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Abstract—Data compression plays an important role in the
era of big data; however, such compression is typically one
of the bottlenecks of a massive data processing system due to
intensive computing and memory access. In this paper, we pro-
pose a high-speed GPU-friendly data compression algorithm
called G-match that takes full advantage of the GPU parallel
computing power to speed up the compression process. The
greatest challenge here is to solve the contradiction between
the high data dependency inherent in the compression algorith-
m and the GPU single-instruction multiple-thread operating
model. G-match achieves a high parallel degree by eliminating
fine-grained data dependency and all path divergences in the
algorithm. Compared with other, similar work on GPUs, G-
match is the first thoroughly parallelized data compression
algorithm. Experiments comparing other GPU compression
algorithms show that G-match achieves approximately 33%
speedup over the current fastest implementation and the
highest compression ratio.

Keywords-Data Compression Algorithm; Graphics Process-
ing Unit(GPU); Algorithm Parallelization;

I. INTRODUCTION

The era of big data is already here. While the volume

of data stored by mankind until the year 2000 was only

approximately 12 EB, today, the estimated production of

data around the world is a massive 2 EB per day. To

keep pace with the explosive growth of data, operators of

data centers are forced to heavily and ceaselessly invest in

their storage and network systems. One effective way of

saving resources is compression, which allows reduction

of data volume so that one can store more data in a

limited storage space, expend less time to access disks, and

consume less bandwidth when transferring data. Owing to

these advantages, data compression has been widely used.

For today’s big data storage and analysis systems (such

as Hadoop) to benefit from compression, data need to be

frequently compressed and decompressed in most cases. In

a typical scenario of serving a data query, the compressed

data are first read from the disks into memory and then

decompressed and analyzed to serve the query; finally, the

data are recompressed and written back onto the disks. Un-

fortunately, data compression is a computation-intensive and

memory-access-intensive operation that consumes precious

computing power and memory bandwidth and adds consid-

erable processing latency. It was reported that compression

and decompression represent the most time-consuming tasks

in the database compaction process when a solid-state drive

(SSD) is used as the storage device [1]. Therefore, data

compression, if not carefully designed, may impose negative

impacts on system performance.

Currently, one of the most widely used data compression

software packages used in most of Google’s projects (e.g.,

BigTable, MapReduce) and many open-source databases

(e.g., Cassandra, LevelDB, MongoDB) is Snappy. Snappy

is an open-source library developed by Google, the core of

which is an LZ77-based data compression algorithm that is

referred to as the Snappy algorithm in this paper. LZ77,

a classical lossless data compression algorithm proposed

in 1977, has provided the foundation for multiple derived

variants, including LZSS, LZW, GZIP, and 7Zip, which have

been widely used to compress text documents, source code

and data files in databases. All the LZ77 family algorithms

use dictionary-based methods where the main idea is to

replace the repeated occurrence of a string with reference to

its already occurred duplicate, hoping that the reference is

shorter than the original string. The main difference among

various variants exists in the different tradeoffs achieved

between compression ratio and speed. As an LZ77 variant

used in big data storage and analyzing systems, Snappy

focuses on very high compression speed and a reasonable

compression ratio by means of simplifying the search of

duplicate strings.

Instead of modifying algorithms to achieve high speed,

one can speed up data compression by exploiting parallel

computing [2]. The input data are divided into blocks,

and each block is assigned to a processor to compress.

With the advent and popularity of heterogeneous computing,

modern computer systems are often equipped with multicore

processors and a variety of coprocessors that incorporate

specialized capabilities for particular tasks. Graphics pro-

cessing units (GPUs), possessing massively parallel comput-

ing power and high memory bandwidth, are commonly used

as coprocessors to offload computation-intensive or memory

access-intensive tasks from the CPU. For example, the LZSS

algorithm has been parallelized on GPUs by dividing input

data into blocks and assigning each block to a group of GPU
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cores to compress [4] [5] [6].

However, the unique architecture of GPUs imposes a

great challenge on most of the parallelization works. GPU

cores are organized into a two-tiered structure composed of

streaming processors (SPs) and streaming multiprocessors

(SMs) as per Nvidia terminology. Each SM is made up

of a set of SPs, and all SPs in an SM execute in single-

instruction multiple-thread (SIMT) mode. For data com-

pression, although different data blocks can be compressed

independently, compression within a data block is data-

dependent, which makes it challenging to mine intra-block

parallelism. Thus far, all work reported on parallelization

of data compression on GPU mainly achieve inter-block

parallelism, leaving the massive computing power of GPUs

under-utilized.

