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Most of the state-of-the-art localization algorithms in

wireless sensor networks (WSNs) are vulnerable to vari-

ous kinds of location attacks, whereas secure localization

schemes proposed so far are too complex to apply to

power constrained WSNs. This paper provides a distrib-

uted robust localization algorithm called Bilateration that

employs a unified way to deal with all kinds of location

attacks as well as other kinds of information distortion

caused by node malfunction or abnormal environmental

noise. Bilateration directly calculates two candidate posi-

tions for every two heard anchors, and then uses the aver-

age of a maximum set of close-by candidate positions as

the location estimation. The basic idea behind

Bilateration is that candidate positions calculated from

reasonable (i.e., error bounded) anchor positions and dis-

tance measurements tend to be close to each other,

whereas candidate positions calculated from false anchor

positions or distance measurements are highly unlikely to

be close to each other if false information are not colla-

borated. By using ilateration instead of classical multila-

teration to compute location estimation, Bilateration

requires much lower computational complexity, yet still

retains the same localization accuracy. This paper also

evaluates and compares Bilateration with three multila-

teration-based localization algorithms, and the simulation

results show that Bilateration achieves the best compre-

hensive performance and is more suitable to real wireless

sensor networks.
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1 Introduction

Wireless sensor networks (WSNs) are essentially intended

to observe spatio-temporal characteristics of the physical

world. Locations of sensor nodes are fundamental to pro-

viding location stamps, locating and tracking objects,

forming clusters, and facilitating routing, etc. However,

a priori knowledge of locations is unavailable in large-

scale and ad-hoc deployments, and a pure-GPS (Global

Positioning System) [1] solution is viable only with costly

GPS receivers and good satellite coverage. In a general

scenario, only a few nodes (called anchors) are aware of

their positions either through manual configuration or

equipped with GPS receivers, and the others (called

unknown nodes) have to estimate their positions by mak-

ing use of the positions of anchors.

Localization algorithms in WSNs are broadly divided

into range-free approaches and range-based approaches.

Range-free approaches normally rely on proximity, near-

far information or less accurate distance estimation to

infer the locations of unknown nodes [2–6], and range-

based approaches require accurate distance or angle mea-

surements to locate the unknown nodes [7–9]. Both

approaches must rely on the positions of anchor nodes

and some measured/estimated parameters, and the local-

ization accuracy depends on the accuracy of reference

positions and relative parameters.

Wireless sensor networks usually run in open environ-

ments where attackers may easily intrude. Attackers may

disseminate false reference positions in the network, or

mislead unknown nodes to get false distance/angle mea-

surements by tricks like modifying distance, jamming

communication and creating wormholes [11,12]. In addi-

tion to that, a wireless sensor network may be deployed in

a hostile environment without attendance, where some of

the nodes may fail to function properly due to compo-

nents or program malfunction and report false informa-

tion. Environmental noise may also contribute to

exceptional measurements in some nodes. Since most of

the state-of-the-art localization algorithms just accept the

received or measured information as is, they are vulner-

able to various location attacks, node faults and excep-

tional measurements.

In order to defend against location attacks, some secure

localization schemes have been proposed recently, among

which are location verification [13], distance verification

[14,15], distance-bounding [16], received signal strength

measurements [18] and ‘‘packet leashes’’ [12], to name a
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few. However, most of these methods require powerful

computation, precise synchronization, fast transmission,

or some training, etc, which are not suitable for tiny,

power-constrained sensor nodes. Moreover, these meth-

ods seem to lay strong emphasis on the countermeasures

against specific attacks rather than the problem of local-
ization itself. Multilateration is a commonly used method

for solving the location of an unknown node when given a

set of reference positions and corresponding distance mea-

surements to these positions, wherein the Least Squares

(LS) is usually used to minimize the estimation error. Due

to lack of false information filtering ability, this scheme

will cause large location error in hostile environments. In

order to get rid of outlier samples to improve the estima-
tion accuracy, Least Median Squares (LMS) is introduced

in Ref. [17] to minimize the median of error squares rather

than the sum of error squares in LS. LMS achieves higher

localization accuracy, however, it requires intensive com-

putation and thus is unsuitable to WSN. Ref. [17] pro-

poses Linear LMS (LLMS) to reduce the computational

complexity of LMS by formulating a linearization of the

LS estimator; however, this scheme sacrifices the local-
ization accuracy of LMS.

