B

/ D :Allocated Page
v D :Free Page

FIGURE 3. Page mapping between GSA and HSA.

Mapped by
EPT of Guest A

HSA:

1) ZCopy-VHOST RECV PROCESS

When a guest wants to send a batch of packets, it will
pass the descriptors of those packets to ZCopy-vhost via
vring. For each packet descriptor, Zcopy-vhost obtains the
packet’s guest physical address (GPA), and translates it into
vhost virtual address (VVA) according to the following steps:
1) calculating the guest frame number (GFN) by dividing
GPA with 4096; 2) getting the host frame number (HFN) by
looking up the guest’s page mapping table; 3) calculating the
host physical address (HPA) from the HFN; and 4) getting
the VVA by adding base_offsset to the HPA. The updating of
(GFN, HFN) mapping information is illustrated in Figure 4.
After the address is translated, ZCopy-vhost will get a free
page from its HSA and exchange pages with the guest. In the
guest’s page mapping table, page mapping (GFN, HFN,,4) is
replaced by (GFN, HFN,,,,), where the subscript old denotes
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GSA of Guest A:

\

GSA of Guest B:

|

:Pageold
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FIGURE 4. Process of receiving two packets from guest A in Zcopy-vhost.

the page holding that packet, and new denotes the free page
chosen by Zcopy-vhost. In Figure 4, the dashed lines repre-
sent the old mappings, and the tuple (i, j) means that the i-th
page in the GSA is mapped to the j-th page in the HSA. After
all the packet descriptors are processed, ZCopy-vhost will
enter the kernel to modify the EPT to make the new mapping
take effect. Finally, it updates vring to notify the guest that it
has received the packets. So far, all the packets are received by
ZCopy-vhost, and they are inaccessible to the source guest.

2) ZCopy-VHOST SEND PROCESS

When Zcopy-vhost wants to send a batch of packets to a
guest, it will get free descriptors from the vring. For each free
descriptor, it gets the descriptor’s GPA, and then calculates
the corresponding GFN, HFN, and VVA as described in the
sending process. As shown in Figure 5, after the address is
translated, ZCopy-vhost will map the descriptor’s GFN to
the packet’s physical page(the red page shown in Figure 5)
and the descriptor’s old physical page(the yellow page shown
in Figure 5) is reclaimed. After all the packet descriptors are
processed, Zcopy-vhost will enter the kernel to modify the
EPT. Finally, it updates vring to notify the destination guest

GSA of Guest A: GSA of Guest B:

L

1

" (1/12) Remap:
(045)/ (0,5) = (0,1
' (1,12) — (1,

|
T
'I

1

| l :Page with Packet
v

D :Reclaimed Page

FIGURE 5. Process of transmitting two packets to guest B.

%) 2,))

HSA:
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that there are new packets arrived. So far, all the packets are
sent to the destination, and pages got from the destination
guest are reclaimed.

C. BUFFER MANAGEMENT

DPDK uses struct mbuf to store packets. In this design,
the packet is stored after the corresponding mbuf header,
which is not suitable for page remapping. Because the mbuf
headers which are used to manage packets should not be
remapped. Therefore, the packet data must be separated from
the mbuf header. To this end, we use two memory pools.
One is used to store mbuf headers, and the other is used to
store packet data. The memory pool for storing packet data is
just the HSA mentioned above, which is divided into 4KB
pages. There exists a one to one correspondence between
the mbuf header pool and the packet data pool, with the ith-
mbuf header pointing to the ith-packet buffer. The backend
can manage the packet buffer pool by managing the mbuf
header pool with the corresponding relationship between the
two pools. More specifically, when a mbuf header is allocated
from the mbuf header pool, which means the corresponding
packet buffer is also allocated. When a packet buffer needs
to be free, the corresponding mbuf header should be found
out depending on the linear correspondence between the two
pools, and then the mbuf header is freed.

We exploit the DPDK mempool library as our memory
pool implementation, which is an efficient memory manage-
ment library for fixed-sized objects. It also provides an easy-
to-use API to allocate/free objects.