In this paper, we propose a GPU-based compression

algorithm called G-match that follows the basic doctrine

of LZ77 family algorithms but achieves very high intra-

block parallelism. G-match is so far the first thoroughly

parallelized algorithm on a GPU that eliminates path di-

vergence and load imbalance throughout the process. G-

Match is implemented on the Nvidia’s Compute Unified

Device Architecture (CUDA) framework and is evaluated

on a series of Nvidia GPU cards. Experimental results show

that an average compression speed of 3.7 GB/s is achieved

on 6 test files with Nvidia GTX 1080, corresponding to

approximately 33% speedup over the current fastest GPU

compression implementation.

The rest of the paper is organized as follows. Section 2

introduces GPU architecture, dictionary-based compression

algorithms and related works on accelerating data compres-

sion on GPUs. Section 3 analyzes the Snappy algorithm and

explores the design space. Section 4 proposes the G-match

algorithm that thoroughly parallelizes the data compression

process. Section 5 discusses implementation issues, and

Section 6 presents experimental results. Section 7 concludes

the paper.

II. BACKGROUND AND RELATED WORK

This section presents a survey of related literature on GPU

architecture and relevant algorithms.

A. GPU Architecture

GPUs, originally designed for graphics rendering tasks,

have now evolved into many-core processors suitable for

general-purpose computing. A single GPU commonly pos-

sesses hundreds or even thousands of processing cores.

The basic computing unit in the GPU of the Nvidia series

is the streaming processor (SP). A single GPU can have

more than hundreds of SPs; for example, the latest Nvidia

GTX 900 series comprises thousands of SPs. A certain

number of SPs are integrated into a streaming multiprocessor

(SM). An SM can be viewed as an SIMD processor which

handles several data streams. In addition, each SM has a

set of storage elements of its own, including thousands of

registers and shared memory.

CUDA provides programmers with application program-

ming interfaces (APIs) to manage theoretically unlimited

threads on GPUs. With the CUDA runtime system, a com-

piled CUDA program can automatically schedule its threads

on any number of cores without the knowledge of their

states. In CUDA programming, the programmer needs to

first divide a task into subtasks and determine the number of

threads required to serve a subtask. The number of subtasks

(griddim) and the number of threads per subtask (blockdim)

are then passed on to the GPU. During execution, a group

of blockdim threads are organized into a thread block, and

each thread block is mapped to an SM where the threads are

scheduled on SPs. Note that blockdim is often larger than

the number of SPs in an SM (typically 48); therefore, only

a part of the threads can be executed in one SM at a time.

To hide memory access latency, CUDA organizes a group of

32 threads into warps such that only one warp is executed

at a time. When a running warp pauses to wait for memory

access, another warp is scheduled to run. As the threads

in a warp run in SIMT mode, code divergence caused by

conditional branches should be avoided as far as possible.

The memory hierarchy of GPU consists of off-chip mem-

ory (such as global memory and constant memory) and on-

chip memory (such as shared memory and registers).The

off-chip memory is larger but has a longer access latency,

while the reverse is true for the on-chip memory. The off-

chip memory can be accessed by all the threads; the on-chip

memory, on the other hand, is SM-private. As the contexts

of the warps are saved during their suspension, the threads

belonging to different warps are completely isolated despite

being executed on the same SM.

B. Traditional Dictionary-based Compression Algorithms

The family of Lempel-Ziv-77 (LZ77) [7] algorithms have

been a cornerstone of lossless data compression for over

three decades. In this section, we briefly review the general

idea of the LZ77 family rather than describe a specific

algorithm.

LZ77 family algorithms maintain a dictionary buffer to

store the most recently scanned strings and operate on the

input data by repeatedly searching for duplicate strings in the

dictionary. If a duplicate string is found, a reference to the

previous occurrence of the string is provided as output. This

dictionary can be a sliding window or a fixed-sized buffer of

the visited text. A reference is usually an offset-length pair,

where offset indicates the distance between the two matched

strings (or sometimes the absolute position of the previous

duplicate string in the dictionary), and length indicates the

size of the duplicate string in bytes. To achieve compression,

some algorithms require a minimum match size, i.e., a

duplicate string is not recorded if its length is shorter than

the threshold, and characters are outputted directly with a
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flag indicating that these characters are literals. Most of

the algorithms comprise three major steps: (1) search in

the dictionary for the longest string that matches the prefix

of current position; (2) encode the scanned characters in

the first step as literals or an offset-length pair based on

the search result; (3) shift the scanned characters into the

dictionary buffer. As per [4] [8], search of duplicate strings

consumes the highest percentage of the algorithm time.

