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Abstract 
The industry wide shift to multi-core architectures arouses great 
interests in parallelizing sequential applications. However, it is 
very difficult to parallelize fine-grained applications for multi-
core architectures due to insufficient hardware support of fast 
communication and synchronization. Fortunately, network 
applications can be decomposed into pipelined structures that are 
amenable to streaming based parallel processing. To realize the 
potential of pipelining on multi-core architectures, it requires 
reevaluating the basic tradeoffs in parallel processing, including 
the ones between load balance and data locality and between 
general lock mechanisms and special lock-free data structures. 
This paper presents the practice of building a high-performance 
multi-core based network processing platform in which 
connection-affinity and lock-free design principles are applied 
effectively for better data locality and faster core-to-core 
synchronization and communication. 

    We parallelize a complete Layer 2 to Layer 7 (L2-L7) network 
processing system on an Intel Core 2 Quad processor, including a 
TCP/IP stack based on Libnids (L2-L4) and a port-independent 
protocol identification engine by deep packet inspection (L7+). 
Furthermore, we develop a compiling method to transform 
sequential network applications to parallel ones to enable those 
applications to run on multi-core architectures. Our experience 
suggests that (1) fine-grained pipelining can be a good software 
solution for parallelizing network applications on multi-core 
architectures if connection-affinity and lock-free are used as the 
first design principles; (2) a delicate partitioning scheme is 
required to map pipelined structures onto specific multi-core 
architecture; (3) an automatic parallelization approach can work if 
domain knowledge is considered in the parallelizing process. Our 
multi-core based network processing platform can deliver not 
only 6Gbps processing speed for large packet sizes but also more 
challenging 2Gbps speed for smaller packets. 

Categories and Subject Descriptors 
C.1.4 [Processor Architectures]: Parallel Architecture; C.2.2 
[Network Protocols]: Applications; D.1.3 [Programming 
Languages]: Concurrent Programming – parallel programming; 
D.3.4 [Processors]: Compilers and run-time environments. 

General Terms 
Performance, Algorithms, Experimentation. 

Keywords 
lock-free data structures, TCP/IP protocol processing, deep 
content inspection, multi-core parallelization, pipelining 
implementation, application-level protocol processing. 

1. Introduction 
Previously special-purpose programmable network processors 
(NPUs) [21] have dramatically reduced both the cost and time to 
develop a network system, and have been successfully used in 
routers and switches [19][20]. However, programming these 
NPUs is very challenging since low-level hardware details are 
exposed to the programmers, which prevents NPUs from being 
widely accepted by the industry. For example, the size of each 
microengine on an Intel IXP 2800 NPU is maximal 8K words and 
there are 16 engines in total, It is difficult to partition code to fit 
exactly into each microengine, and it is impossible to run an 
application if its code space is over 128K words.  

    When multi-core commodity processors emerge as mainstream, 
they become a promising candidate for building high-performance 
network systems that support complicated Layer 2(L2) through 
Layer 7(L7) processing at the Gbps speeds. The most obvious 
advantages of multi-core processors are, to name a few, familiar 
programming environments for programmers and abundant third-
party software and tools available for system development. 
Furthermore, multi-core processors usually have more resources, 
hence are more powerful than NPUs. For example, the on-chip L1 
and L2 caches allow fast access to the memory while putting no 
restrictions on instruction space. Therefore, multi-core processors 
are sometimes the only solution to efficiently implementing L7+ 
network applications since both ASIC and NPU approaches failed 
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to handle the complexity appeared in the application-level 
protocols.  

    The industry wide shift to multi-core architectures [1] arouses 
great interests in parallelizing sequential applications. However, 
unlike high-performance scientific computation, network 
applications are time-sensitive applications. Even though coarse-
grained applications in which a thread runs 10,000 cycles or more 
can be successfully parallelized [22][32], fine-grained network 
applications in which a packet must be processed within a few 
thousand cycles are very difficult to be parallelized because the 
fast communication and synchronization mechanisms that are 
needed for fine-grained applications are not efficiently supported 
on existing multi-core platforms. For example, a Pthread 
lock/unlock operation can easily take more than 1,000 cycles to 
execute while a fast-path TCP processing takes only about 2,000 
cycles. For such fine-grained network applications, a lock/unlock 
operation becomes a new performance bottleneck, and it should 
hardly be used in practice.  

    It has been demonstrated that 10Gbps line-rate processing 
speed can be achieved for a single networking algorithm 
[16][17][34] or 1Gbps line-rate can be achieved with a dummy 
application using three CPU cores [3]. However, achieving 1Gbps 
line-rate for a complete L2-L7 network application is still very 
challenging, and thus the efforts were spent on parallelizing those 
applications on multi-core platforms [2][9][29]. Unfortunately, 
neither of them could reach 1Gbps line-rate in the worst case and 
the speeds are far below the line-rate requirement for smaller 
packets. We parallelize a complete TCP/IP stack and a port-
number independent protocol identification engine (L7+) based 
on deep packet inspection (DPI) on an Intel Core 2 Quad 
processor. Experiments show that the system can deliver not only 
6Gbps processing speed 1 for large packet sizes but also more 
challenging 2Gbps speed for smaller packets using only three 
CPU cores.  

    This paper presents the practice of parallelizing legacy 
sequential network applications on multi-core architectures by 
exploiting application domain knowledge and multi-core 
architecture features. Network applications have two inherently 
features that are suitable for parallelization: 1) they have naturally 
layered structures that can be organized into a functional pipeline; 
and 2) packets belonging to different flows can be processed in 
parallel. However, it is still very challenging to implement a 
software pipeline on multi-core architectures. First, network 
applications are inherently memory and I/O intensive and thus 
they may further exacerbate the disparity between computing 
power and memory latencies of multi-core architectures. Second, 
inter-core synchronization and communication must be handled 
by software, which in general is much slower than the 
mechanisms employed in NPUs. Particularly an X86 multi-core 
processor doesn’t have efficient hardware FIFO to support fast 
core-to-core communication. Therefore, new design principles 
need to be carefully sought in parallelizing network applications 
on multi-core architectures. 

