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ABSTRACT
The need for data compression has grown for better utiliza-
tion of network bandwidth and data storage space. LZ77
is the most widely used data compression method, which
has many variants in practical applications. The biggest
obstacle that prevents data compression from being used in
high-speed applications is its high computation overhead. In
this paper, we focus on parallelizing LZSS that is a deriva-
tive of LZ77 on GPU using the NVIDIA CUDA framework
to improve the compression speed. Based on in-depth un-
derstanding of LZSS’s dictionary-based compression mecha-
nism and GPU’s architectural features, we propose an effec-
tive method to parallelize LZSS compression algorithm on
GPU. The biggest merit of this method is that it eliminates
threads serialization by carefully redesign the algorithm pro-
cess. Experiments on an NVIDIA GTX 590 machine with 13
benchmark files from real world demonstrate the effective-
ness of our method, which achieves 2x speedup over existing
work.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming

General Terms
Algorithm, Design, Experimentation, Performance

Keywords
CUDA, LZSS, Lossless Data Compression, GPU

1. INTRODUCTION
The era of big data is coming; huge volumes of data are

being created, stored and transferred every moment. Data
compression is a popular idea that helps reduce resources
usage, such as storage and bandwidth.
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Data compression can be either lossy or lossless. Lossy
compression reduces data by discarding (losing) some of it
in order to minimize the amount of data that needs to be
held, handled, and/or transmitted by a computer. Lossy
compression is most commonly used to compress multime-
dia data (audio, video and still images), especially in ap-
plications such as streaming media and Internet telephony
[7]. Lossless compression (e.g. Run-length encoding, Huff-
man coding, Lempel-Ziv algorithms and Burrows-Wheeler
transform) reduces data by identifying and eliminating re-
dundancy, and allows the original data to be perfectly recon-
structed from the compressed data. Lossless compression is
required for text and data files, such as bank records, text
documents and source code. This paper focuses on lossless
compression.

For 30 years, Lempel-Ziv-77 (LZ77) [18] family compres-
sion algorithms have been a cornerstone of lossless data
compression, and have been widely applied in popular com-
pression tools bundled with most Linux distributions, such
as GZIP, ZLIB, and 7zip. Compression techniques in the
LZ77 family maintain a dictionary to store the most re-
cently scanned substrings, and operate on the input data by
repeatedly searching for duplicate substrings in the dictio-
nary and then outputting a series of pointers to the previous
strings’ occurrence in the dictionary. If the bits denoting the
pointers are fewer than the bits of the matched strings, com-
pression is achieved. Once the distance to a duplicate sub-
string is beyond the size of dictionary, the potential match
is missed. In many LZ77 applications, duplicate substrings
search is the main bottleneck [16].

LZSS (Lempel-Ziv-Storer-Szymanski) is a derivative of LZ77.
The main difference between LZ77 and LZSS is that in LZ77
the dictionary reference could actually be longer than the
substring it replaces. In LZSS, such reference is omitted
if the substring length is less than a “break even” point
[8]. Many popular archives like PKZip, ARJ, RAR, ZOO
and LHarc use LZSS rather than LZ77 as the primary com-
pression algorithm; the encoding of literal characters and of
length-distance pairs varies. In this paper, we focus on LZSS
algorithm.

LZ77 relies on a dictionary to store the scanned strings;
enlarging the dictionary and doing longest substring search
can get higher compression ratio. However, as nothing comes
for free, there is always a trade-off between compression ra-
tio and compression speed. The two Genies - compression
speed and compression ratio, are inherently hard to accom-
modate. There are several studies trying to remedy for this



problem by employing parallel processing. PIGZ [14] and
Gilchrist [4] implement LZ77 on multi-core CPUs, using the
same idea of splitting input strings among processors and
having each substring compressed simultaneously.
Given that Graphics Processing Unit (GPU) typically has

hundreds of processors in it, GPU is particularly suitable for
executing LZ77 [3] [12] [13]. In the literature, the only work
about parallelizing LZSS on GPU is given by Ozsoy et al.
[12] [13]. The main idea is splitting the input string among
GPU processors, and having a group of processors cooper-
ate to compress the substrings independently. In their de-
sign much GPU computing power (128 CUDA cores in their
implementation) are required to compress each sub block.
Consequently, the compression speed they report is a few
hundred megabits per second.
In this paper, we redesign the LZSS to make it match the

GPU architecture, and then parallelize it on the GPU. The
core of this work is a novel method that eliminates code path
divergence in the algorithm, which is the biggest obstacle to
algorithm parallelization on GPU.