D. OpenvSwitch SUPPORT

OpenvSwitch (OVS) uses the struct dp_packet to store pack-
ets. For DPDK-OVS (the DPDK version of Open vSwitch),
the struct dp_packet wraps the DPDK’s rte_mbuf struct,
which means it also stores packet data following the man-
ager struct (i.e., struct dp_packet). So DPDK-OVS’s packet
buffer management should also be redesigned to support
page remapping. Similarly, packet data and dp_packet struct
are separated by using two memory pools. But the cor-
respondence between the dp_packet struct and the packet
data is recorded by the dp_packet struct. Moreover, besides
vhost port, OpenvSwitch also supports many other types of
port such as tap port, data copy is also needed to trans-
mit data between these types of port. To distinguish the
zero-copy dp_packets (i.e., the packets transferred between
vhost ports) from the other dp_packets, a zcopy_type field is
inserted to the struct dp_packet. When packets are transmit-
ted, the zcopy_type filed of the dp_packet is first identified.
For the zero-copy packets, they are processed in zcopy-vhost
mode without copy. For other dp_packets, they are processed
as they were.

E. USERSPACE STACK

In order to provide a reliable transport service to the
upper application, a network stack is needed. The recent
emergence of userspace protocol stack technology provides
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high-performance networking services. Among them, F-stack
is ported from the FreeBSD kernel protocol stack and devel-
oped based on DPDK, providing high performance while
ensuring robustness. F-stack uses two types of struct to store
packets, one is DPDK’s rte_mbuf struct in the driver layer,
the other is FreeBSD’s mbuf struct in the protocol layer.
The two types of structs are incompatible with each other,
so the packet data are also copied when transferred between
the driver layer and the protocol layer. The copy is hard to
eliminate because the data should be reserved in the protocol
layer for protocol processing such as data retransmission.
So we only need to change the rte_mbuf to the splitting form
of header and data, and keeping the data copy between the
driver layer and protocol layer, to avoid dealing with complex
protocol processing.

V. IMPLEMENTATION

A. MODIFICATIONS TO DPDK-VHOST

To implement page remapping in DPDK-vhost, the memory
management system must be redesigned. There are three key
aspects to modify: 1) host swap area (HSA) management,
2) guest swap area (GSA) management for each guest, and
3) the ETP must be modified to make the page remapping
take effect.

In the system initialization phase of vhost, we allo-
cate a host swap area (HSA) which is a 2MB-aligned
physical-continuous memory. The HSA is divided into 4KB
units. Moreover, an mbuf pool is also allocated. Each mbuf in
the mbuf pool corresponds to a 4KB unit in HSA. Thus the
allocation/free of 4KB units can be implemented by allocat-
ing/freeing mbufs in the mbuf pool.

The physical memory of GSA should be located in the
HSA. So the allocation process of GSA should be inter-
cepted and then allocate physical memory from the HSA
for GSA. When the GSA (4KB aligned) is allocated in the
guest (real physical memory has not been allocated yet),
the information (guest physical address and length) of the
GSA should be told to the DPDK-vhost. As a guest cannot
interact with DPDK-vhost directly, we use hypercalls to send
this information to KVM, and ask KVM and QEMU to
relay the information to vhost. After receiving the GSA’s
information, vhost allocates real physical memory from HSA
for the GSA. It also records the mappings between GSA
page number to the HSA page number. To make GSA
get real physical memory, vhost enters kernel to modify
EPT to map the guest pages in GSA to real physical page
frame.

Here we describe the processes in details. First, after the
vhost starts, it will create a UNIX socket and listen to it,
waiting for QEMU’s connection. Then, it allocates HSA for
page remapping. When a guest starts, QEMU will establish
a connection with vhost, and sends the guest OS’s memory
information to the vhost.

When a guest application starts, the DPDK virtio driver
will allocate a GSA. To map the GSA into the HSA. the GSA’s
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information needs to be sent to the vhost. First, the GSA’s
information is sent to KVM by using a hypercall. Information
of the GSA includes address and length of the GSA, and
MAC addresses of all the virtual NICs that will use the
GSA. After issuing the hypercall, the guest will be blocked.
Then KVM sends the received information together with
the address of the relevant VCPU-structure to QEMU. And
QEMU disables the corresponding VCPU-thread, and sends
the received information together with QEMU’s PID (to dis-
tinguish different guests) to vhost.