    This paper makes the following main contributions: 
                                                                 
1 Some network equipment vendors claim to handle 10Gbps line-

rate for large packet sizes but this speed is achieved for stateless 
UDP packets only. 

• A fast core-to-core FIFO is implemented to support fine-
grained pipelining execution model on multi-core 
architectures, which is a foundation for parallelizing any 
fine-grained applications. 

• A multi-core based network application parallelizing 
framework is built by employing network domain 
knowledge, concurrent lock-free data structures, and 
functional pipelining. This practice provides valuable 
experience on studying effective parallelizing principles 
to build a high-performance network system on the 
commodity multi-core processors. 

• A prototype source-to-source compiler is implemented to 
facilitate porting sequential network applications written 
in C onto the parallel framework. 

    To the best of our knowledge, the system we built is the first 
one capable of delivering stable 2Gbps line-rate processing speed 
for a complete L2-L7 network application using only three CPU 
cores. Since only 75% of the CPU power of a quad-core processor 
is utilized, enough headroom is reserved for other advanced L7 
applications. Our experimental results show that general-purpose 
multi-core CPUs are a viable alternative to NPUs or ASICs in 
building network processing systems, especially for complete L2-
L7 network applications. 

    The remainder of this paper is organized as follows. Section 2 
discusses design principles and system design space. Section 3 
presents runtime system implementation applying the parallel 
design principles. Section 4 presents the evaluation results and 
performance analysis. Section 5 discusses related work. We 
conclude in Section 6. 

2. System Design Space 
This section reviews the basic and most important design 
principles for parallelizing network applications on multi-core 
platforms. 

2.1 Design Principles 
1) To exploit flow-level parallelism in a network application, 
flow-pinning [2] can be used to ensure that all the packets 
belonging to the same TCP flow are processed by a single CPU 
core. Since each TCP connection consists of two TCP uni-flows, 
we assign (bind) the two flows belonging to the same TCP 
connection to one CPU core. Therefore no synchronization is 
needed to access the connection table belonging to the same 
connection, in which one connection entry consists of two flow 
table entries. In addition, partitioning the connection table makes 
the size of each table smaller, which will significantly increase 
the L1/L2 cache locality, hence the cache hit rate. Therefore, 
connection-affinity is one of the most valuable design principles 
to develop networking software on multi-core processors. 
2) A load-balancing approach is needed to dispatch packets 
among CPU cores. Due to the nature of fine-grained parallelism, 
we prefer the static load-balancing by trading the imbalance of 
workload with the much less runtime overhead. In general, a 
packet-classifying-hash function is used to dispatch packets 
among CPU cores. There are two types of hash functions: 
asymmetric and symmetric. Even though asymmetric hash 
function distributes packets more evenly among CPU cores, it 



cannot guarantee connection-affinity. Therefore, we use a 
symmetric hash function to distribute packets among CPU cores, 
since on multi-core platforms cache locality is more important 
than load balance. 
3) A balanced workload partitioning scheme is required to divide 
the workload evenly among pipeline stages. To make an optimal 
decision, the execution time of each pipeline stage needs to be 
accurately measured or predicted. We tried different partitioning 
schemes and derived a 2-stage pipelining in which one CPU core 
does packet capturing and L2 processing, and the other three CPU 
cores do the L3 above protocol processing work. 
4) A high-efficient FIFO implementation is needed to provide fast 
core-to-core communication on multi-core platforms. For 
example, on a 2.3GHz Intel Core 2 Quad processor, a Pthread 
lock/unlock pair cost at least 250ns per operation, whereas a 
packet’s processing time should take less than 672ns to meet 
1Gbps line-rate requirement. We develop a cache-friendly 
concurrent lock-free FIFO queue by aggregating read/write 
operations based on cache line access to reduce the bus traffic 
used for maintaining the shared cache coherence and thus to make 
access time more stable. 
5) Packet buffer management needs to be carefully studied. It is 
often unnoticeable that the reentrant library (Libc) calls contain 
hidden lock operations that may become performance bottlenecks 
in multi-core architectures. Malloc() that is often used for 
allocating a buffer whenever a new packet arrives contains locks. 
Therefore, eliminating the malloc usage is preferable in fine-
grained multi-core network applications. 
6) Sequential Libnids and Flex generated C code must be 
modified to run on the multi-core platform. As shared memory 
model is used in multi-core programming development, a naive 
way to make sequential code run in parallel is to change every 
global data access into atomic one; however the resulting parallel 
program may run slower than the original sequential program due 
to the overhead involved in atomicity enforcement. Since 
connection-affinity based parallelizing approach divides global 
connection state table into independent sub-tables, and each sub-
table is private to its corresponding CPU core, it makes the 
sequential code one step closer to run in parallel by transforming 
a global table access with an extra pointer based dereferences. 
7) In general, automatically parallelizing a sequential application 
is a hard problem with limited success [23][24]. We believe that 
domain knowledge could help lead to a viable solution in 
automatically parallelizing a sequential application. Network 
applications are amenable to pipelined processing due to their 
naturally layered stack structure. For example, HTTP (L7) is built 
on top of TCP (L4) which is built on top of IP (L3) which is built 
on top of Ethernet (L2). In principle, each layer can be regarded 
as one pipeline stage. Network applications also have inherent 
flow-level parallelism. Each flow is identified by the source and 
destination IP addresses, and source and destination port numbers. 
Such natural flow-level parallelism can be effectively used to 
parallelize network applications by running different flow 
processing in parallel. We rely on this domain knowledge to 
identify inherent parallelism, and then use the above parallelizing 
principles to utilize the parallelism. 
    In summary, domain knowledge guided parallelization, 
connection affinity, and lock-free data structures are the main 
parallel design principles used in building our parallel framework.  