1 Compared with [12] [13], sequential search buffer is
replaced by a hash table to reduce the computation
complexity of finding duplicate substrings.

2 A novel method that eliminates path divergences is
provided to increase compression speed.

3 Compared with improved CULZSS [13], our solution
achieves 2x speedup and 20% ∼ 196% compression ra-
tio improvement.

The rest of this paper is organized as follows. Section 2
introduces GPU architecture, classic LZSS algorithm, and
a GPU implementation of LZSS called CULZSS. Section 3
analyzes the drawbacks of CULZSS, based on which Section
4 presents a redesign of the LZSS called GLZSS-basic that
is immune to these problems, and then Section 5 further
eliminates the path divergence in GLZSS-basic. Section 6
evaluates our GLZSS algorithm. Section 7 summarizes the
related works, and Section 8 concludes the paper.

2. BACKGROUND

2.1 GPU Architecture
We begin with a brief introduction on the micro-architecture

of modern graphics processors. We focus on NVIDIA GPUs
here, but our techniques are applicable to any similar GPU
architecture.

2.1.1 Execution Architecture
GPU is the very kind of many-core processor possessing

hundreds of processing cores, for example, NVIDIA GTX590
has 512 CUDA cores in one GPU card, and NVIDIA K20
even has 2048 CUDA cores. Each CUDA core is a scalar pro-
cessor that GPU thread actually runs on. In the latest two
generations of NVIDIA GPU with codename Fermi and co-
dename Kepler, the CUDA cores are organized into Stream-
ing Multiprocessors (SMs). Each SM features 32 CUDA
cores in Fermi architecture, and 192 CUDA cores in Kepler
architecture.

2.1.2 Scheduling
To hide the hierarchy of processors in GPU, NVIDIA de-

velops CUDA, a programming framework which presents the
programmer with the illusion of unlimited logical threads.
These threads are sequentially divided into groups of 32
called warps and threads in a warp execute in lock step,
which means execution of these threads are naturally syn-
chronized. The warps are further grouped into blocks, and
one SM can execute one or more thread blocks.

All threads in a warp share one instruction dispatch unit
and run one copy of code (called kernel) following the single-
instruction multiple-thread (SIMT) execution model. Threads
in a warp may have different data-dependent code paths;
however, these divergent paths are executed in serial, greatly
degrading performance.

The NVIDIA GPU has two-level, distributed thread sched-
uler. “At the chip level, a global work distribution engine
schedules thread blocks to various SMs, while at the SM
level, each warp scheduler distributes warps of 32 threads
to its execution units.”[11]. The former scheduler runs only
once, while the warp scheduler runs more frequently. When-
ever a warp is currently stalled for some reason (for exam-
ple, waiting on memory transactions), the warp scheduler
chooses and executes a new available warp. Context-switch
between warps is inexpensive as it is done by the hardware
schedule engine.

2.1.3 Memory Subsystem
The memory space in GPU can be divided into two types,

on-chip memory (i.e. SRAM, such as L2 cache, 64KB con-
figurable L1 cache and shared memory) and off-chip mem-
ory (i.e. DRAM, such as global memory, local memory,
etc.). L2 cache is shared by all the SMs, while L1 cache
and shared memory are private to each SM or a block. Fur-
thermore, the register file is private to each thread. CUDA
now provides programmers with flexibility that the program-
mer can configure the size of shared memory and L1 cache
as 48KB/16KB, 16KB/48KB or 32KB/32KB. Users are rec-
ommended to maximize the use of shared memory, as non-
cached access to global or local memory may incur 400 ∼ 600
clock cycles of latency [10]. However, shared memory should
not be overused, as excessive use can reduce the number of
active warps and finally degrade overall system performance.