C. Snappy as a Modern Compression Algorithm

Snappy was originally designed for Google’s BigTable

system and has witnessed widespread application in databas-

es and datacenters. Snappy makes an important tradeoff

between the compression speed and compression ratio. Rela-

tive to LZW or Gzip, it is reported that Snappy achieves 2-5x

speedup with a 10-20% loss in compression ratio. Snappy

is chosen as a typical example of modern compression

algorithms in this paper.

Snappy mainly runs in a while loop that comprises three

steps. In the first step, the 4-byte prefix of the current input

is hashed to find a slot, where the position of a possible

duplicate string might be contained, and the slot is read and

updated with the current position. In the second step, the

current input is compared with the string whose position was

just read from the slot to find the longest common prefix. In

the third step, if the length of the longest common prefix is

not less than 4, an offset-length pair is output, and the current

position is increased by length; otherwise, the first byte of

the current input is output as a literal, and the number of

current positions is increased by 1. According to the process,

a newly position always overwrites the previous position in

the slot; i.e., the conflict chain size of the hash table is 1.

This condition may result in the loss of some matches but

greatly simplifies the search of duplicate strings.

D. Related Works

Many previous studies have attempted to accelerate data

compression on GPUs. A floating-point data compression

work achieved an extremely high speed of 75 GB/s by

taking advantage of the specific data type [9]. To compress

the transferring stream of the database, [10] implement-

ed nine lightweight compression on GPU and designed a

compression planner to find their best combination. These

works aim at providing seamless compression service during

data transferring to reduce communication cost in distributed

database and thus do not directly address the compression

ratio. Moreover, the compression objects in these works are

mainly arrays, structures or tables rather than text files.

A series of reports called CULZSS [4] [11] [12] imple-

mented the LZSS algorithm on CUDA with the primary idea

of splitting data into chunks and assigning each chunk to a

thread block to compress. The original CULZSS algorithm

was reported in [4], while [11] and [12] focused on a GPU-

CPU pipeline intended to maximize system throughput.

However, the LZSS algorithm that it used is directly ported

and had not been sufficiently optimized for the GPU parallel

architecture, which severely affected the system performance

(for the details of the drawbacks of analyzing in CULZSS,

see [8]).

CULZSS-bit [13], a bit version of CULZSS, implemented

the LZSS algorithm using a bit-vector approach and turned

the longest prefix match into a nondeterministic finite au-

tomaton by precomputing the incoming alphabet strings and

maintaining their bit positions. From its design principles,

CULZSS-bit mainly aims at compressing unreadable binary

files. As the alphabet strings need to be recalculated fre-

quently, the system scores poorly with text files.

GLZSS [8] redesigned and parallelized LZSS on GPU and

has achieved the highest throughput thus far. This approach

adopts several methods to simplify duplicate string searching

in LZSS, such as using a hash table instead of sliding

window and addressing hash conflict by simply overwriting

the slot. These methods are similar to those of Snappy.

GLZSS also eliminated path divergence in code execution,

which shares the same goal with this paper. However, the de-

gree of parallelization of GLZSS was not particularly high;

as only reading and writing of continuous characters was

performed by multiple threads, duplicate string searching

was still performed by a single thread in a thread block.

III. PROBLEM ANALYSIS

Because Snappy (and most of the other compression

algorithms) divides the input data into fixed-length blocks

and because each block is compressed independently, it

is simple to obtain inter-block parallelism. We focus our

discussion on intra-block parallelism. As indicated above,

compression algorithms are strongly data-dependent. All the

visited data are used as the dictionary by all the unvisited

data; therefore, it is not feasible to further divide a block

into smaller nonoverlapping chunks and assign each chunk

to a thread. In addition, compression algorithms always scan

the data byte by byte, making it difficult to employ multiple

threads to process data simultaneously. We hypothesize that

an innovative way exists to solve this problem.