2.2 System Building Blocks 
We make use of several open source software to implement our 
parallel runtime system in user space to make the system more 
portable. The system consists of the following modules: 

1. Pf_ring [13] to improve the packet capture speed of the 
NIC and optimized Pcap[10] to get packets from trace 
files. 

2. A cache-friendly lock-free FIFO to link pipeline stages 
together. 

3. A TCP/IP stack implemented in Libnids[11], including IP 
defragmentation, TCP stream assembly, and TCP port 
scan detection for preventing denial-of-services (DOS) 
attacks. 

4. A Flex [15] based protocol identification engine using 
L7-filter patterns [12]. 

    We build a test bed based on Pf_ring for real traffic and 
optimized Pcap for stored packet traces, where a ring of buffers is 
added between Pf_ring/Pcap and the rest of L2-L7 network 
processing to allow them run in parallel. The system uses mmap() 
to reduce the memory copy between kernel space and user space.  
    Four cores are organized into a functional pipeline, with one 
core forming the first pipeline stage (Input), and the other three 
cores forming the second stage (Application) shown in Figure 1. 
Each pair of neighboring cores is linked with a cache-friendly 
lock-free FIFO. Original Libnids and Flex generated C code are 
parallelized using our compiler to make the sequential code run in 
a multi-core environment. 

CPU Cores P1 (IP)

P2 (APP)

P3 (APP)

P4 (APP)
 

Figure 1. A tree-like data-parallel pipelines 

3. Important Implementation Details 
This section presents important implementation details on how to 
parallelize a complete L2-L7 network application system by 
applying connection-affinity and lock-free parallel design 
principles to achieve high speed.  
    We use m-stage-n-way to describe a pipelining scheme in 
which m is the number of pipeline stages and n is the number of 
pipelines. The more pipeline stages the higher system throughput 
for a single packet. The more pipelines the more flow-level 
parallelism is exploited. The actual m and n need to be determined 
by profiling the application to make the pipeline execution in a 
balanced way. 

3.1 Optimized Concurrent Lock-Free Queue 
For the single-producer/single-consumer case, lock-free FIFO has 
been proposed in [3][6]. We improved the FIFO on speed and 
stability by: 
1. Aggregating read/write operations within the same cache line 

and only modifying a cache line once per operation, i.e., the 
unit of read/write to the FIFO is a single cache line instead of 
one data item.  

2. Introducing a timer to handle the extreme timeout case. 



    As shown in Figure 2, a local buffer temp is introduced in 
producer. If temp is not full, the producer puts data in temp (Line 
5) without touching the global area queue, and returns 
immediately. To handle the extreme timeout case, a timer is 
introduced into the queue. Only when the local buffer is full or 
the timer times out (Line 7), the producer copies temp into queue. 
Similarly, the data transfer in the consumer side incurs only one 
transfer per cache line instead of one per data item. 

 
Figure 2. Aggregation of queue write operations 

For a single packet, it seems that tiny delay is introduced due to 
aggregation operation. However, the producer saves lots of global 
operations, which results in less traffic in enforcing the cache 
coherence protocol, therefore performance of the whole system 
increases, especially for systems dealing with realistic network 
workload. The aggregation based FIFO works steadily in practice 
with each read/write operation taking around 45ns/op, 36% faster 
than the FastForward FIFO [3]. More performance details are 
shown in Section 4.5. 

3.2 Pipeline Organization 
Figure 1 depicts a 2-stage-3-way pipelined system to be mapped 
onto an Intel Core 2 Quad processor, in which a tree-like three 
data-parallel pipelines are used and each pipeline consists of two 
stages, Input (IP) and Application (APP). Since it lacks of 
hardware FIFO support on a multi-core commodity processor, the 
efficient lock-free FIFO described in section 3.1 is the key to 
enabling such a pipelined execution model to be implemented on 
a multi-core platform.  

    The IP core uses a symmetric packet-classifying-hash 
algorithm, discussed in section 2.1, to evenly distribute packets 
among the three APP cores. Specifically, the checksum on 
source/destination IP addresses and source/destination port 
numbers is used as the hash function. Since all the packets 
belonging to the same TCP connection are dispatched to the same 
APP core, each connection sub-table is accessed only by its APP 
core, therefore the access can be done in totally lock-free manner 
as if the connection sub-table was private. 

3.3 Pipeline Mapping 
To map the L2-L7 network stack on the pipelined model, a 
protocol stack processing is divided into seven functional pipeline 
stages, shown in Figure 3(a). An input packet is read from Pf_ring 
or Pcap, then memory is allocated by malloc() and the packet is 

copied. Next, the system checks the packet’s integrity and 
reassembles IP fragments if necessary. Then the TCP process 
starts and TCP state tracking and detection of DOS attacks are 
done. Finally, L7 deep packet inspection (DPI) is performed by 
inspecting the packet’s payload using pattern matching.  