2.2 LZSS Algorithm
LZSS encodes data as a string consisting of the original

literal characters and pointers to a dictionary. The already
scanned data are serving as a dictionary, and prefix of un-
scanned data is searched in the dictionary for longest sub-
string match. Only the matched substring that exceeds a
certain minimum length L will be coded with the form of
(offset, substring length), where offset is the distance be-
tween the two duplicate substrings. If the matched sub-
string is shorter than L, the first literal character is out-
putted as the form of (1, literal). Successive unmatched
characters can be merged into the form of (length, literals).
For example, if the input string is S = abbaabbbaaabab,
and the minimum length L is 3, then the output is S =
[(4, abba), (4, 3), (5, 3), (4, abab)].

2.3 CULZSS
CULZSS algorithms [12] [13] are all built upon two data

structures: a sliding window and an uncoded data buffer.
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Figure 1: Execution of CULZSS in serial manner.

The sliding window stores the processed data that acts as the
dictionary, and the uncoded data buffer contains the unpro-
cessed input data. Take an input stream S = abbaabbbaaababbaab
as an example, and use a single thread model to explain the
execution of CULZSS in Figure 1. Assume that the sliding
window size and uncoded data buffer size are 8 bytes and 6
bytes, respectively, and set L = 3. Initially the sliding win-
dow contains the first 8 bytes of S as a dictionary, and the
uncoded data buffer contains the next 6 bytes of S. Since
the first 3 characters in the uncoded buffer (aaa) don’t have
a matched substring in the sliding window, a copy pointer
(1, a) is emitted, and both the sliding window and uncoded
buffer shift right one byte. This time, the first 3 characters
(aab) in uncoded buffer match a substring in dictionary at
position 3, therefore a match pointer (6, 3) is emitted, and
both the sliding window and uncoded buffer shift right three
bytes. This process repeats until the entire input data shifts
out of the uncoded buffer.
CULZSS adopts two levels of parallelization. Firstly the

input data is split into equally sized chunks and each chunk
is assigned to a thread block to do the compression indepen-
dently. Secondly, in each block the longest substring search
is parallelized by assigning each thread a different starting
point in the chunk, as shown in Figure 2.
Four threads (tid = 0, 1, 2, 3) in Figure 2 cooperate to do

the longest substring search for a chunk S = aaababbaab,
the offset of each thread’s starting point is determined by
the thread ID. For example, thread 0 (tid = 0) has zero
offset, and thread i (tid = i) shifts the sliding window and
uncoded data buffer i characters right. Each thread has its
private buffer and runs just like the single thread model to
output a (offset, length) pointer or a (1, literal) pointer.
Pointers outputted by different threads may overlap, for ex-
ample, pointer issued by thread 1 overlaps with pointers
issued by thread 2 and thread 3. All the issued pointers
are transferred to host memory, and CPU will do the re-
dundancy elimination. After that, the sliding window and
uncoded data buffer are updated accordingly. The above
process repeats until the whole chunk is visited.
Finally, CPU concatenates each compressed data into a

continuous stream.
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Figure 2: Execution of CULZSS in parallel.

3. PROBLEM ANALYSIS
We evaluated the performance of CULZSS on NVIDIA

GTX590 GPU with a few benchmark files, the maximum
compression speed achieved in the experiment is 657.68 Mbps,
less than 1Gbps (see Section 6).

We identify three major drawbacks of the design of CULZSS.
The first drawback is organizing the dictionary as a sequen-
tial character buffer, and doing the longest substring match
linearly in the dictionary. The search complexity is O(n),
where n is the dictionary size. Therefore CULZSS restricts
the dictionary size (typically 128 bytes) in order to control
the substring search time.

The small dictionary size as well as small chunk size (4KB)
is the second drawback, as it impacts the compression effi-
ciency. Two duplicate substrings may miss the match if the
distance between them exceeds the dictionary size. A po-
tential longer match separated by two chunks may degrade
to one or two shorter matches. The smaller the dictionary
size and chunk size are, the more frequently the above cases
occur, and the poorer the compression ratio achieves.

CULZSS assigns a chunk to a thread block, which is the
third drawback. A thread block consists of multiple warps;
having multiple warps to process the same chunk inevitably
introduces inter-warp synchronization. Moreover, pointers
issued by different threads may overlap, which means many
threads search in vain, reducing the resource utilization. The
more threads are involved in a data chunk, the more re-
sources are wasted.

4. BASIC DESIGN
Based on the above analysis, we propose an efficient de-

sign that is immune to these problems. We call our design
GLZSS-basic, which has three design points.