The flow of Snappy(and other fast compression algorithm)

broadly consists of two parts. (1) Hash table lookup and

updating. The position of a possible duplicate string is read,

and position of current 4-byte prefix is then saved in the

hash table. (2) Longest common prefix search in two strings

starting at cur and mat. The first part is order-dependent as

different writing orders result in different hash tables. To

achieve parallelism, the order dependence in the algorithm

must be relaxed. The second part is independent of the first

part and can be easily parallelized if a set of (cur, mat) pairs

to be compared are found in the first part. The problem in

the second part is thread synchronization, as threads must

run in lock-step, but they may work on strings of different

sizes.
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Based on the above analysis, we design a GPU-friendly

compression algorithm and refer to the new design as G-

match. We divide the process of the existing compression

algorithm into two separate passes. In the first pass, 32

threads are launched that scan the data block and look up

and update the hash table in parallel. A set of (cur, mat)
pairs are obtained and saved in this pass. In the second pass,

the data block is divided into 32 chunks and each chunk

along with its (cur, mat) pairs is assigned to a thread to

perform the longest common prefix search. Organizing the

algorithm into two separate passes rather than interleaving

hash table lookup and common prefix search in a single

pass is to maximize the parallel degree, as not every thread

is required to perform common prefix search after hash table

lookup.

IV. DESIGN OF G-MATCH

A. Hash Table Lookup and Updating

To scan the input data in parallel, we relax the order-

preserving granularity from bytes in the original algorithm

to a slightly larger unit. To be specific, the data block is

divided into 32-byte units, and 32 threads are launched to

scan from different locations in a unit. They execute line 3 -

line 5 of Algorithm 1 from the current unit and then move on

to the next unit. To record the results of hash table lookup

(i.e., mat in line 4), an index array is introduced, whose

ith slot corresponds to the ith location of the data block.

Index[i] = m means that the 4-byte prefix at position i and

4-byte prefix at position m are hashed to the same slot, and

therefore, the two strings must be compared in the second

pass. Table 1 shows a fragment of an index array, where

index[22] = 2 implies that the string at position 22 should

be compared with the string at position 2 in the second pass.

With this modification, unit order rather than byte order

is preserved, which may cause some deviation from the

original algorithm. First, if a string pattern appears twice

within a unit but has never occurred before, then the latter

one fails to find the previous one, causing a slight loss

of compression ratio. Second, if multiple threads need to

write the same hash slot, the actual write order becomes

unpredictable. However, this uncertainty does not affect the

correctness of the algorithm.

B. Finding Duplicate Strings

In the index array computed by the first pass, index[i]
= 0 implies that the string at location i does not have a

duplicate string in the dictionary, and index[i] = m (m > 0)

indicates that the string at location i probably has a duplicate

string at location m and needs further comparison. As order

dependence has been eliminated within the index array, we

can divide the input data block and its corresponding index
array into smaller nonoverlapping chunks and assign each

chunk with its corresponding index array chunk to a thread

to perform duplicate string match.

Table I
INDEX ARRAY USED IN COMPRESSION

Char Seq 21 22 23 24 25 26 27 28
Index array 0 2 8 0 0 0 0 17
Preprocessed
Index array

-22 2 8 -28 -28 -28 -28 17

Result array 0 4 0 0 0 0 0 5

However, the issue of path divergence may occur here.

First, threads with index[cur] = 0 need to do nothing, while

threads with index[cur] > 0 need to enter a while loop to

match the common prefix. Second, the completion time of

each thread depends on the length of the common prefix it

is working on.

To solve the first problem, threads must skip over idle

positions and directly obtain their working positions. To

solve the second problem, threads must make progress in any

circumstance without waiting for other threads to complete.

We discuss these two problems in the following sections.

1) Finding the Next Position to Compare: To allow

threads to directly locate the next nonzero-valued slot in

the index array, the index array is preprocessed as follows.

A slot with value 0 is filled with the index of the next

nonzero-valued slot. For example, assuming that index[i] and

index[i + k] have nonzero values and slots between them

(i.e., index[i + 1] to index[i + k - 1]) are all 0s, then index[i
+ 1] to index[i + k - 1] are all filled with value - (i + k);

the minus sign here is used to distinguish them from normal

cur values. Therefore, when a thread reaches a slot with a

minus value, say index[i] = - k, it has the knowledge that

the next working position is contained in index[k] and then

jumps to index[k] and sets cur = k). The following code

line implements the skip operation:

cur = (index[cur] < 0)? - index[cur]: cur

As shown in the second and third lines of Table 1,

index[28] is nonzero, and therefore, the preceding zero slots

(i.e., index[24] to index[27]) are all filled with “- 28”.

To accelerate the preprocessing, we split the index array

into 32 chunks and assign each chunk to a thread. Each

thread scans its chunk from rear to front, filling each zero-

valued slot with the index of the last visited slot with a

nonzero value.