After receiving the information from QEMU, vhost will
create a mapping table for the guest. For each page in GSA,
it will allocate a physical page in HSA, and records the map-
ping in the table. Then it enters the kernel with the address of
VCPU-structure and page mappings to be modified through
a kernel module we added. The kernel module invokes the
KVM module to do EPT modification.

KVM module firstly gets the VCPU-structure, and then
gets the EPT corresponding to it, and then modifies the
relevant entries in the EPT. After the modification is fin-
ished, vhost will notify QEMU to enables the VCPU-thread
to run. So far, the VCPU can run with its GSA mapped to
HSA.

B. OPTIMIZATIONS TO EPT MODIFICATION

To make the page remapping take effect, vhost need to modify
EPT entries in the kernel. The modification of an ETP entry
includes some complicated operations, 1) kernel entry/exit;
2) lock operations before modifying EPT; 3) walking multiple
levels of page table to find the entries to be modified; and
4) flushing the TLB. According to our test, the time used by
these operations is more than that used by copying a large
packet. So some optimizations must be made to reduce the
overheads.

To amortize the overhead, we use batch processing, which
means vhost will modify multiple EPT entries each time it
enters the kernel. Because the operation 1 and 4 takes constant
time independent of packet numbers, the average overhead
of entering kernel and TLB flushing can be largely reduced
for a packet. Moreover, For the operation 2, we eliminate the
lock operations due to the following facts. EPT is constructed
using a lazy evaluation strategy, which means a VCPU-thread
does not access EPT unless an EPT violation (i.e., no corre-
sponding EPT entry) occurs. However, in our design, EPT of
a GSA is initialized in the allocation phase and maintained
solely by vhost. Thus the EPT violation of GSAs will never
happen. Therefore the lock operation when modifying EPT
for GSA can be eliminated safely.

For operation 3, walking multiple levels of page tables is a
time consuming operation. To solve the problem, KVM has
already used reverse-map (rmap) mechanism which records
the address of the corresponding EPT entry to a given guest
page. The rmap is also established by QEMU when EPT
violation happens. However, the design does not work for our
vhost. Because mapping information of GSA is maintained
by vhost rather than QEMU and there will no EPT violation
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in GSA. Therefore, the old rmap mechanism is not suitable
for GSA. Furthermore, in the rmap design, accessing rmap
need to acquire lock first, which will degrade the perfor-
mance. For GSA, the rmap is only accessed by the vhost
thread, so the lock operation can be avoided. Therefore,
we design a new rmap mechanism for the GSA to accelerate
the lookup of EPT entry. To maximum the lookup perfor-
mance, the rmap is designed as an array, with (GFN — GFNy)
as the index and the address of corresponding EPT entry as the
value.

C. TLB FLUSHING

To accelerate the address translation process, TLB (Transla-
tion Lookaside Buffer) is used to cache recently-used address
translation entries. In the virtual environment, the translation
entries from GVA (guest virtual address) to HPA (host physi-
cal address) are also cached in TLB. When a page remapping
happens and the EPT is modified, the corresponding trans-
lation entries in the TLB will be invalid. So after the page
remapping, the affected address translation entries in TLB
should be flushed.

However, flushing TLB can impact the guest’s perfor-
mance, but the performance of vhost is not affected because
its TLB is not flushed. As vhost is easy to become the
system bottleneck, we think it is acceptable to improve
the vhost’s performance by sacrificing some performance
of guest. We will evaluate the impact of TLB flushing in
section VII.

V1. DISCUSSION & FUTURE WORK

Live migration is needed in many cloud environments. Since
ZCopy-vhost is based on para-virtualized solution, support-
ing live migration is not a complicated problem. On a tradi-
tional platform, when live migration begins, KVM records
which pages have been modified and continuously trans-
fers the modified pages to the destination host. In our sys-
tem, when live migration happens, we can also record the
remapped pages in KVM, transfer the pages to the remote
HSA, and map them to the new virtual machine. We will add
migration support for ZCopy-vhost in the future.