1. The dictionary is organized as a hash table to reduce
the time complexity of duplicate substring search to
O(1).

2. The dictionary can be extended at run time to hold
more substrings, and the chunk size is enlarged to
64KB. These two measures help to find more dupli-
cate substrings. The size of 64KB is chosen for efficient
coding consideration: an offset smaller than 64K can
be coded as a short data type.

3. Each chunk is assigned to a warp in order to eliminate
the inter-warp synchronization, increase the number of
chunks a thread block can process (a block has multi-
ple warps), and reduce the resources wasted on useless
substring search.

The hash table is implemented as a flat array, where each
slot stores a position of a scanned substring in the chunk.
The 4-byte prefix of current uncoded string is hashed to find
a slot, and its position in the chunk is stored in the slot. Mul-
tiple 4-byte substrings at different positions may be hashed
to the same slot. To ease the hash conflict solving, new posi-
tion simply overwrites the old one in the slot. Therefore, for
two substrings with the same 4-byte prefix, position of the
later substring is stored, causing smaller offset value for later
match. For two substrings with different 4-byte prefixes that
are hashed to the same slot, position of the early scanned
substring is evicted from the dictionary. Obviously, restrict-
ing the length of conflict list to 1 may miss some matches



index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S a b b a a b b b a a a b a b b a a b

tag array 0 0 0 0 0 0 5 5 5 5 0 0 12 12 12 12 12 12

Table 1: Illustration of Tag Array

Algorithm 1 GLZSS-basic Algorithm

Require:
cur: point to current position in the input stream; ini-
tially point to the second position of stream;
org: store the cur value before searching from cur;
out: point to the output buffer;
lit len: the length of copied literals;
mat len: the number of matching bytes;

Ensure:
1: org = cur - 1;
2: lit len = 1;
3: mat len = 0;
4: while the current data stream S not end do
5: cur prefix = read(cur, 4);
6: index = hash(cur prefix);
7: pre = hash table[index];
8: pre prefix = read(pre, 4);
9: hash table[index] = cur;
10: if pre prefix == cur prefix then
11: mat len = find all matching bytes(cur, pre);
12: off = cur - pre;
13: output literal pointer(org, lit len, out);
14: output matching pointer(off , mat len, out);
15: cur = cur + mat len;
16: org = cur;
17: mat len = 0;
18: lit len = 0;
19: else
20: cur = cur + 1;
21: lit len = lit len+ 1;
22: end if
23: end while
24: if lit len > 0 then
25: output literal pointer(org, lit len, out);
26: end if

and reduce the average length of matched substrings; how-
ever, this loss may be compensated by enlarged dictionary
size. Moreover, the process of duplicate substring search is
greatly simplified.
Algorithm 1 presents the pseudo-code of GLZSS-basic de-

sign. At the very beginning, the input data is split into
chunks of 64KB, and each chunk is compressed indepen-
dently by a warp. Moreover, each chunk has its private hash
table which is initialized with 0s, the first position value of
the input stream. In each loop, threads in a warp read
4 bytes from current position (actually each thread reads
one byte), perform a hash function on the 4 bytes to get
a hash index, and then read the corresponding hash slot.
A previous position is then obtained (denoted as pre), and
threads read 4 bytes from pre, compare them with current
prefix. If the two substrings match, threads execute match
branch (line 11 ∼ line 18). If the two substrings don’t match,
threads execute no-match branch (line 20, 21). Before en-
tering the following branches, the hash table is updated by

storing current position in the slot (line 9). In no-match
branch, threads just increase current position and number
of literal by 1. In match branch, threads find out all the
matching characters in the two substrings starting from cur
and pre, respectively, issue copy pointer and match pointer,
update current position, and then reset the two variables
that count the number of literals and matching bytes, re-
spectively, for the next iteration. Pointers issued by GPU
are finally transferred back to host memory for later usage.

On the benchmark file sources, the compressing speed ob-
tained by GLZSS-basic is 158.33 MBps, 1.92 times faster
than CULZSS.

5. TAGGING COMPRESSION
In GLZSS-basic design, only chunk-level parallelism is used.

Within the chunk (warp), code path diverges into two branches.
Even worse, the match branch is much longer than the no-
match branch. Code path divergence causes serialization of
threads, making the massively parallel power of GPU un-
derutilized.