    To select a proper cutting point that evenly divides the 
workload between IP and APP stages, we do the mapping based 
on accurate profiling on execution time of each pipeline stage. In 
general, to reach 1Gbps line-rate for the minimal 64-byte Ethernet 
packet input, a system must handle 1,488,095 frames per second 
(including the frame gap). This means that a new packet arrives 
every 672ns or 1545 cycles for a 2.3GHz CPU. So, on a 2-stage-
1-way pipelined implementation, both the IP and APP cores 
should finish their processing in (1545-100) cycles assuming that 
the FIFO takes 100 cycles on average. On a 2-stage-2-way 
pipelined module, APP core’s workload can be almost double that 
of the IP core, i.e., the APP’s workload can be as high as 
(1545*2-100) cycles. In general, if FIFO communication takes 
Cfifo cycles, the IP core takes Cip cycles, and the APP core takes 
Capp cycles in a 2-stage-N-way pipelined model, on a F-GHz CPU 
1Gbps line-rate can be reached if 

 1  FIFO_ELEM temp[ELEM_PER_CACHELINE]; 
 2  int enqueue_aggregation(FIFO_ELEM * data) { 
 3      if ( NULL != queue[head] )    
 4          return FALSE;       /* the queue is full */ 
 5      temp[current] = *data;     /* put data in local buffer. */ 
 6      current ++; 
 7      if ((current == ELEM_PER_CACHELINE) ||  
              (timeout == TRUE)) {   /* write back local buffer temp */ 
 8          memcpy( queue[head], temp,  

sizeof(FIFO_ELEM) * ELEM_PER_CACHELINE ); 
 9          head = NEXT( head, CACHELINE_SIZE); 
10         current = 0; 
11      } 
12      return TRUE; 
13  } max {Cip, Capp/N} + Cfifo <= 672*F 

 

                         
                      (a)                                          (b) 
 

 
                                           (c) 

Figure 3.  (a) Original pipeline stages; (b) Two staged 
pipeline; (c) 2-stage-2-way data-parallel pipeline 

    Figure 3(b) shows a partitioning scheme by dividing the 
workload just before TCP stage. This scheme favors network 
applications with heavy L4-L7 workload. However, our 



experimental results (shown in Section 4) reveal that the pipeline 
stages with this cutting point are unbalanced, and splitting 
between Defragmentation and Checksum is the best for 2-stage-1-
way pipeline model. Figure 3(c) depicts an improved cutting 
scheme for 2-stage-2-way pipeline model, in which the APP 
phase is duplicated. This scheme permits each APP phase to 
consume twice the inter-frame arrival rate by doubling the 
system’s throughput. With the 2-way data-parallel model, L3-L7 
layers can do more work than the original pipeline model allows. 

3.4 Eliminate Lock/Unlock Operations 
Since malloc() contains locks and it should be used as minimal as 
possible for fine-grained network applications which only have a 
budget of a few thousands of CPU cycles. We replace a malloc() 
by pre-allocating a bulk of memory space to the core responsible 
for the input packets, and then the subsequent buffer allocation is 
done locally on the core. Section 4.4 reports how eliminating 
malloc boosts system performance dramatically. 

    Besides, there is another hidden lock between Pcap and the 
upper layer network stack. In general, Pcap gets a packet once a 
time and then forwards it to the upper layer stack. Pcap does not 
handle the next packet until the current packet is being completely 
processed. We implement a ring of buffers shown in Figure 3(c), 
which is inserted between Pcap and the L2 layer to (1) decouple 
the Pcap interface and upper-layer functions; (2) eliminate the 
malloc operation.  

3.5 Fast Memcpy 
After eliminating unnecessary malloc, the performance of the 
pipeline execution shown in Figure 3(c) depends on a fast 
implementation of library function memcpy. To optimize it, the 
following methods are applied: 

1. The SSE load/store instructions are used to access memory 
in 128 bits. 

2. The loop unrolling technique is used to make full use of the 
SSE registers to 

a. Prefetch more data; 

b. Overlap latencies of the memory loads and stores by 
manually applying instruction scheduling technique. 

3.6 Source-to-Source Parallelizing Compiler 
For a parallelizing compiler, it must (1) detect parallelism, (2) 
utilize parallelism. Sometimes detecting parallelism is much 
harder than utilizing parallelism, especially for sequential legacy 
code. For example, without accurate points-to analysis [22], it is 
hard to identify all global variables accessed in a function. 
Without a good shape analysis [22], it is hard to know if two link 
lists collide.  

The connection-affinity parallelizing approach allows to 
sequentially process packets on each CPU core while running 
multiple threads of such  sequential processing on different cores 
in parallel. The idea is to keep the control-flow of original 
sequential code unchanged but to make global data accesses 
atomic. For example, accessing the TCP connection table needs to 
be modified to access each entry atomically. One way to 
guarantee the atomic property is to partition the connection table 

into independent sub-tables so that each one can be accessed in 
parallel on each CPU core. Since packets belonging to different 
TCP connections can be processed independently, assigning 
packets based on TCP connection-affinity guarantees the atomic 
access of each sub-table assigned to different CPU cores. This 
parallelization approach simplifies the task of parallelizing 
sequential code due to the sequential semantic maintained in each 
CPU core. Therefore, we rely on domain knowledge and the 
programmers to identify parallelism. The role of the compiler is to 
perform source-to-source translation under the domain knowledge 
guidance to make global data accesses atomic. 

    For example, the function listed in Figure 4(a) cannot run in 
parallel due to a global variable timenow. With traditional lock-
based multithreaded programming, any operation on shared data 
that is susceptible to race conditions must be made atomic by 
locking and unlocking with a mutex. Through the connection-
affinity analysis, each core can have a localized version of 
timenow, and the compiler can use the connection-affinity 
principle to infer that each local access is atomic without applying 
any lock. Figure 4(b) shows the parallelized code that accesses a 
local copy directly without any lock operation. 