As the boundaries of a chunk may contain zero-valued

slots, the boundary problem is addressed as follows. When

a thread begins to scan a chunk from rear to front, it simply

skips over all zero-valued slots before it reaches the first

nonzero-valued slot. For the zero-valued slot at the front

boundary, a thread continues scanning into the previous

chunk, filling all the zero-valued slots until it reaches a

nonzero-valued slot.

Algorithm 2 shows the pseudocode that preprocesses an

index array chunk. Variable i records the index of the last

visited nonzero-valued slot and is initialized to 0 (line 1).

All the zero-valued slots at the rear part of the chunk are
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Algorithm 1 Preprocessing an index array chunk

1: now = end of a data chunk, i = 0
2: while now is in the data chunk or index[now] == 0

do
3: index[now] = (index[now] == 0)? -i :

index[now]
4: i = (index[now] == 0)?i : now
5: now = now − 1
6: end while

ignored (line 3), and variable i remains zero (line 4). When a

nonzero-valued slot is encountered, i.e., index[now] �= 0, i is

set to now (line 4), and then, all zero-valued slots following

it are filled with - i (line 3) until another nonzero-valued slot

is encountered. Line 2 gives the termination conditions of the

while loop. Note that the thread does not stop scanning if it

encounters a zero-valued slot at the front boundary; instead,

it continues to move ahead and fill slots until it encounters

a nonzero-valued slot.

2) Longest Common Prefix Match: Each thread is as-

signed a data chunk and a corresponding index array chunk

to perform duplicate string match. For each index[i]=m (m
> 0), the thread needs to find the longest common prefix for

the two strings starting at position i and m. Due to different

sizes of common prefixes, threads finishing earlier have to

wait for other threads to finish, leading to a lowered parallel

degree.

To make all threads continue progressing, we remove the

while loop (line 6 - line 8) in Algorithm 1 and rewrite the

algorithm to prevent threads from waiting for each other.

Each thread is required to compare four bytes at a time (to

be consistent with the minimum match size of Snappy) and

then moves forward according to the comparison result (i.e.,

variable tmp). If tmp is less than 4 in the first comparison,

i.e., fails to find a duplicate string, the thread moves one

slot ahead in the index array to find the next position to

compare (case 1). If tmp is 4, a duplicate string is found

but needs further comparison to find its end; the thread then

moves four bytes forward in the data chunk (case 2). In

subsequent comparisons, whenever tmp is less than 4, a

complete duplicate string is found, its length is recorded,

and the thread moves tmp bytes in the index array to find

the next position to compare (case 3). To sum up, when tmp
is less than 4 (case 1 and case 3), the index array is used

to find the next position to compare; otherwise, the current

match process is continued.

In the original Snappy algorithm, an offset-length pair

and all the bytes between two duplicate strings are encoded

whenever a duplicate string is found. However, this process

may cause path divergence in G-match; therefore, a result
array is introduced to record the length of duplicate strings

during the scan. Similar to the index array, the ith slot of

the result array corresponds to the ith location of the data

chunk. Table 1 shows a fragment of a result array, where

result[28] = 5 implies that a 5-byte string at position 28 has

a duplicate string.

Algorithm 2 Finding Duplicate Strings

1: cur = start of chunk, fin = 0, tmp = 0,mat =
0, result = (∼ 0)

2: cur = (index[cur] < 0) ? -index[cur] : cur
3: mat = index[cur]
4: while cur �= end of chunk do
5: tmp = GET PREFIX LEN (cur,mat)
6: fin = fin+ tmp
7: mat = (fin < 4) ? mat : mat+ tmp
8: cur = (fin < 4) ? cur + 1 : cur + tmp
9: result[cur − fin] = (tmp < 4&&fin ≥ 4) ?fin :

0
10: cur = (index[cur] < 0&&tmp < 4)?-index[cur] :

cur
11: mat = (tmp < 4) ? index[cur] : mat
12: fin = (tmp < 4) ? 0 : fin
13: end while

Algorithm 3 shows the pseudocode of finding duplicate

strings in a data chunk. For simplicity, we omit the boundary

processing code. Line 2 - line 3 locate the first pair of strings

to be compared, designated by cur and mat, respectively. In

the main while loop (line 4 - line 13), the thread compares

4 bytes from the data block and dictionary, and the length

of the common prefix (0 - 4) is calculated (line 5). Fin
accumulates the length of the common prefix so far (line

6).

If tmp < 4 (case 1: no duplicate string is found), cur is

increased by 1 (line 8), and index array is used to find the

next position to compare in the data chunk (line 10) and in

the dictionary (line 11); fin is reset to zero (line 12).