Path diverges after the current 4-byte prefix is searched
in the dictionary. If no duplicate substring is found, search
process stops; otherwise, more bytes are searched until the
longest common substring is found. In order to eliminate
path divergence, all threads should execute the same code,
i.e., all threads should search 4 bytes in a single loop. How-
ever, in this way a long common substring needs several
loops to finish the search, and a thread is unable to issue a
match pointer before the entire common substring is identi-
fied.

To solve this problem, a linear buffer called tag array is
introduced to store the match information during the scan.
Each slot of the tag array corresponds to a byte in the chunk,
and stores an offset that indicates whether the byte is a
copied literal (offset = 0) or belongs to a match pointer
(offset > 0). Every time a byte is scanned, its slot in
the tag array is filled. After the whole chunk is scanned, tag
array is transferred to the host memory for CPU to generate
the final copy pointers and match pointers. For a sequence
of adjacent bytes with the same offset value, one pointer is
issued in the form of (offset, length).

For example, assume the input string is S = abbaabbbaaababbaab,
the tag array is shown in Table 1. Substring bbaa starting
from position 6 has a duplicate substring at position 1; there-
fore, their corresponding slots in the tag array are filled with
5, distance (offset) between the two substrings. Substring
abbaab starting from position 12 has a duplicate substring
at position 0, so their corresponding slots in the tag array
are filled with 12.

However, there still remains one problem. In our method,
a long common substring is divided into groups of 4 bytes,
and each group is searched in one loop. Although they are
searched independently in different loops, we require that
their offset in the tag array should be the same so that
the entire common substring could be issued as one match
pointer. To explain the problem more clearly, let’s suppose



that two substrings starting from cur and pre have a long
common prefix, we require that 4 bytes from cur and pre
are compared, and 4 bytes from cur + 4 and pre + 4 are
compared, and so on. To this end, we must insert the 4-
byte substring from pre + 4 in dictionary in the first loop;
then when the 4-byte substring from cur + 4 is searched in
the dictionary in the second loop, hash slot corresponding
to the substring from pre+4 is located, and search position
of pre + 4 is got. Therefore, we let the threads read and
compare 8 bytes (two groups) in a loop, 4 bytes starting
from cur are used to search the dictionary to get pre, and 4
bytes starting from pre+4 are used to update the dictionary,
preparing for the comparison in the next loop. We call this
design GLZSS-tagging.
Algorithm 2 presents the pseudo code of GLZSS-tagging

design. In each loop, 8 bytes from current position cur are
loaded into cur prefix, of which the first 4 bytes are used
to locate a hash slot that may contain the position (pre)
of a possible duplicate substring (line 2 ∼ line 4). Then
8 bytes from pre are loaded into pre prefix, of which the
last 4 bytes are used to update the hash table (line 6 ∼
line 8), preparing for the next loop of process. The trickiest
part of the algorithm is the adjustment of len, the number
of bytes current position cur will move forward. Function
find common prefix() returns the length of the common
prefix of two substrings (line 9), which indicates three dif-
ferent cases. If len < 4, no duplicate substring is found,
then cur should move forward one byte (adjust in line 11).
If 4 ≤ len < 7, the longest common prefix is found, and cur
should move forward len bytes. If len = 8, the identifica-
tion of the longest common prefix must be postponed to the
next loop, so cur should move forward 4 bytes (adjust in
line 10). After adjusting the value of len, offset value off
that will be filled in the tag array is computed according
to len. If len < 4 (no duplicate substring is found), off is
set to 0; otherwise, off is set to the distance between the
two substrings (line 12). In line 13, slot(s) corresponding to
the scanned byte(s) is (are) filled with off . At last, current
position of chunk and tag array are updated, respectively
(line 14 ∼ line 15).
To parallelize the while loop in Algorithm 2, we observe

that the only parts that can be executed in parallel are line 2,
line 6, line 9 and line 13 if coalesced access feature of global
memory is used. Therefore, we assign every 4 consecutive
CUDA threads to compress one data chunk, within each
data chunk 4 threads cooperate to read bytes from chunk
and write off to tag array. Since a warp consists of 32
threads, we divide a warp into 8 sub-warps, which allows a
warp to compress 8 data chunks simultaneously.
Tag array effectively eliminates the path divergence in the

while loop, and improves the compression speed of GLZSS-
basic by 31% on benchmark file sources.