1  static int timenow = 0;    
          /* timenow cannot be used in parallelized code directly. */ 
2  static int jiffies() { 

  3      if( timenow ) 
  4           return timenow; 
  5       timenow = ...; 
  6       return timenow; 
7  } 

 
(a) 

1  static int  
2  jiffies(IP_THREAD_LOCAL_P ip_thread_local_p) { 

          /* timenow is a private data of each thread. */ 
  3      if( ip_thread_local_p->timenow )   
4          return ip_thread_local_p->timenow; 
5      ip_thread_local_p->timenow = ...; 
6      return ip_thread_local_p->timenow; 
7  } 

 
(b) 

Figure 4. (a) sequential legacy code; (b) parallelized code 
    The parallelizing transformation is as follows. For each 
functional pipeline stage corresponding to each layer of the 
protocol stack, a local storage (C structure) is pre-allocated for 
each CPU core, in which each global variable used in that layer 
takes one field position in the local structure. A function that 
accesses those global variables then has one extra parameter, a 
pointer to the local structure (ip_thread_local_p), and a read/write 
to a global variable is transformed into the pointer deference to 
the corresponding field of the local structure. In the example 
shown in Figure 4(b), pointer ip_thread_local_p is for the IP 
functional pipeline stage. By referencing the local copy of 
variable timenow, function jiffies can run in parallel.  

    Similarly, for any pointer dereferenced global data, its 
enclosing function will add an extra parameter, a pointer to the 



pre-allocated local storage. A pointer dereference will be 
transformed into an indirect pointer dereference. For example, in 
the TCP stage the following line 

tcp_oldest->nids_state = TIMED_OUT; 

is transformed into 

tcp_thread_local_p->tcp_oldest->nids_state= TIMED_OUT; 

in which tcp_thread_local_p is a pointer to the local storage pre-
allocated for the TCP layer. 

    Adding a level of pointer deference for each function may 
introduce the runtime overhead. However, its cost is neglect 
compared to a lock/unlock pair. In addition, the compiler 
performs function in-lining as much as possible to reduce the 
overload caused by passing an extra parameter. 

    Finally, a runtime system including thread initialization, buffer 
management, packet distribution, lock-free FIFO and linked lists, 
and time-out handling is implemented to facilitate parallelizing 
effort. The code for initialization, buffer assignment, and selection 
of cutting point using FIFO for m-stage-n-way pipeline is 
generated based on pragma line indication. 

3.7 L7 Deep Packet Inspection 
Based on Flex [15], we implement a deep packet inspection 
engine, which uses regular expression based pattern match to 
inspect packet payload. Firstly, L7-filter patterns [12] are 
translated into Flex ones by a pre-processor. For example, a 
pattern starting with a wild character * is replaced by the 
corresponding pattern starting with ^, indicating the beginning of 
TCP payload. Such rewriting can dramatically cut down the 
number of DFA states. Then, the Flex generated C code is fed 
into the parallelizing compiler to generate multi-core code as 
described in the previous subsection.  

    The protocol automatic identification engine identifies 
protocols according to protocol patterns instead of TCP port 
numbers. This engine is much more processor and memory 
intensive than that only checks for port numbers, however it is 
much more powerful because it can match any protocols that use 
unpredictable ports (e.g. P2P file sharing), non-standard ports 
(e.g. HTTP on port 1000) and the same ports (e.g. P2P file sharing 
using port 80). 

4. Experimental Results and Performance 

Analysis 
In this section we demonstrate that our system is capable of 
processing packets at the much higher line-rate speed. 
Specifically, our framework can finish the workload of prevention 
of DOS attacks (L2-L4) and deep packet inspection (L7+) up to 
6Gbps speed for large packets. 

    The X86 64-bit time stamp counter (TSC) is used to measure 
execution time of each pipeline stage. The TSC measures elapsed 
cycles since the system is started and is accurate within a few 
cycles. Firstly, we make only Pcap stage run in the system. Then, 
we add other following pipeline stages one by one to derive the 
execution time of each pipeline stage. 

4.1 Evaluation Platform  
We run experiments on one Dell server equipped with Intel Core 
2 Quad processors. DELL PowerEdge 2900 has a dual Xeon 
E5410 processors running at 2.3GHz, and it has two 6MB L2 
caches with 64B cache-line size and 1333MHz FSB. The two 
Gigabit Ethernet cards (Intel 9400PT and Broadcom BCM5721) 
are connected by a cross cable (back-to-back). The system is 
configured to run the 64-bit Linux 2.6.x kernel and the code is 
compiled by the GCC 4.1.2. 

    The characteristics of the packet trace files used in the 
experiments are described in Table 1. File-7 and File-8 come from 
the 1998-1999 DARPA intrusion detection evaluation at MIT 
Lincoln Lab [30]. File-9 and File-10 come from the Defcon 9 
Capture the Flag contest [31]. The other trace files are collected 
from the gateway of a university campus. In Table 1, column 
#Conn. denotes the number of total connections, column #Packet 
Len lists the average packet size, and column #Conn. Rate gives 
the number of connections per 1,000 packets. The higher the 
connection rate is, the more difficult it is for the L4-L7 
applications to process. 

Table 1. Characteristics of trace files 

FILE #Packets #Conn. #Conn. 
Rate 

#Packet 
Len. 

(Byte) 
File-1 646,703 9,191 13.9 186 
File-2 297,024 4,384 14.8 201 
File-3 594,064 8,768 14.5 205 
File-4 2,376,256 35,072 14.7 204 
File-5 9,496,620 140,194 14.7 202 
File-6 17,092,300 253,371 14.8 208 
File-7 3,393,924 111,777 32.9 307 
File-8 3,201,341 103,578 32.3 243 
File-9 3,960,205 12,736 3.2 194 

File-10 1,050,364 1,043 1.0 851 

4.2 Packet Input 
In our experiments, we use two methods to generate input 
packets: 

1. One NIC (Broadcom BCM5721) injects packets into the 
cable, and then another (Intel 9400PT) captures the packets 
and delivers them to the applications by assistance of 
Pf_ring. The packet traces are injected into the Gigabit link 
using Tcpreplay [14]. To achieve high speed traffic, we had 
to “speed up” the traffic by setting “--topspeed” to send 
packets as soon as possible. We assume that this would not 
affect the correctness of our experiments. Since Tcpreplay 
can play back the trace files at 410Kpps rate in our testbed, 
1Gbps is reached if the average packet length is larger than 
304 bytes. 