We observe that the goal of all of the location attacks is

to cheat the unknown nodes to get false information,

which in most of the cases are anchor positions and dis-

tance measurements. From the localization point of view,

there is no difference among location attacks, node mal-

function and exceptional measurements caused by abnor-

mal environmental noise in the sense that they all make
false information. Therefore, the goal of a robust local-

ization algorithm is to locate the unknown nodes with

acceptable accuracy even in the presence of some false

information.

In this paper, we propose a distributed robust local-

ization algorithm called Bilateration, which deals with

location attacks, node malfunction and exceptional mea-

surements in a unified way by considering the set of sam-
ples consisting of reasonable samples and unreasonable

samples and trying to use reasonable samples to locate

unknown nodes. By dealing with various cases in a unified

way, there is no need to identify what causes the false

information, especially what kind of location attack the

unknown node is confronted; and there is no need to

identify whether the reference positions are from their

neighbors or other nodes through a DV-based way.
Unlike other distance-based localization algorithms that

use trilateration or multilateration, we use Bilateration to

greatly reduce the computational complexity of location

estimation. Simulation results show that Bilateration

achieves the best tradeoff between localization accuracy

and computational complexity in hostile environments.

Bilateration may further balance the localization accuracy

and communication complexity by choosing to use an
optimal set of reasonable samples or suboptimal set of

reasonable samples to estimate the location of unknown

nodes according to the specific environment the WSN is

deployed.

To sum up, the main contributions of this paper are as

follows. First, we propose a robust localization algorithm

Bilateration that can solve the location of unknown nodes

in the presence of location attacks, node malfunction or

environmental noise. Second, we compare Bilateration

with three multilateration-based localization algorithms,

i.e., multilateration with LS, LMS and LLMS, in terms of

localization accuracy, false position filtering ability and

computational complexity. Third, we discuss the tradeoff

between localization accuracy and communication com-

plexity when Bilateration runs in an attack free envir-

onment, where a suboptimal set of reasonable samples is

used to locate the unknown nodes.

The remainder of this paper is organized as follows.

Section 2 summarizes related work on secure localization

algorithms; section 3 formulates the problem we consider

in this paper; section 4 reviews the basic idea of LS, LMS

and LLMS; section 5 describes the Bilateration algorithm;

section 6 compares the performance of the above four

algorithms; section 7 concludes the paper.

2 Related work

Much work has been done on localization algorithms in

WSNs; however, most of them are vulnerable to location

attacks, node malfunction and excessive environment

noise since they do not examine the rationality of the

information they get before using them in the location

estimation.

Some location related attacks and their countermea-

sures are described in Ref. [17]. Technically, most of the

attacks try to interfere with the measuring of key para-

meters. For example, to make time-of-flight based local-

ization scheme fail, attackers may remove the direct path

between a pair of nodes, delay a response message, or

change the difference of propagation speeds by a different

medium. To make signal-strength-based localization fail,

attackers may bring a different signal propagation model,

change the transmission power level, or locally employ

ambient channel noise. To make angle-of-arrival based

localization fail, attackers typically change the signal

arrival angles by using reflective objects, or alter the ori-

entation of the receivers. To attack the geometry con-

strains schemes, attackers may create worm-holes to

enlarge the neighborhood, manipulate the per-hop-dis-

tance measurements, or alter the neighborhood by jam-

ming the communication along certain directions. To

attack a hop count based scheme, attackers may create

wormholes (or jamming) to shorten (or prolong) the route

between two nodes, or alter the hop count by manipulat-

ing the radio range. To attack neighbor information based

schemes, attackers may change radio range by jamming or
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transmitting at higher power level or creating wormhole,

replay/modify message, or change the receiving pattern of

the antenna to change the neighbor relationship. In real

networks, attackers usually combine several methods to

enhance the effect of attack.