6. PERFORMANCE EVALUATION
This section evaluates the performance of GLZSS, and

compares it with an improved version of CULZSS [13]. We
got the improved version of CULZSS from its author. This
section also compares the performance of GLZSS with GZIP,
the most popular LZ77-based compression routine.

6.1 Experiment Setup
Our experiments are conducted on a PCmachine equipped

with an AMD A8-3870 quad-core APU running at 800MHz,

Algorithm 2 GLZSS-tagging Algorithm

Require:
cur: point to current position in the input stream;
op: point to current position in the tag array;
pre: point to matching position in the dictionary;

Ensure:
1: while the current data stream S not end do
2: cur prefix = read(cur, 8);
3: index = hash(1st 4B c); //1st 4B c is the first 4

bytes of cur prefix
4: pre = hash[index];
5: hash[index] = cur;
6: pre prefix = read(pre, 8);
7: index = hash(2nd 4B p); //2nd 4B p is the last 4

bytes of pre prefix
8: hash[index] = pre + 4;
9: len = find common prefix(cur prefix, pre prefix);
10: len = (len == 8) ? 4 : len;
11: len = (len < 4) ? 1 : len;
12: off = (len < 4) ? 0 : cur - pre;
13: op[cur..(cur + len− 1)] = off
14: cur = cur + len
15: op = op + len
16: end while

4GB main memory, and an NVIDIA dual-GPU GTX590
card. Each GPU has 512 CUDA cores and 1.5GB RAM.
Only one GPU is used in our experiments. The operating
system is Ubuntu Linux 12.04, and the development toolkit
is CUDA SDK 5.5.

We use 13 benchmark files in the experiments, all of them
are from real world and available online [9] [15]. They are
carefully selected to provide us a good span of data size from
32MB to 200MB and a good mix of strings with different
properties. The 13 benchmark files can be grouped into 5
sets. The first set is C/Java source code files, including linux
kernel tarball and gcc sources. The second set is English dic-
tionary files (english, etext99 ) selected from texts collections
of Gutenberg Project [5]. The third set is protein sequences
and gene DNA sequences (proteins, dna, chr22.dna), which
are used in biological analysis. The fourth is XML struc-
tured texts (dblp.xml, rctail96 ). The fifth is a collection of
ordinary textual documents (sprot32.dat, rfc, w3c2 ). Ex-
cept for the experiment on hash table size, the hash table
size is set to 4K in other experiments.

6.2 Compression Speed
Two primary optimization techniques adopted by our GLZSS

algorithm are: 1) organize the dictionary as a hash table
to reduce the computing complexity of duplicate substring
search; 2) eliminate path divergence to maximize the paral-
lel degree of GPU execution. To evaluate the effectiveness of
the two techniques, we measure the performance of improved
CULZSS [13], GLZSS-basic design, and GLZSS-tagging de-
sign on the 13 benchmark files. The compression speeds are
shown in Table 2, where column String gives the benchmark
file, Size shows the file length, and Speedup is defined as
SpeedGLZSS/SpeedCULZSS

Not surprisingly, GLZSS-tagging achieves the highest com-
pression speed on all the 13 files. Furthermore, the fact that
GLZSS-basic outperforms CULZSS, and GLZSS-tagging out-
performs GLZSS-basic on all the 13 files indicates that both