For the ZCopy-vhost-OVS, we only modified its virtual
packet I/O part, so the other features of OVS such as QoS,
Openflow support are preserved.

In fact, the method of page remapping can also be applied
to other types of I/0. We will investigate more available
scenarios for the method and apply it. For more compatibility,
we will consider supporting kernel drivers and kernel proto-
col stacks in virtual machines in the future.

VII. EVALUATION

In this section, we first prove that ZCopy-vhost performs
better than DPDK-vhost, and then we demonstrate that
ZCopy-vhost-OVS also outperforms DPDK-OVS. Further-
more, the overhead of each phase in ZCopy-vhost is analyzed.
Finally, we use a real-world application, Redis, to evaluate the
performance of the whole system.
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FIGURE 6. Throughput comparison between DPDK-vhost and
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FIGURE 7. Throughput comparison between DPDK-OVS and Zcopy-OVS.

A. EXPERIMENTAL SETUP

We run experiments on a server equipped with a proces-
sor (Intel Xeon E5-2690 v3 @ 3.6GHz) and 4 * 16GB of
DRAM (DDR4 @ 2133MHz). For the software, we run
Ubuntu 14.04.3 with 3.19.8 kernel in the host and Ubuntu
14.04.2 with 3.16.7 kernel in the guest. The QEMU version
is 2.5.50 and DPDK version is 17.05.2. Moreover, we inte-
grated Zcopy-vhost with Openvswitch 2.7.0 and F-stack-1.0.
A packet generator for DPDK 17.05.2 is used for microbench-
mark and Redis is used for macrobenchmark.

We deploy two VMs in the experiments, each with 6 virtual
CPU cores and 16GB memory. The virtual CPU cores are
pinned to the fixed physical CPU cores. For the vhost, we use
one CPU core to do packet switching.

B. THROUGHPUT OF ZCopy-VHOST

In this section, we compare the maximum throughput of
ZCopy-vhost with that of DPDK-vhost. To measure the max-
imum throughput of one core can provide, both solutions use
only one core for packet switching. We implemented a simple
virtual switch which switches packets based on destination
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MAC address in the host. Each guest is configured with
four CPU cores to send/recv packets. Figure 8 illustrate the
configuration of the experiments.

Packet-gen (Send) N LPacket-gen (Recv)

uest O

—
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(@]
© |ZCopy(DPDK) G]

virtio driver

ZCopy(DPDK)
virtio driver

ZCopy(DPDK) vhost}_{ZCopy(DPDK) vhost

Host OS

Virtual Switch (one switching core)

FIGURE 8. Experimental architecture for testing throughput of
ZCopy-vhost.

As the throughput is affected by the payload size, packets
with different payload sizes ranging from 64B to 9000B
are generated. And the burst size is set to 32 for the bal-
ance of throughput and latency. For each size of packets,
we run experiments five times and the average results are
reported. Figure 6 shows the throughput of ZCopy-vhost and
DPDK-vhost with different packet sizes.

Three observations can be made from Figure 6. Firstly,
Zcopy-vhost performs better than DPDK-vhost in all cases,
and the larger the packet size, the more obvious the per-
formance gap. Secondly, the throughput of ZCopy-vhost is
almost independent of packet size in three granularities (i.e.,
0-4096, 4097-8192 and 8193-9000), whereas the through-
put of DPDK-vhost drops significantly with the increase of
packet size. This is because page remapping takes constant
time for each packet, whereas the time taken by packet copy
is proportional to the packet size. Thirdly, when the size of
packets is at 4097 or 8193 (4096 % 2 + 1), the throughput of
zcopy-vhost drops dramatically. This is because the packet
occupies one more page when its size reaches these values.
So the performance of zcopy-vhost only depends on the
number of pages occupied by the packets. For most situa-
tions where jumbo frames are not supported, the maximum
Ethernet frame size is limited to 1518B. Under this situa-
tion, the performance ZCopy-vhost is about 2.5 times that of
DPDK-vhost.