Recently, much attention has been paid to secure local-
ization algorithms. Distance-bounding technique was first

introduced in Ref. [13], which enables a node to determine

an upper bound of the Euclidean distance to another

node. Two similar schemes for secure distance verification

are proposed in Refs. [14] and [15], in which they make use

of the ultrasound-based distance bounding technique to

determine whether a node is present within a monitored

area. Another distance bounding protocol called MAD
(Mutually Authenticated Distance-bounding) is intro-

duced in Ref. [16], in which each side of a pair of nodes

acts as a claimant and a verifier and mutually authenti-

cates the distance bounding based on RF propagation.

Received signal strength measurements [18] is used to

detect malicious alteration of signal power level. In the

television industry, in order to prevent cloning of set-top

boxes, people make use of existing telecommunications
infrastructure, such as satellites, paging and cellular net-

works [22]. Packet leashes [12] are used to prevent worm-

holes by making use of geographic positions of nodes

(called geographic leashes) or packet transmission time

between nodes (called temporal leashes). SecRLoc [23]

employs a sectored antenna, an encryption mechanism

and a transmission protocol to make sure that two sensor

nodes that can hear from each other must be within the
distance of 2R, where R is fixed to defend against attacks.

Ref. [26] proposes an asymmetric security mechanism for

navigation signals. Based on consistency of received bea-

cons, Ref. [27] provides mechanisms for the detection of

malicious attacks against beacon-based location discov-

ery in sensor networks. In the presence of range measure-

ment noise, Ref. [28] introduces the probabilistic notion of

robust quadrilaterals to avoid flip ambiguities that other-
wise corrupt localization computations. Most of the

above mechanisms need additional complex and expens-

ive hardware that is not suitable to tiny, cheap and power

constrained sensor nodes. Moreover, they are designed

specifically for one or two kinds of attacks, and are not

sufficient in the real world.

Since the ultimate goal of all location attacks is to pro-

vide unknown nodes with incorrect information, and
most of the localization algorithms rely on multilateration

and Least Squares to achieve global optimization on all

samples, Ref. [17] takes a Median based approach to

improve the robustness of localization. Median based

approaches for data aggregation in sensor networks have

already been proposed in Refs. [24] and [25], and use the

median as a resilient estimate of the average of aggregated

data. Ref. [17] considers the incorrect samples as outliers,
and uses Least Median Squares to filter out the outliers

first, then employs LS on other samples to get the final

location estimation. LMS achieves much higher location

accuracy than LS in the presence of attacks. However, it

requires intensive computation, and therefore Linear

LMS is proposed in Ref. [17] to trade the localization

accuracy for lower computational complexity. LMS and

LLMS will be reviewed in section 4.

This paper proposes Bilateration, a distributed robust

localization algorithm whose localization accuracy is as

high as that of LMS yet whose computational complexity

is as low as that of LLMS.

3 Problem formulation

We consider a homogeneous wireless sensor network that

consists of a set of nodes including anchor nodes and

unknown nodes. Each node is equipped with a radio

transceiver, and can communicate with another node if

the Euclidean distance between them is smaller than a

specific radio range. Each node can measure the distance

to other nodes via some ranging technique like TDOA,

RSSI or DV-HOP. The measured distance is expressed as

formula (1), where N(0, V D) is a white Gaussian noise.

Among all the nodes, a few anchor nodes may report false

positions, and some unknown nodes may get erroneous

distance measurements.

dmeasured~drealznoise,noise*N 0,V Dð Þ ð1Þ
Suppose an unknown node located at (x0, y0) has col-

lected a set of N samples {(x1,y1,d1),…,(xN,yN,dN)}. In a

threat- and noise-free environment, these samples will sat-

isfy the following N equations:

x1{x0ð Þ2z y1{y0ð Þ2~d2
1

x2{x0ð Þ2z y2{y0ð Þ2~d2
2

..

.

xN{x0ð Þ2z yN{y0ð Þ2~d2
N

ð2Þ

If N> 3, the coordinates of (x0, y0) can be determined

by solving any three of the equations if the three selected

anchors are not in a line. This method is the classical

trilateration algorithm, whose solution in a 2D plane is

the intersection point of three circles centered at three

anchors, respectively (see fig. 1(a)). Actually all N circles

intersect at (x0, y0) (fig. 1(b)). However, in a real envir-

onment with position/distance error, these N circles may

not intersect at one point, and an objective function

described in formula (3) is usually used to minimize the

difference between estimated location and real location of

unknown node. This method is the classical multilatera-

tion algorithm with Least Squares.