If tmp = 4 (case 2: need further comparison), both mat
and cur are increased by 4 (line 7 - line 8), and cur, mat,
and fin shall not change in line 10 - line 12.

If tmp < 4 and fin > 4 (case 3: a complete duplicate string

is identified), the length of the duplicate string is recorded

in the result array (line 9), cur is increased by tmp (line

8), and the index array is used to find the next position to

compare in the data chunk (line 10) and in the dictionary

(line 11); fin is reset to zero (line 12).

After finishing the scan, the result array and the index
array are transferred to the CPU for final encoding. The

result array records the lengths and positions of all duplicate

strings, and the index array provides dictionary entries. The

CPU generates offset-length pairs using information from the

two arrays and then encodes offset-length pairs and literals

according to algorithm specific encoding rules. Considering

Table 1 as an example, given index[22] = 2 and result[22]

= 4, the CPU has the knowledge that the string at position
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22 has a 4-byte duplicate string at position 2. It therefore

encodes this string as an offset-length pair (2, 4).

V. IMPLEMENTATION ISSUES

A. Result Output

A complete dictionary-based data compression algorith-

m includes two steps: duplicate string search and output

encoding. After a stream of literals and offset-length pairs

are obtained, an encoding method is applied to the output

stream to produce the final compressed data. To achieve a

high compression ratio, classical data compression software

packages, such as GZip, usually apply statistical compres-

sion (e.g., Huffman coding) to the output stream. However,

statistical compression requires intensive computing and

memory access. To achieve high compression speed, most

modern data compression solutions use simple encoding

methods. For example, Snappy encodes the output stream

by simply attaching an indicator prefix to a literal string

or an offset-length pair describing information such as type

and length. In this paper, G-match adopts exactly the same

method with Snappy. The output file of G-match can be

directly decompressed by any decompression applications

that support Snappy.

As the simple encoding method consumes minimal time,

it is suitable to run output encoding on the CPU. Therefore,

we form a simple CPU-GPU-CPU pipeline for data com-

pression, where the CPU sends original data to the GPU, the

GPU performs a duplicate string search using G-match, and

the CPU performs output encoding. The data transmission

delay between the CPU and GPU can be overlapped with

computing on the CPU and GPU.

B. Parameter Selection of Hash Tables

Both the hash table size and conflict chain size affect the

compression performance. Adjusting these two parameters

of the hash tables is essentially a tradeoff between compres-

sion ratio and compression speed. Shrinking the hash table

size or conflict chain size reduces the possibility of spotting

a duplicated string, thus decreasing the compression ratio,

while expanding them increases the maintenance overhead

of hash tables, thus decreasing the compression speed. In

the original Snappy, the hash conflict chain was one, and

the hash table size could be customized by users.

Note that since the G-match inherits the same matching

and encoding mechanism of Snappy, if the hash table size

and hash conflict chain size are also set to the same value,

G-match and Snappy will behave nearly identically and

output almost exactly the same compressed files. The slight

difference between them is caused by the parallel execution

feature discussed in Section 4.1.

In the next section, we evaluate the performance of G-

match with different parameters of hash tables. To evaluate

the influence of the hash conflict chain size, we implement a

variant of G-match with a length n hash table conflict chain

(n > 1). Each hash entry has n slots, which are initialized

to zeros. The position of a 4-byte string can be written into

any zero-valued slot in the target hash entry. If all slots

are occupied, a slot is randomly chosen to overwrite. To

maintain consistency with the n-slot hash entry structure, the

entry of the index array also has n slots. Whenever a hash

entry is located by a 4-byte string, the whole hash entry is

saved in the corresponding entry of index array. During the

preprocessing of the index array, only entries with all 0s are

filled with the index of the next possible matching position.

To find the longest common prefix, all nonzeroed positions

in an index entry are searched successively, and the longest

match is returned.

VI. EVALUATIONS

A. Experimental Setup

Six files of different types and sizes are used in the

experiments: NO.1 is a binary exe file, NO.2 is a DNA

sequence text file, NO.3 is an English novel text file, NO.4

are source code files, NO.5 is a bmp image file and NO.6

is a LevelDB data file, which is commonly compressed by

Snappy. NO.1 - NO.5 can be acquired on Internet( No.2 -

NO.4 are from Project Gutenberg [14]), No.6 is randomly

generated.

Several existing works of GPU compression are select-

ed for comparison, which are CULZSS, CULZSS-bit and

GLZSS. For each work, we choose the best performance

configuration/version reported in their papers. CULZSS and

GLZSS code are obtained from their authors, and CULZSS-

bit is reimplemented. The original Snappy code is obtained

online on its official website.