String Size CULZSS GLZSS-basic GLZSS-tagging LZSS GZIP

(MB) Speed Speed Speedup Speed Speedup 1 core 4 cores 1 core 4 cores

sources 200 82.21 158.33 1.92 207.73 2.52 41.96 162.12 23.64 90.52

rfc 111 78.54 148.98 1.89 195.39 2.48 39.10 153.54 20.46 77.43

linux-2.4.5 110 79.49 156.50 1.96 192.28 2.41 41.96 157.36 24.77 93.66

rctail96 109 79.33 165.22 2.08 211.47 2.66 47.68 185.97 27.12 101.97

sprot34.dat 104 77.37 159.27 2.05 192.44 2.48 45.78 171.66 31.74 117.56

dblp.xml 100 76.85 181.53 2.36 224.54 2.92 56.27 212.67 34.86 129.76

english 100 77.14 109.61 1.42 166.47 2.15 26.70 104.90 12.75 49.42

etext99 100 76.32 110.07 1.44 169.46 2.22 26.70 104.90 12.75 48.64

gcc-3.0 82 76.29 150.93 1.97 192.19 2.51 44.82 143.05 25.81 96.44

proteins 63 71.21 131.38 1.84 144.81 2.03 32.42 117.30 22.25 83.73

w3c2 50 78.76 179.47 2.27 183.01 2.32 61.99 187.87 37.65 137.22

dna 50 71.79 130.28 1.81 197.80 2.75 27.66 108.72 6.82 26.81

chr22.dna 32 65.55 126.24 1.92 175.04 2.67 28.61 111.58 7.27 28.54

Table 2: Compression speed (MBps) of different algorithms

the two optimization techniques are effective.
To evaluate the GPU performance advantage over CPU,

we take a sequential version of GLZSS (actually an exact
copy of GLZSS-basic) and parallelize it with pthread on a
quad-core x86 CPU. Each file is divided into chunks, which
are then distributed equally among four threads (as there
are only four cores in the CPU) for compression. The com-
pression speeds of the CPU-version of GLZSS are shown in
Table 2 in the column LZSS. Except for file w3c2, GLZSS-
tagging outperforms the parallelized CPU-version of GLZSS.
This experiment shows that GPU is competent to offload the
data compression task from CPU.
We also compare our GLZSS with GZIP, the most popular

compression routine that is based on LZ77 algorithm. The
sequential GZIP is also parallelized with pthread on the same
quad-core x86 CPU, and the compression speeds are shown
in Table 2 in the column GZIP. On all the 13 files, GLZSS-
tagging outperforms the parallelized CPU-version of GZIP.

Figure 3: Comparison of compression ratio.

6.3 Compression Ratio
This section evaluates the compression ratio of GLZSS,

which is defined as the ratio between the uncompressed size
and compressed size, the higher the better. Figure 3 shows
the compression ratios of CULZSS, GLZSS-basic, GLZSS-

tagging and GZIP on all the 13 files. The horizontal axis
denotes the benchmark files, which are numbered in the or-
der they appear in the column String in Table 2.

Compared with CULZSS, GLZSS improves the compres-
sion ratio by 20% ∼ 196%, verifying our analysis in Section
3 that the limited window size and look-ahead buffer size de-
grade the CULZSS’s compression efficiency. We also notice
that compression ratio of GLZSS-basic is not identical to
that of GLZSS-tagging, with minor difference less than 4%.
The reason lies in the minor different way the hash table is
updated. GLZSS-basic updates the hash table only with the
first 4 bytes of cur prefix (line 5 ∼ line 9 in Algorithm 1);
but in addition to that, GLZSS-tagging further updates the
hash table with the last 4 bytes of pre prefix (line 6 ∼ line
8 in Algorithm 2). The extra update may fill in an empty
hash slot to increase the chance of finding a duplicate sub-
string; however, the extra update may also replace a recent
position with a distant one, resulting in a larger offset in the
match pointer.

We also notice that GZIP has the highest compression ra-
tio that is about 69%∼84% higher over GLZSS. The reason
lies in the different coding methods that the two algorithms
use to code the pointers. GZIP uses high-efficient Huffman
coding, while GLZSS simply uses LZSS coding format. Par-
allelizing Huffman coding on GPU is a hard problem, we
will solve it in the future.

6.4 Choose a proper hash table size
Hash table acts as the dictionary in GLZSS. Large dictio-

nary improves the compression ratio, but consumes precious
memory space. To get a proper hash table size, we measure
the compression ratio and compression speed of GLZSS-
tagging on all 13 files with different hash table size. Due
to the limited space, we only show the experimental data
on file etex99 in Figure 4. Both the compression ratio and
compression speed rise with the increasing hash table size,
but the growth rate decreases. In order to have a reasonable
performance/cost ratio, we set the hash table size to 4K.