Generally speaking, in a noisy environment without

threat, multilateration with LS is not a bad choice.

However, in an environment with malicious location
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attacks, the estimated location x̂0,ŷ0ð Þmay be ‘‘removed’’

far away from the optimal position by some exceptional

samples.

4 LS, LMS and LLMS

4.1 Least square

x̂0,ŷ0ð Þ~arg min
x0,y0ð Þ

XN
i~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi{x0ð Þ2z yi{y0ð Þ2

q
{di

� �2
ð3Þ

Multilateration with LS is to minimize the difference

between estimated position x̂0,ŷ0ð Þ and real position (x0,

y0) of a node, see (3). This method usually involves some

iterative searching technique such as gradient descent or
Newton method. To avoid local minimum LS must run

several times with different initial starting points, which is

expensive in terms of computing overhead. Moreover, it is

vulnerable to location attacks since it tries to achieve a

global optimality on all of the samples including those

exceptional ones.

4.2 Least median square

To increase the robustness of multilateration with LS,

Least Median Squares is proposed in Ref. [17]. Instead

of minimizing the sum of the error squares, LMS tries

to minimize the median of the error squares:

x̂0,ŷ0ð Þ~arg min
x0,y0ð Þ

medi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi{x0ð Þ2z yi{y0ð Þ2

q
{di

� �2
ð4Þ

According to Ref. [17], the procedure for implementing

the robust LMS algorithm is summarized as follows:

(1) Set n5 4 as the appropriate subset size.

(2) SetM~

20, if Nw6
N

4

� �
, otherwise

8<
: as the appropriate total

number of subsets.

(3) Randomly draw M subsets of size n from the set of

heard anchors {(x1,y1),…,(xN, yN)}. For each subset

j, estimate x̂0,ŷ0ð Þj using LS and calculate the med-

ian of estimation residuals r2ij . Here i5 1,2,…,N is

the index for heard anchors, while j5 1,2,…,M is the

index for the subsets.

(4) Set m~ arg minj medi r2ij

n o
, then x̂0,ŷ0ð Þm is the

location estimation with the least median of errors

among all subsets, and {rim} is the corresponding

residue.

(5) Calculate s0~1:4826 1z 5
N{2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medir

2
im

q
.

(6) Assign weight vi to each heard positions with equa-

tion

vi~
1,

ri

s0

����
����fl

0, otherwise

8><
>: ,

ri~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi{x̂0ð Þ2z yi{ŷ0ð Þ2

q
{di:

(7) Do LS on all heard positions with weights {vi} to

get the final estimation x̂0,ŷ0ð Þ.

It can be seen from the above procedure that to make

LMS work, there should be enough heard anchors for

each unknown node and the percentage of compromised

nodes that give exceptional samples should be less than

50%. In the simulation in Ref. [17], the number of anchor

nodes heard by each unknown node is 30, which however

is not always possible in the real world. Another dis-

advantage of LMS is high computing overhead, since

LMS must run LS M times in step 3 and once in step 7.
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4.3 Linear LMS

Linear LMS [17] transforms nonlinear LS into linear

LS in location estimation to lower the computational

complexity, which is a suboptimal solution but is

efficient in computing. The transforming process is as

follows:

(1) Average all the left parts and right parts of (2) to get:

1

N

XN
i~1

xi{x0ð Þ2z yi{y0ð Þ2
h i

~
1

N

XN
i~1

d2
i ð5Þ

(2) Subtract each side of (5) from (2), and linearizes to
get N new equations:

x1{
1

n

Xn
i~1

xi

 !
x0z y1{

1

n

Xn
i~1

yi

 !
y0~

1

2
x21zy21{d2

1{
1

n

Xn
i~1

x2i zy2i{d2
i

� � !

..

.

xn{
1

n

Xn
i~1

xi

 !
x0z yn{

1

n

Xn
i~1

yi

 !
y0~

1

2
x2nzy2n{d2

n{
1

n

Xn
i~1

x2i zy2i{d2
i

� � ! ð6Þ

(3) Estimate x̂0,ŷ0ð Þ using linear LS.