We use 4 Nvdia GPU cards in the scalability evaluation

experiment. The hardware parameters of these GPUs are as

follows: Nvdia GTX680 with frequency of 1536 MHz and

3.09 TFLOPs, Nvdia GTX780 with frequency of 2304 MHz

and 4 TFLOPs, Nvdia GTX980 with frequency of 2048 MHz

and 4.6 TFLOPs and Nvdia GTX1080 with frequency of

2560 MHz and 9 TFLOPs.

B. Influence of the Hash Table Size on the Compression
Ratio

This experiment is performed to evaluate the influence

of the hash table size on the compression ratio. Duplicate

strings found by compression algorithms are redundant data

that can be compressed. The more redundant data are found,

the higher is the resulting compression ratio. We use the

ratio of redundant data, defined as the ratio between the total

length of duplicate strings found in a file and the original

file size, to approximately evaluate the compression effect.

This experiment is run on CPU E5-1620 and GPU GTX980.

To evaluate the influence of the hash table size on the

compression ratio, we increase the hash table size (in entries)

from 2K to 64K according to the power of 2, and the conflict

chain size is set to one. G-match is applied to all six test
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Table II
RATIOS OF REDUNDANT DATA WITH DIFFERENT HASH TABLE SIZES

Test Files
Hash Table Size

2K 4K 8K 16K 32K 64K
File 1 2.2% 2.8% 3.5% 3.6% 3.6% 3.6%
File 2 60.5% 61.8% 62.1% 62.2% 62.4% 62.5%
File 3 36.3% 40.5% 43.3% 45.3% 46.3% 46.8%
File 4 74.5% 76.3% 77.2% 77.8% 78.1% 78.3%
File 5 26.5% 28.1% 28.8% 29.5% 30.3% 30.4%
File 6 28.1% 31.1% 33.0% 33.5% 34.4% 34.6%

Table III
RATIOS OF REDUNDANT DATA WITH DIFFERENT CONFLICT CHAIN

SIZES

Test Files
Hash Conflict Chain Size

1 2 3 4
File 1 3.5% 3.6% 3.6% 3.6%
File 2 62.1% 63.7% 64.2% 64.3%
File 3 43.3% 46.3% 46.7% 46.7%
File 4 77.2% 79.2% 80.0% 80.0%
File 5 28.8% 29.9% 30.2% 30.2%
File 6 33.0% 34.6% 34.7% 34.7%

Table IV
COMPRESSION SPEEDS WITH DIFFERENT CONFLICT CHAIN SIZES

(MB/S)

Test Files
Hash Conflict Chain Size

1 2 3 4
File 1 2,222.5 1,555.8 1,377.0 1,155.7
File 2 1,937.4 1,356.3 1,201.2 1,007.5
File 3 1,797.5 1,258.3 1,114.4 934.7
File 4 1,707.5 1,195.3 1,058.6 887.9
File 5 2,117.2 1,482.2 1,312.9 1,101.1
File 6 1,970.0 1,379.0 1,221.4 1,024.4

files, and the ratio of redundant data obtained in each file

with a specific hash table size is counted and shown in Table

2.

According to Table 2, increasing the hash table size

only slightly improves the compression ratio, and the effect

vanishes rapidly. Therefore, in the following experiments,

we set the hash table size to 8K.

C. Influence of the Conflict Chain Size on the Compression
Performance

Longer conflict chain may save more occurrences of

visited strings, increasing the probability of finding duplicate

strings but taking up more memory space and degrading

the compression speed. To evaluate the influence of the

conflict chain size on the compression performance, we set

the conflict chain size to 2, 3, and 4 and run a G-match

variant on all six test files. The ratios of redundant data

with different conflict chain sizes are shown in Table 3, and

the corresponding compression speeds are shown in Table 4.

This experiment is run on CPU E5-1620 and GPU GTX980.