6.5 Decompression
We also implement LZSS decompression on CPU and GPU.

During the decompression procedure, each character of com-



String Size(MB) Compression ratio CPU GPU
1 core 4 cores

sources 200 2.57 65.80 168.80 141.14
rfc 111 2.36 68.66 168.75 144.00

linux-2.4.5 110 2.55 67.61 169.75 135.42
rctail96 109 2.72 71.53 167.85 132.56

sprot34.dat 104 2.32 90.60 210.76 158.31
dblp.xml 100 3.39 61.04 145.91 109.67
english 100 1.48 83.92 221.25 188.82
etext99 100 1.48 82.97 219.35 190.73
gcc-3.0 82 2.75 63.90 145.91 109.67
proteins 63 1.53 128.75 294.69 238.41
w3c2 50 3.74 61.99 114.44 98.22
dna 50 1.94 74.39 165.94 137.32

chr22.dna 32 2.01 68.66 178.34 96.32

Table 3: Decompression Speed (MBps) of GLZSS on CPU and GPU.

Figure 4: Performance of GLZSS on different hash
table sizes.

pressed strings is read and decoded. If it is a literal byte,
it is then output directly. If it is identified to be a part
of pointer, the whole pointer (offset, length) will be inter-
preted by the length previously decoded bytes at the dis-
tance of offset. As the uncompressed data are processed in
block-level, we can still utilize the block-level parallelism in
decompression. To distribute the compressed blocks across
the processors, we need to identify the bound of each com-
pressed data chunk. To achieve this, we store the total num-
ber of uncompress blocks in the header of compressed file,
and record the plain size as well as the compressed size of
each block in the header of each compressed block. There-
fore, each compressed block is easily to be identified after
reading the header information. Besides, the extra informa-
tion needs only 8 bytes and is tiny compared to compressed
block size in our tests, meaning that it does not hurt the
compression efficiency.
Both sequential decompression and pthread-based parallel

decompression are implemented on CPU. In the parallel ver-
sion, compressed file is split into chunks and then distributed
among CPU cores for decompression. The sequential decom-
pression code is also ported to GPU, where the paralleliza-
tion is achieved by assigning each chunk to a CUDA warp.
The decompression speeds are shown in Table 3. The speed
of GPU-based decompression is lower than that of pthread-

based implementation; that’s because we only simply port
the decompress procedure to GPU without digging into the
algorithm itself to exploit more parallelism. The divergences
on processing literals and pointers in decompression are not
eliminated in GPU-based procession and degrade the per-
formance.

An interesting observation is that lower compression ratio
corresponds to higher decompression speed. This is because
a file with lower compression ratio has fewer match pointers,
and therefore needs less computation to parse the match
pointers when it is being decompressed.

7. RELATED WORKS
Researches have been done on parallelizing data compres-

sion on CPU and GPU. The parallelizing method adopted
in most of the works is splitting the input data into chunks,
and then making these chunks to be compressed simultane-
ously, examples include [2] [4] [13], etc. Our GLZSS also
uses this method. As chunks are compressed independently,
duplicate substrings in different chunks are missed, causing
compression ratio decreased.

In recent years, methods that parallelize data compres-
sion without splitting input data are proposed. [17] presents
a work-efficient parallel algorithm for LZ-factorization and
evaluates it on a 40-core Intel machine. The experimen-
tal results show that their algorithms achieve good speedup
with respect to best sequential implementations; however,
the absolute processing speed is still less than 1Gbps. [2]
proposes a parallel implementation of suffix array construc-
tion on GPU, which can be used in Burrows-Wheeler trans-
form (BWT)-based data compression, e.g., BZIP2[1]. This
work increases the compression speed by 11x over the fastest
BWT on GPU.

In the GLZSS design, sub-warp division is used to increase
the parallelism within a warp. Sub-warp division has been
widely used in modern GPU-accelerated applications, and
is fully discussed in [6]. Sub-warp is defined in [6] as vir-
tual warp, and is used to address the problem of workload
imbalance during graphic processing.

8. CONCLUSIONS
In this paper, we present an effective method to paral-

lelize LZSS compression algorithm on GPU. We reorganize



the dictionary as a hash table to speed up the locating of
duplicate substrings, and then redesign the matching pro-
cess of duplicate substrings to avoid threads serialization,
the most difficult part of the algorithm to be parallelized.
We evaluate our algorithm on NVIDIA GTX 590 GPU with
benchmark files from real world. Experimental results show
that our GLZSS achieves 2x speedup over existing work.
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