C. THROUGHPUT OF OpenvSwitch WITH ZCopy-VHOST
In this section, we measure the maximum throughput of
OpenvSwitch (version 2.8.4) with DPDK-vhost (i.e., DPDK-
OVS) and Zcopy-vhost separately. DPDK-OVS is a high
performance virtual switch that is adopted by many cloud
vendors as the default virtual switch. The guests are config-
ured with enough VCPUs so that the guest will not become
the bottleneck. The detailed configuration is the same as in
section VII-B. The flow table [33] of OVS is configured to
switch packets according to their destination MAC address.
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We generate packets with different payload sizes rang-
ing from 64 bytes to 9000 bytes. And the result is shown
in Figure 7. We can see that Zcopy-vhost can improve the
performance of virtual switches, especially when transmitting
large packets.

D. IMPACT ON GUEST'S PERFORMANCE

In this section, we evaluate the impact of TLB flushing on
the guest’s performance. To prevent the backend from being
a bottleneck, each VM is configured with one virtual CPU
core, which is bound to a physical core. We measure the
throughput of ZCopy-vhost and DPDK-vhost with different
packet sizes (64B, 521B, and 1514B). Table 1 shows the
average throughputs of ZCopy-vhost and DPDK-vhost. The
column Loss of Improvement is calculated as the ratio of
decreased throughput of Zcopy-vhost to the throughput of
DPDK-vhost.

TABLE 1. Throughput of a guest on DPDK-vhost and Zcopy-vhost.

Packet Size | DPDK-vhost | Zcopy-vhost | Loss of Im-
(Byte) (Mpps) (Mpps) provement
64 10.04 4.09 59%

512 8.24 4.09 50%

1514 4.12 4.09 1%

The results show that the maximum throughput of a guest
core is limited to 4.09 Mpps due to TLB flushing, which is
smaller than that of DPDK-vhost for small packets. However,
when packet size is large, the overhead of TLB flushing is
similar to the overhead of packet copy.

To sum up, ZCopy-vhost has a great advantage when trans-
mitting large packets.

E. PERFORMANCE BREAKDOWN

In this section, we breakdown the performance of
ZCopy-vhost by measuring the time spent in each phase of
data transmitting.

In general, three steps are needed to switch packets
between two guests: 1) getting packets from source guest;
2) switching packets, i.e., determining the destination for
the packet; and 3) sending packets to the destination guest.
As the page remapping only affect step 1 and 3, and the page
remapping processing for the two steps are similar, we just
need to breakdown step 1.

There are roughly five phases to get packets from the
source guest: 1) reading packet descriptors from avail vring;
2) allocating pages from HSA for page remapping; 3) remap-
ping page for each packet; 4) entering kernel and modifying
EPT; and 5) updating used vring. The average CPU cycles
consumed for a packet in different stages is shown in Table 2.

In phase 1 and 5, all operations are performed on the whole
batch, which takes constant time independent of the batch
size. So the CPU cycles averaged for each packet decrease
linearly as the batch size increases. In phase 3, each packet is
processed by the same operations, therefore the average time
for a packet is almost the same. In phase 2 and 4, the average
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TABLE 2. CPU cycles consumed by each packet in different phases under
different batch sizes.

Batch Size | 1 2 4 8 16 32
Phase 1 185.0 | 92.5 46.3 23.1 11.6 | 5.8
Phase 2 144.0 | 73.5 38.3 22.5 14.3 | 10.3
Phase 3 32.0 31.0 32.0 28.8 26.9 | 26.5
Phase 4 310.0 | 162.0 | 84.0 47.5 27.6 | 18.2
Phase 5 30.0 15.0 7.5 3.8 1.9 0.9
Total 701.0 | 374.0 | 220.5 | 1256 | 823 | 61.8

cycles for a packet also decrease, but not so severe as that in
phase 1 and 5. This is because some operations in phase 2 and
4 are performed on each packet (e.g. modifying EPT for each
packet) and some operations are performed independently
with batch size (e.g. entering kernel).

The experiments demonstrate the effectiveness of batch
processing in ZCopy-vhost. However, when batch size
increases too large, the network latency will be higher.
In order to balance throughput and latency, we suggest setting
batch size to 32.