According to Table 3, a longer conflict chain size only

slightly increases the ratio of redundant data (less than 3%

in most cases) but greatly decreases the compression speed

Table V
COMPRESSION PERFORMANCE

Test Files
Compression Ratio Compression Speed (MB/s)

Snappy G-match Loss Snappy G-match Imp.
File 1 1.033 1.033 <0.01% 446.2 2,222.5 5.0x
File 2 2.166 2.165 0.04% 267.7 1,937.5 7.2x
File 3 1.626 1.626 0.01% 217.9 1,797.5 8.3x
File 4 2.702 2.701 0.03% 237.2 1,707.5 7.2x
File 5 1.321 1.321 <0.01% 302.3 2,117.5 7.0x
File 6 1.365 1.365 <0.01% 230.6 1,970.0 8.5x

Table VI
COMPRESSION SPEED OF G-MATCH ON DIFFERENT GPUS (MB/S)

Test Files GTX 680 GTX 780 GTX 980 GTX 1080
File 1 1310 2101 2222 4410
File 2 1131 1672 1937 3650
File 3 1090 1444 1797 3479
File 4 1009 1472 1707 3120
File 5 1139 1719 2177 4010
File 6 1111 1802 1970 3679

(Table 4) by at least 510 MB/s when increasing the conflict

chain size from 1 to 2. Therefore, the conflict chain size of

G-match is set to one.

D. Compression Performance

To evaluate the compression performance of G-match

and compare it with that of Snappy, we encode the output

stream of G-match with the same encoding method used by

Snappy. The output files can be decompressed directly by the

decompression software of Snappy. The data compression

ratio is defined as the ratio between the uncompressed and

compressed data volume, the higher the better. Compression

ratios and compression speeds on all test files are shown in

Table 5. This experiment is run on Intel CPU E5-1620 and

Nvdia GPU GTX980.

According to Table 5, the loss of compression ratio

introduced by G-match is incredibly small: less than 0.05%

in our experiments. This difference is mainly caused by

parallel execution of 32 threads in hash table lookup and

updating, as duplicate strings within a 32-byte unit may be

lost in this process (Section 4.1).

It can be calculated from Table 5 that the average com-

pression speed of Snappy on the six test files is 283 MB/s,

and the average compression speed of G-match on the six

test files is approximately 1.96 GB/s, which is approximately

6.9x larger than that of Snappy. Although compression

speeds vary with files, the overall speedup values are stable

and reasonable.

E. Scalability of G-match

We run G-match on 4 different GPU-cards, namely, GTX

680, GTX 780, GTX 980 and GTX 1080, to evaluate the

scalability of G-match. All the experiments are tested on

CPU i7-5930K, and each GPU card is plugged into the PC

bus slot one at a time. The results are shown in Table 6.
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Table VII
COMPRESSION PERFORMANCE OF DIFFERENT GPU

IMPLEMENTATIONS- SPEED(MB/S) | RATIO

Test Files G-match GLZSS CULZSS CULZSS-bit
File 1 2222|1.03 1536|1.03 1078|1.01 825|1.02
File 2 1937|2.17 1325|2.09 721|1.79 679|2.02
File 3 1797|1.61 1338|1.8 846|1.2 780|1.79
File 4 1707|2.69 1479|2.73 880|1.5 790|1.80
File 5 2177|1.29 1779|1.30 979|1.10 802|1.13
File 6 1970|1.33 1525|1.25 825|1.15 745|1.19

It can be seen that G-match is efficient on different

GPUs with different architectures. On the most advanced

GPU GTX 1080, G-match achieves the highest speed of

approximately 3.7 GB/s.

F. G-Match vs other GPU Implementations

The core indicators for measuring a compressor are the

compression speed and compression ratio. In this section, we

compare G-match with GLZSS, CULZSS and CULZSS-bit

on GPU GTX 980 with all 6 test files. The compression

performance is shown in Table 7.

Table 7 shows that G-match achieves the highest com-

pression speed in all test files. The speedups over GLZSS,

CULZSS and CULZSS-bit are approximately 33%, 140%

and 160%, respectively. The compression ratios between G-

match and GLZSS are close because the two algorithms

adopt a similar hash table lookup mechanism. Relative to

CULZSS and CULZSS-bit, G-match improves the compres-

sion ratio by 22% on average.

VII. CONCLUSION

In this paper, we propose a GPU-friendly data com-

pression algorithm that is the first thoroughly parallelized

algorithm of this type. The most notable contribution is

to divide the whole process of scanning a byte into two

separate passes and introduce an intermediate data structure

to interface with them. This design allows the two passes to

be parallelized independently, eliminating the main source

of path divergence in the algorithm. Concurrent hash table

lookup and updating achieves the maximum gain of speed at

the cost of a slightly decreased compression ratio. The path

divergence in the longest common prefix match is eliminated

by decomposing a long string match into multiple 4-byte

string matches with an intermediate data structure saving

the match results. This design allows each thread to make

progress in all circumstances. Experiments of performance

breakdown verify the effectiveness of our design and opti-

mizations. Compared with other existing GPU compression

implementations, G-match achieves the highest speed with

almost no compression ratio loss.
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