2. Since the recipient is not the performance bottleneck [13], 
for higher speed testing the input packets must come from 
tcpdump files because it is very challenging to use software 
approach to generate traffic at a speed greater than 1Gbps 
without heavy investment on hardware testing equipment. 
On the other hand, our work focuses on the protocol 
processing. Therefore, we rely on input files to feed packets 
to measure higher processing speeds. 



4.3 System Performance 
In this section, we evaluate the system performance for the entire 
L2-L7 application. Lincoln Lab traces (File-7 and File-8) are 
simulations of large military networks generated during an online 
evaluation of IDSes. The Defcon traces (File-9 and File-10) are 
logs from a contest in which hackers attempt to attack and defend 
vulnerable systems. These traces contain a huge amount of attacks 
and anomalous traffic, representing a sort of pathological cases 
for network processing system. Table 2 lists main identified 
threats, protocols, and applications after the L7 processing. Row 
Alerts shows the number of TCP port scan attempts that are 
detected by our system. Row HTTP, POP3, SMTP, IMAP, 
TELNET and BITTO. show the number of HTTP, POP3, SMTP, 
IMAP, TELNET and BITTORRENT flows respectively, and row 
Others counts the number of other flows recognized by our 
system, including SSH, EDONKEY, IRC, X11, AIM, and 
Unknown. Although the number of protocols that can be 
recognized by our system is more than 60, only a few widely used 
protocols are contained in the trace files.  

Table 2. Results of L7 Content Processing 

 File-4 File-7 File-8 File-9 File-10 
Alerts 21,270 1,407 12,064 94,579 483 
HTTP 1,504 110,103 67,621 3,934 765 
POP3 0 39 7,407 1 0 
SMTP 4 1,265 3,254 11 0 
IMAP 0 0 2,533 0 0 

TELNET 0 390 3,347 55 0 
BITTO. 18,000 0 0 0 0 
Others 32 201 190 692 139 

PI-per-C 6 6 5 3 3 
     

    For each new connection, L7 DPI is called to inspect the 
payload of first few packets to identify the protocol type. Row PI-
per-C shows the average number of packets that are inspected to 
recognize the protocol type for each new connection. Since File-1 
to File-6 all come from the campus, only File-4 is listed in this 
table. Based on L7 DPI, our system checks the packet payload 
instead of simply port numbers. That is why HTTP like P2P 
BitTorrent protocol can be detected correctly. 

System  Performance
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Figure 5.  System performance achieved with trace files 

    Careful reader may find that the sum of per column in Table 2 
doesn’t match the corresponding #Conn. entry listed in Table 1. 
This is because a connection may triger multiple alters while 
some anomalous traffics are not categorized by the L7 DPI 
engine. However, in Table 2 only the sum of column File-8 is 

slightly smaller than the corresponding #Conn. entry in Table 1, 
which indicates that the protocol identifier can detect most of the 
protocols correctly. 

    Figure 5 shows the system performance achieved with the ten 
trace files listed in Table 1 after all the optimization techniques 
are applied. The system has the lowest throughput of 2Gbps with 
File-9, which contains many small alert packets, and the highest 
throughput of 6Gbps with File-10, which has the largest packet 
size. To sum up, even deployed in the vicious environment (File-
9) that has many small attack packets, our system can still achieve 
2Gbps network processing speed. 

    As shown in Figure 5, the system performance measured in 
data rate (Gbps) varies greatly with the average packet size, and 
the throughput discrepancy between large-packet traffic and 
small-packet traffic could be very large. Since many protocol 
processing operations require a fixed amount of CPU time per 
packet, the number of packets processed is more important than 
the data rate. In addition, our system can easily achieve higher 
1Gbps speed. Therefore, in the following discussion we will use 
the more challenging metric, packet processing rate (Million 
Packet Per Second, MPPS), to measure the system performance in 
the worst case (i.e., even with small packets). The maximum 
packet rate required to support 1Gbps data rate with minimum 64-
byte frames is about 1.49Mpps, and we will use this lower bound 
no matter what the packet size is. We encourage other research 
results to be measured in MPPS to have a fair comparison in the 
future.  

4.4 Pipeline Partitioning and Mapping 
This section presents the test results on trace File-1 to 
demonstrate the effects of connection-affinity and lock-free 
design principles described in Section 3. 

Table 3. Execution time of each pipeline stage for File-1 

Cycles Mode
1 

Mode 
2 

Mode 
3 

Mode 
4 

Mode 
5 

Pcap 450 450 450 300 300 
Malloc 450 700 700 --- --- 

Memcpy 440 440 440 440 440 
FIFO --- 100 100 100 100 

Defrag. 250 250 250 250 250 
TCP 500 500 500 500 500 

L7 DPI 400 400 400 400 400 
Per-frame 2490 1940 1690 1250 840 

Speed (mpps) 0.97 1.18 1.36 1.83 2.73 
Imp. (%) ----- 21.6 15.3 34.6 49.2 

 

    Table 3 shows the execution time of each pipeline stage with 
different pipelining schemes. Mode 1 (Figure 3(a)) corresponds to 
the sequential pipeline in which all stages run on the same CPU 
core, therefore the FIFO overhead is zero. The average execution 
time per packet is 2490 cycles, which is greater than 1,545 cycles 
required for reaching 1Gbps line-rate speed. Mode 2 (Figure 3(b)) 
corresponds to the 2-stage-1-way pipeline in which the cutting 
point is between L3 and L4, and Mode 3 moves the cutting point 
of Mode 2 to between L2 and L3, and Mode 4 further uses pre-
allocated Pcap buffers to link the two pipeline stages of Mode 3. 
Mode 5 (Figure 3(c)) corresponds to the 2-stage-2-way pipelining 



scheme. The 2-stage-3-way pipelining scheme (Figure 1) was also 
evaluated in our experiments. However, for 2-stage-n-way 
pipelining schemes with n>2, IP core becomes the bottleneck and 
adding more APP cores has little effect on lifting performance. So 
the results of 2-stage-3-way pipelining scheme are not listed 
except in section 4.6. To achieve higher speed, the workload of IP 
core can be transferred to a hardware based solution [35].     