Transforming nonlinear LS into linear LS saves much

computation time, since the solution can be calculated

directly from (6) without iterative searching and repeating.
Furthermore, the solution of linear LS can be used as the

starting point of nonlinear LS to prevent nonlinear LS from

getting trapped in a local minimum. In section 6, we use this

starting point to do nonlinear LS in the simulation.

However, due to the subtraction, the optimal solution

of linear equations in (6) is not exactly the same as that of

nonlinear LS in (2), which means much accuracy is lost,

especially when the number of heard anchors is small, e.g.,
the number of herd anchors is less than 7.

Experiments in Ref. [17] show that when the number of

anchors heard by each unknown node is set to 30 and the

percentage of compromised nodes is less than 50%, per-

formance of linear LS is very good. However, 30 heard

anchors per unknown node is almost impossible in real

wireless sensor networks, and we try to find a solution that

requires fewer anchor nodes while keeping the computa-

tional complexity as low as possible.

5 Bilateration

We take another strategy to solve the equations in (2). To

avoid using an LS estimator, we choose to evaluate two

equations at a time. Use the first two equations as an

example. We first subtract the second equation from the

first equation to get

x0~
{ mn{ny1{x1ð Þ

1zn2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 nx1zmð Þy1{y21{n2x21{2mnx1{m2z 1zn2ð Þd2

1

q
1zn2

y0~mznx0

ð7Þ

and set

m~
1

2

x21{x22
� �

z y21{y22
� �

{ d2
1{d2

2

� �
y1{y2

n~{
x1{x2

y1{y2

The real solutions of the two equations are called can-

didate positions, which in a 2D plane are the points of

intersection of two circles (see fig. 2(a)); the complex solu-

tions are not considered in this paper (see fig. 2(b)).

Evaluation of (7) is very fast given (x1,y1,d1) and (x2,y2,

d2). If another two anchors (at least one of the anchors

does not belong to {(x1,y1),(x2,y2)}) are selected, another

two candidate points can be found for (x0,y0). Among the
four candidate points, at least two points overlap if no

noise exists, and this point is the correct position of (x0,

y0) (see fig. 2(c)). If more anchors are available, more

overlapped points can be found for (x0,y0).

In a real noisy environment, there may be no over-

lapped points due to position/distance error. However,

there is reason to believe that reasonable positions should

be close to each other if the error is bounded. The basic

idea of Bilateration is to find out the reasonable positions

and take the average of reasonable positions as the final

estimation position.

Since each sample binds a reference position with a

distance value, which means a sample is unusable as

long as one of them gives false information, for the

simplicity of description, we will assume hereafter that

some of the anchor nodes are compromised and report

false reference positions, whereas all the distance errors

are bounded.

We first define two terms as follows:
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Reasonable candidate positions: a group of candidate

positions among which there is at least one position whose

distances to the other members are less than a threshold d.

Candidate neighbors: two candidate positions between

which the distance is within d.
For an unknown node m, the procedure for implement-

ing our Bilateration algorithm is summarized as follows:

(1) If n( 3, set m as un-localized and terminate the

algorithm. This situation will not be considered in
our performance comparison, because there is no

way to distinguish which position is false.

(2) For each pair of anchor nodes, ai and aj, and corres-

ponding distance measurements, di and dj, evaluate
(7). Suppose M candidate positions {c1,…,cM} are

solved from all the
n

2

� �
sample combinations.

(3) For each candidate position ci, calculate {Di1,…,

Dii21,Dii+1,…,DiM}, where Dij is the distance

between ci and cj, and i,j5 1,2,…,M is the index to

candidate positions.

(4) For each ci, find out all the distances shorter than

threshold d to get {Dip,…,Dit|Dip, d‘…‘Dit, d,
Dip,…,Dit [ {Di1,…,Dii21,Dii+1 ,…,DiM |Dip,…,Dit|.

(|?|denotes the cardinality of a set).

(5) Find out m5 argmaxi{ni}; suppose {Dmp,…,Dmt}

are the distances between cm and its candidate neigh-

bors {cp,…,ct}; find out the corresponding anchors

{al,…,aq}# {a1,…,an} from which {cm,cp,…,ct} are

solved; set the weights of {al,…,aq} as 1; set the

weights of the other heard anchors as 21.

(6) Exchange the weight table with its neighbors.