Table 2 shows the average CPU cycles consumed by each
packet in different steps when different batch sizes are used.
The CPU cycles are counted on each batch of packets, and
then divided by the batch size.

F. REAL-WORLD APPLICATION

In this section, we show the performance of Redis [22],
a popular in-memory key-value store, running in the VM.
We compare the performance on ZCopy-vhost against
DPDK-vhost. The experimental architecture is shown in
Figure 9.

: [Redis Benchmark ] S‘, (Redis Seryer J
(@] o
7 EF-Stack ] 4 [F-Stack }
(] (]
> >
G] G]
ZCopy(DPDK) ‘ ZCopy(DPDK) 1
virtio driver virtio driver
& [zCopy(DPDK) vhost|  (zCopy(DPDK) vhost
3
T
OpenvSwitch (one switching core)

FIGURE 9. Experimental architecture of Redis.

To test the maximum throughput the backend can achieve,
we run six Redis (version 3.2.8) instances in one VM, and six
Redis benchmark [23] instances in the other VM. For each
instance, we issue 1,000,000 of SET requests with 100 con-
current connections. The six instance pairs run simultane-
ously. Payload sizes are set to 64B, 1KB, 64KB respec-
tively. Total throughput is calculated by summing the six
instances pairs’ throughput. Figure 10 shows the through-
put of Redis on both systems. From the figure, we can see
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FIGURE 10. The throughput of Redis on both networking systems.

that ZCopy-vhost can provide more throughput than DPDK-
vhost, especially when payload size is large. We can attribute
the performance improvement to reducing the data copies
between guests and the host.

VIIl. RELATED WORK

Vhost Data Path Acceleration (vDPA) [28] enables offload of
the Vhost vring data path to HW devices in a para-virtualized
way without direct pass-through to the guest. vDPA decom-
poses data path/control path of virtio devices. The data path
is pass-through for VRING capable device, while the control
path remains to be emulated. The VRING capable device
has the ability to enqueue/dequeue VRING and recognize
VRING format according to VIRTIO specification. As a
result, it can provide near bare metal I/O performance while
maintaining live migration ability. But it needs new VRING
capable device. More importantly, the queue numbers in
the hardware are limited, thus limiting the number of virtio
devices, resulting in scalability issues. Finally, it needs to
offload software services such as switching, VXLAN tun-
neling, etc. to the hardware, which is not as flexible as the
software solution.

VIRTIO-USER [29] is a new versatile channel for
kernel-bypass networks, it is designed for containers to gain
better performance by the kernel-bypass virtual switch. It also
needs data copy to switch packets between containers and the
host.

In accelNet [7] Microsoft Azure offloads the virtual switch
to the network and uses SR-IOV to eliminate the virtualiza-
tion overhead. It also provides the VM live migration ability
by turning off hardware acceleration and switching back to
its synthetic vNIC. But it does not optimize the software in
the VM. What’s more, it needs to modify the network card,
cannot be deployed with commodity network cards.

NetVM [8] constructs a high performance and flexible net-
working system based on DPDK. It eliminates the data copy
between VMs and the host through shared memory. There-
fore, security issues may be introduced because a VM can
access packets that do not belong to it. So the benefits can
only be gained between trusted VMs.
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Many works based on RDMA such as Hyv [30],
vRDMA [31] can eliminate the copy between the VM and the
host. However, they eliminate the copy based on RDMA net-
working rather than Ethernet networking. Moreover, RDMA
has other problems to be solved when deploying in the
public cloud, such as live migration, networking isolation and
network security.

IX. CONCLUSION

The paper present ZCopy-vhost, which can eliminate the data
copy between the VM and the host in virtual I/O by replac-
ing data copy with page remapping. Evaluations show that
ZCopy-vhost can improve the performance of the backend
switching system. Furthermore, we integrated ZCopy-vhost
with a mature virtual switch, OpenvSwitch, and a user space
stack, F-Stack, to build an efficient networking system for the
virtual environment. Experiment with real-world application
also proves that the page remapping method can save more
CPU resources in the backend than the data-copy solution.
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