    Row Pcap, Malloc, Memcpy, FIFO, Defrag(Defragmentation), 
TCP and L7 DPI display the average execution time of each 
pipeline stage. The reason TCP stage takes only 500 cycles is that 
after connection-affinity based parallelization is applied, the lock-
free TCP pipeline stage can execute much faster. L7 DPI is 
calculated by averaging the total number of cycles spent on L7 
DPI stage over the total number of packets processed by the 
system. Therefore, although a single L7 DPI operation takes 
around 4,000 cycles, the average L7 DPI workload is not so high, 
since only the first few packets of each connection are inspected 
(Table 2 PI-per-C rows). 

    Row Per-frame shows the average frame (packet) processing 
time with different pipelining schemes by calculating the larger 
number between (Cip+Cfifo) and (Capp/N+Cfifo) (Section 3.2). For 
example, for the pipelining scheme in Mode 3, the IP core takes 
1,690 cycles in all (450 for Pcap, 700 for Malloc, 440 for 
Memcpy, and 100 for FIFO), and the APP core takes 1250 cycles 
in all (250 for Defragmentation, 500 for TCP, 400 for L7 DPI and 
100 for FIFO). Therefore, on average each packet takes 1,690 
cycles to be processed, and the equivalent packet processing rate 
is 1.36Mpps.  

    Comparing the speed of  Mode 2 with that of Mode 1, we can 
see that adding one more CPU core does not necessarily double 
the packet rate if an unbalanced pipelining scheme (Mode 2) is 
used. However, if the workload is more evenly partitioned and the 
malloc function is eliminated (Mode 4), the packet rate can reach 
1.83Mpps (that is above the 1Gbps line-rate requirement) with 
only two CPU cores. By adding one more CPU core to form a 2-
stage-2-way pipeline in Mode 5 to apportion the heavy workload 
of APP stage of Mode 4, the packet rate increases to 2.73Mpps 
that is 49.2% improvement over Mode 4, and almost triple of the 
speed of the single-core solution (Mode 1). Even if taking into 
account the worst behavior of hash function that the Mode 5 
almost degenerates to Mode 4 (2-stage-1-way pipeline), the 
system can still achieve line-rate (>1.49Mpps). 

    The experimental results in Table 3 also reveal the performance 
impact of malloc on multi-core based systems. The overhead of 
malloc increases 35.7% from 450 cycles in the single-core 
environment (Mode 1) to 700 cycles in the two-core environment 
(Mode 2), and Mode 4 achieves 34.6% performance improvement 
over Mode 3 by only eliminating the malloc function call.  

4.5 Performance of Optimized FIFO 
This section evaluates the performance of our optimized FIFO 
with FastForward [3] as the baseline of the evaluation. 
Experimentally, we find out that if the consumer has dummy 
workload or no workload, both FIFOs can achieve high and stable 
performance. For example, if the consumer has no workload, both 
FIFOs can finish a put/get operation within 35ns. If the consumer 
takes spin loop as workload, FastForword takes 70ns and our 
optimized FIFO takes 45ns to finish a put/get operation. 

    However, if the producer and consumer have realistic network 
processing workload, the performance of both FIFOs decreases 
due to unbalanced stages. Table 4 lists the system performance 
achieved with different FIFOs as stage-to-stage communication 
mechanism. Row FastForward and Optimized display the system 
performance with FastForward and optimized FIFO, respectively. 
Row Inc shows the performance improvement of Optimized FIFO 
over FastForward. Since File-1 to File-6 all come from the 
campus, we list File-4 only in this table. Table 4 indicates that the 
Optimized FIFO is more robust and the performance 
improvement overall can be as high as 9%, and 6.6% on average. 
The optimized FIFO is more robust and practical, and as a result, 
it can be used as a foundation for parallelizing in multi-core 
commodity processors that lack hardware queue support. 

Table 4.  System performance with two different FIFOs 

(Gbps) File-4 File-7 File-8 File-9 File-10 
FastForward 3.60 4.57 3.92 2.06 5.68 
Optimized  3.93 4.74 4.13 2.21 6.12 
Inc. 9.2% 3.7% 5.4% 7.3% 7.4% 
 

4.6 TCP Connection Scalability 
In our system, each TCP connection is tracked with the state of 
connection stored in a C structure. For each TCP packet, function 
find_tcp_stream() is called to determine whether the connection 
has been established. If the connection already exists, the packet 
is processed and the state stored in the C structure is modified; 
otherwise a new connection is created. As we introduced pre-
allocated local storage to this data structure, we’d like to explore 
how well the system performance is when the number of TCP 
connections grows big. I.e., how many of TCP connections can be 
opened in the system while the 1Gbps processing speed is still 
maintained? 