(7) Collect all the weight tables from its neighbors; pick
out the common heard anchors; add their weights

together; set the anchors whose weight is less than

the average weight as the compromised nodes. (see

fig. 3)

(8) Delete the candidate positions caused by compro-

mised nodes from {c1,…,cM}; take the average of

all the remaining candidate positions as the final

estimated position em.

If the unknown node hears 4 different positions includ-

ing 1 false position, LMS and LLMS are unable to deal

with this situation, whereas our scheme can find out the

reasonable positions if the distance between the correct

candidate positions is shorter than d.

6 Simulation

To evaluate Bilateration, we simulated it and multilatera-

tion with LS, LMS, and LLMS onMatlab, and compared

them in terms of estimation error, ability of false position

filtering, and computational complexity in a simulation

environment. Estimation error is the average variance

between estimated locations and real locations. Ability

of false position filtering is reflected by the average num-

ber of false positions (i.e., not filtered out) in the location

estimation of each unknown node. Each data point repre-

sents the average value of 500 trials with different random

seeds. We use ideal LS as a benchmark in the performance

comparisons, which can filter out all the compromised

anchors before estimation.

In our simulation settings, we have the following defini-

tions and assumptions.

– Anchors and unknown nodes are uniformly distributed

in an area of 2006 200 m2.
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Fig. 2. Solutions of Bilateration
(a) Two real solutions; (b) No real solutions; (c) Overlapped solutions

Fig. 3. Who is the compromised node
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– The coordinates of false positions, x and y, are inde-

pendently and identically follow normal distribution N

(100,V P), where VP varies from 20 to 200 m.

– The noise of measured distance obeys normal distri-

bution N(0,V D), where VD varies from 0 to 50 m.

– R is the radio range of node, and is fixed to 50 m in our

experiments.

– NA is the average number of anchors heard by each

unknown node.

– NU is the average number of neighboring unknown

nodes of each unknown node.

– CP is the percentage of compromised anchors, and

varies from 0 to 1.

In the following experiments, if without specification,

the default environment settings are: V P5 20 m, V

D5 5 m, N A5 7.5, N U5 7.5 and C P5 0.2.

6.1 Thresholds

In this section, we choose the appropriate thresholds for

Bilateration, LMS and LLMS according to the result of

performance comparison.We use different ds, and ls to do
the comparison and find the appropriate thresholds for all

schemes.

In Bilateration, d affects the strictness of the definition

of reasonable candidate positions. If d is too small, it

needs more iterations to search candidate positions; on

the contrary, it brings more compromised positions into

localization. As a matter of fact, without any attacks the

closeness of reasonable candidate positions is determined

by the variance of measurement noise (V D). If there is

enough experiential data before attacks, we can choose d

as the experiential estimation error; or else, we can estim-

ate the variance of ranging noise, and then choose 26V

D as the default value of d. For example, if there isn’t any

measurement noise (V D5 0) we can choose d5 0. In the

following sections, we set d5 26V D.

In the first experiment, we run Bilateration with differ-

ent thresholds. According to fig. 4(a), lower estimation

error is achieved with smaller d; however, the difference

is not so obvious when VD is over 15. In fig. 4(b), smaller

d improves false position filtering ability, but smaller d (e.
g., d5 5) requires more iteration to search reasonable

candidate positions. As in the following subsections, the

default value of V D is 5; we choose d5 10 as the default

value to balance the estimation error and computational

complexity.

To be fair in performance comparison, the threshold l
of LMS must be chosen properly as well. From fig. 5, we

can see that estimation error and the average number of

unfiltered false positions do not change much with l, and
bigger l seems lowering the filtering ability a little. Since in

most of the cases l has little influence on the comprehens-

ive performance of LMS, we choose a moderate value of

1.5 as the default setting, which may save much calcula-

tion in step 5 of LMS.

Since in most of the cases the performance of LLMS are

hardly affected by l, we simply set l to 1.5 to achieve the

best performance.

6.2 Influence of average number of anchors

In this experiment, we investigate the influence of average

number of heard anchors (NA) on the performance of the

four localization algorithms.

In fig. 6(a), except for LS whose estimation error

increases about 5% when NA increases from 5 to 25 due
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Fig. 4. The influence of d
(a) Estimation error; (b) Unfiltered false positions
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to its lack of filtering ability, the estimation error of the

other four algorithms (including Ideal LS) decreases.