Table 5. System performance with increased number of TCP 
connections 

(Mpps) File-2 File-3 File-4 File-5 File-6 
1 Core  1.35 1.34 1.25 1.04 0.97 
Dec. -- -0.7% -7.5% -16.8% -6.7% 
2 Cores 1.82 1.81 1.72 1.32 1.22 
Dec. -- -0.5% -4.9% -23.3% -7.5% 
3 Cores 2.68 2.68 2.59 2.39 1.72 
Dec. -- 0.0% -3.4% -7.7% -28.0% 

   

    Table 5 shows the system performance with five trace files that 
have large number of TCP connections. The row 1-Core, 2-Cores, 
and 3-Cores show the packet processing speed with 1-way, 2-
way, and 3-way pipeline models respectively. Rows Dec shows 
the performance decrease when the number of connections 
increases column by column. 

    For an Intel Quad-core processor with 2x6MB L2 cache, the 
size of connection C structure is 280 bytes on a 64-bit machine; 
therefore maximum 2*6*1024*1024/280 = 44,940 entries can be 
stored in the L2 cache, assuming that no cache collision occurs. 
That is why the system performance incurs only single-digit loss 
when the connection count increases but not exceeds the capacity 
of L2 cache (File-2 to File-4). Significant performance decrease (-



23.3%) is observed on File-5 whose connection count (140K) 
exceeds the capacity of L2 cache, but situation gets better when a 
3-way pipeline is used since both L2 caches are fully used. File-6 
has much larger connection count, and even the 3-way pipeline is 
used the performance still drops by 28.0%.  Therefore, the 
number of TCP connections opened simultaneously has dramatic 
impacts on performance. 

    To analyze the cache behavior under different number of TCP 
connections, we use Valgrind to analyze the L2 cache miss rate. 
As Valgrind does not support machine equipped with 6MB L2 
cache, we run Valgrind with 2x4MB L2 cache that can maximally 
maintain 2*4*1024*1024/280 = 30,000 TCP connections in L2 
cache.  

Table 6. L2 cache miss rates with increased number of TCP 
connections 

File #Reference #Miss #Miss Rate Inc. 
File-2 14,243,536 63,369 0.44% -- 
File-3 28,515,072 177,805 0.62% 41% 
File-4 75,837,429 629,647 0.83% 34% 
File-5 328,858,387 9,747,387 2.96% 256% 
File-6 575,212,699 29,246,911 5.08% 72% 

     

    Table 6 shows the L2 cache miss rate reported by Valgrind. 
Column #Reference shows the number of references to the 
connection table, and column #Miss shows the total number of L2 
cache misses. Column #Miss Rate gives the L2 cache miss rate, 
and the last column calculates the increase of miss rate over the 
previous row. The greatest miss-rate increase occurs when the 
connection count increases from 35K to 140K, which explains the 
great performance drop between column File-4 and column File-5 
in Table 5. 

    In summary, even with as large as 253K TCP connections our 
system can still maintain 1.72Mpps, which demonstrates the 
potential of the commodity multi-core processors. Furthermore, 
L2 cache is the key to boost system performance. Table 6 shows 
that if the miss rate increases to almost 3% the system 
performance can decrease dramatically. 

5. Related Work 
Prior work on using commodity multi-core processors on 
networking have been reported in [2][3][25][29]. Unlike previous 
work, our system achieves 2Gbps speed even under small packets 
input and handling complicated L2-L7 network applications.  

    Using a Cell SPE to speed up TCP processing is discussed in 
[33]. However, the results were measured against 128 TCP flows 
that are too small to be used in practice.  

    FastForward[3][7] is a single producer/single consumer 
concurrent lock-free queue for supporting pipeline parallelism. It 
uses the similar idea proposed in [27] by retrying a data access if 
a conflict in terms of the same cache line access occurs. However, 
its performance is only verified with dummy workload. We 
proposed a new lock-free FIFO in which aggregated read/write is 
applied on the cache-line boundary. The new FIFO is more robust 
and efficient in practice. 

    There is some work focusing on improving the performance of 
malloc() to benefit the performance of any sophisticated multi-

threaded application [4][5][18]. We focus on eliminating malloc 
operations as much as possible with pre-allocated memory area. 

    Aspen [25] is a language designed to help capture flow-locality 
in network applications. However, it only supports L5 above 
layers (socket level). Whether such a language is useful for L2-L4 
network applications needs to be proven.   

    Snort is an open-source network intrusion prevention and 
detection system, which attracts much research interest in porting 
it onto the multi-core architecture [2][26][29]. However, the 
previous porting efforts are far short of reaching the 1Gbps line-
rate speed in the worst case. We believe that the combination of 
connection-affinity, lock-free, and multiple pipelines as the first-
priority parallel design principles dramatically increases the 
performance of our system.  

    Our parallelizing approach is unlike other general automatic 
compiling approaches. We rely on domain knowledge to help 
solve the hard problems such as parallelism detection and load 
balance. The compiler performs source-to-source translation on 
global data accesses to support the connection-affinity based 
pipeline execution model.   

    Intel’s ETA[8] is designed to accelerate the processing of 
packets by dedicating a processor to act as a TCP/IP onloading 
engine [9]. On the other hand, Receive-Side Scaling (RSS) [28] is 
a driver approach to integrate the hashing function in network 
adapters. However, RSS is unsuitable for an inline-device. 

6. Conclusions and Future Work 
This paper presented a high performance connection-affinity 
based lock-free multi-core network processing system, a software-
only framework that can achieve multiple Gbps network 
processing speed while finishing complicated tasks. Our 
experiments suggest that (1) connection-affinity is an effective 
means in parallelizing sequential network applications onto the 
multi-core architectures; (2) it is the same important to eliminate 
lock operations in the user space; specifically, we try to build a 
non-blocking system that has almost no lock at all; (3) a delicate 
partitioning scheme is required to map the pipelined structure 
onto a multi-core architecture.  

Our system implementation indicates that lock-free data 
structures are very useful in parallelizing network applications. 
We will continue to study lock-free data structures and explore 
their effective usage in network applications. 
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