Bilateration has lower estimation error than LMS and

LLMS, but their gap shrinks when NA increases.

Meanwhile, the estimation error of Bilateration is close

to that of ideal LS all the time, whereas LMS and

LLMS require many more anchors to get the same accu-

racy.

Figure 6(b) compares the filtering ability of all four

algorithms. Since LS does not filter out outliers and CP

is fixed, the number of false positions used by LS increases

with NA. The number of unfiltered false positions used by

Bilateration is much smaller than that used by LMS and

LLMS; that is to say, Bilateration has stronger filtering

ability than LMS and LLMS.

As a localization algorithm without any attacks,

Bilateration is also a suboptimal estimation method which

is by no means better than LMS or LLMS. However, in

the presence of attacks the stronger filtering ability of

Bilateration compensates for the suboptimal estimation

accuracy. This explains why Bilateration has lower

estimation error than LMS in a hostile environment.

Since usually there are only a few anchors in a real

wireless sensor network, this result show that

Bilateration is more suitable to real settings.

6.3 Influence of percentage of compromised nodes

In this experiment, we investigate the influence of com-

promised percentage (CP) on the performance of algo-
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Fig. 5. The influence of l
(a) Estimation error; (b) Unfiltered false positions

Fig. 6. The influence of average number of anchors
(a) Estimation error; (b) Unfiltered false positions
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rithms. It is interesting to observe that ideal LS terminates

when CP reaches 0.6, this is because the number of un-

compromised anchors heard by each unknown node is

smaller than 3 when N A5 7.5. Therefore, we will not

discuss the performance for CP larger than 0.6.

In fig. 7(a), the estimation error of Bilateration is lower

than that of LS, LMS and LLMS all the time when CP is

smaller than 0.6, which shows that Bilateration is less

affected by CP. However, the four curves tend to

approach when CP increases, since there is no difference

among them when no right position is available.

In fig. 7(b), the number of unfiltered false positions

used by Bilateration is smaller than that used by LS,

LMS and LLMS, which shows that Bilateration has the

strongest filtering ability.

Figure 8 shows the performance discrepancy of

Bilateration when optimal and suboptimal set of reas-

onable candidate positions are used. If suboptimal set is

used, another threshold h is defined so that when h reas-

onable candidate positions are found in step (3),

Bilateration stops to find more candidate positions

and takes the average of these h candidate positions as

the location estimation. We set h5 3 in fig. 8. It can be

seen that when CP is small (e.g., CP5 10–30%), the

performance improvement of using optimal set of reas-

onable candidate positions is not so obvious. Therefore,

in an attack-free environment where CP is usually very

small, we can use suboptimal set of reasonable candid-

ate positions to estimate the location of unknown node

and omit the step of weight table exchange, which will
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Fig. 7. The influence of percentage of compromised nodes
(a) Estimation error; (b) Unfiltered false positions

Fig. 8. Performance improvement of Bilateration using optimal set of reasonable candidate positions
(a) Estimation error; (b) Unfiltered false positions
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greatly reduce the communication complexity and com-

putational complexity.

6.4 Influence of distance measurement error

In this experiment, we investigate the influence of distance

measurement error on the performance of algorithms.

In fig. 9(a), the estimation error of Bilateration increases

rapidly as the variance of distance (VD) increases. The

estimation error of Bilateration is lower than that of LS,

LMS and LLMS when VD is less than 13, then it exceeds

them quickly. We observe that the estimation error of

Bilateration does not reach 0 even when VD is 0, since

d5 10 allows some false positions to participate in the loca-

tion estimation (fig. 9(b)). If d is set to 0, then Bilateration

can filter out all the false positions when VD is 0. LMS and

LLMS outperform LS when VD is less than 22 and 15

respectively, and then lost their advantage as well.

In fig. 9(b), the number of unfiltered false positions

used by each of the four algorithms increases with VD,

since large distance error makes it more difficult to distin-

guish between correct position and false position.

Therefore, if the distance error cannot be well bounded,

there is no meaning to discuss the filtering ability of an

algorithm.

This experiment shows that Bilateration is more suit-

able to work in an environment with moderate noise that

is less than 24% of radio range.

6.5 Tradeoff between performance and communication

complexity

Bilateration is the only algorithm that needs to commun-

icate with neighboring unknown nodes to identify com-

promised nodes. The performance of Bilateration is not

sensitive to the average number of neighboring unknown

nodes (NU) when NA is small, while the performance of

other three algorithms are not sensitive to NU as well

(fig. 10(a)(b)). in this experiment we only evaluate

Bilateration with big NA, e.g., N A5 25, and different

CPs.

In fig. 10(c) and fig. 10(d), in general for a given CP,

both the estimation error and the number of unfiltered

false positions decrease whenNU increases; this is because

more collaboration among unknown nodes enhances the

filtering ability of the algorithm. However, the enhance-

ment is obvious only for large CP, i.e., exchanging weight

tables in step 6 is effective only for big NA and CP.

Therefore, we can omit step 6 to reduce communication

overhead when CP or NA is small, and then the commun-

ication overhead of Bilateration is the same as that of

LMS and LLMS. Even if sensors have to exchange the

weight tables, only one broadcast is enough for each sen-

sor, so step 6 will not introduce much communication cost

during localization.

6.6 Computational complexity analysis

Since Bilateration, LMS and LLMS primarily differ in the

means of location estimation, we only analyze the amount

of computation involved in location estimation in the

three algorithms.

Suppose unknown node m hears n anchors. In LMS, m

needs to do LS estimation
n

4

� �
z1 times when n( 6 or

21 times when n. 6. In each round of LS estimation

except for the last round, four anchor positions are

involved in the estimation calculation, and in the last

round all the unfiltered positions are involved. In order

to avoid local minimum, solution of linear LS is used as a
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Fig. 9. The influence of distance measurement error
(a) Estimation error; (b) Unfiltered false positions
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start point to search the global optimality, which adds

another
n

4

� �
z1 or 21 times of linear LS calculation. It

is possible to use LS without preliminary linear LS; how-

ever, LS may need to search more times for an optimal
solution from different start points, and moreover the

solution may be trapped into local minimum.

In LLMS, m needs to do linear LS
n

4

� �
z1 times when

n( 6 or 21 times when n. 6. The amount of computation

involved in linear LS is much less than that involved in LS.

In Bilateration, m needs to evaluate (7)
n

2

� �
times to

find all the candidate positions, and then perform 4
n

2

� �2

times of distance calculation between each pair of candidate
position to every other candidate position. All the compu-

tations only involve simple algebraic calculation, so

Bilateration runs much faster than LMS and comparable

to LLMS, which has been verified by our experiments.

7. Conclusion

Robust localization is fundamental to WSNs that run in

hostile environments. Instead of designing a specific

mechanism to defend against a specific type of location

attack, we focus our attention on providing a uniformway

to deal with all kinds of location attacks, as well as node

malfunction and abnormal environmental noise that com-

monly occur in real networks. We propose a distributed

robust localization algorithm called Bilateration, which

tries to find a maximum set of close-by positions from

all candidate positions and use the average of these

close-by positions as the estimated location. Taking
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Fig. 10. The influence of average number of unknown nodes
(a) Estimation error; (b) Unfiltered false positions; (c) Estimation error; (d) Unfiltered false positions
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close-by positions as reasonable candidate positions is

based on the observation that candidate positions calcu-

lated from correct reference positions and distance mea-

surements tend to be close to each other, and the use of

maximum (optimal) set of close-by positions is to optim-

ize the localization accuracy as well as defeat collabora-

tion location attack launched by compromised nodes.

Bilateration is robust in the sense that it can locate the

unknown node with acceptable accuracy even in the pres-

ence of some false information.

This paper presents the motivation, design and optim-

ization of Bilateration, evaluates and compares the per-

formance of Bilateration with three multilaterationbased

algorithms, i.e., multilateration with LS, LMS and LLMS

via simulation. Simulation results show that Bilateration

achieves the best trade-off between localization accuracy

and computational complexity. In fact, Bilateration out-

performs multilateration with LMS and LLMS in envir-

onments with small number of anchors and moderate

environmental noise, which is closer to the real world.

In an attack-free environment, Bilateration may reduce

its communication complexity by using suboptimal set

of reasonable samples to locate unknown nodes, while

hardly losing its localization accuracy.
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