
Practice of Parallelizing Network Applications
on Multi-core Architectures

1Junchang Wang, 2Haipeng Cheng, 3Bei Hua
School of Computer Science and Technology

University of Science and Technology of China
Hefei, Anhui, 230027, China

Suzhou Institute for Advanced Study
University of Science and Technology of China

Suzhou, Jiangsu, 215123, China

{1wangjc, 2hpcheng}@mail.ustc.edu.cn
3bhua@ustc.edu.cn

Xinan Tang
Intel Compiler Lab

SC12, 3600 Juliette Lane
Santa Clara, California, 95054, USA

xinan.tang@intel.com

Abstract
The industry wide shift to multi-core architectures arouses great
interests in parallelizing sequential applications. However, it is
very difficult to parallelize fine-grained applications for multi-
core architectures due to insufficient hardware support of fast
communication and synchronization. Fortunately, network
applications can be decomposed into pipelined structures that are
amenable to streaming based parallel processing. To realize the
potential of pipelining on multi-core architectures, it requires
reevaluating the basic tradeoffs in parallel processing, including
the ones between load balance and data locality and between
general lock mechanisms and special lock-free data structures.
This paper presents the practice of building a high-performance
multi-core based network processing platform in which
connection-affinity and lock-free design principles are applied
effectively for better data locality and faster core-to-core
synchronization and communication.

 We parallelize a complete Layer 2 to Layer 7 (L2-L7) network
processing system on an Intel Core 2 Quad processor, including a
TCP/IP stack based on Libnids (L2-L4) and a port-independent
protocol identification engine by deep packet inspection (L7+).
Furthermore, we develop a compiling method to transform
sequential network applications to parallel ones to enable those
applications to run on multi-core architectures. Our experience
suggests that (1) fine-grained pipelining can be a good software
solution for parallelizing network applications on multi-core
architectures if connection-affinity and lock-free are used as the
first design principles; (2) a delicate partitioning scheme is
required to map pipelined structures onto specific multi-core
architecture; (3) an automatic parallelization approach can work if
domain knowledge is considered in the parallelizing process. Our
multi-core based network processing platform can deliver not
only 6Gbps processing speed for large packet sizes but also more
challenging 2Gbps speed for smaller packets.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architecture; C.2.2
[Network Protocols]: Applications; D.1.3 [Programming
Languages]: Concurrent Programming – parallel programming;
D.3.4 [Processors]: Compilers and run-time environments.

General Terms
Performance, Algorithms, Experimentation.

Keywords
lock-free data structures, TCP/IP protocol processing, deep
content inspection, multi-core parallelization, pipelining
implementation, application-level protocol processing.

1. Introduction
Previously special-purpose programmable network processors
(NPUs) [21] have dramatically reduced both the cost and time to
develop a network system, and have been successfully used in
routers and switches [19][20]. However, programming these
NPUs is very challenging since low-level hardware details are
exposed to the programmers, which prevents NPUs from being
widely accepted by the industry. For example, the size of each
microengine on an Intel IXP 2800 NPU is maximal 8K words and
there are 16 engines in total, It is difficult to partition code to fit
exactly into each microengine, and it is impossible to run an
application if its code space is over 128K words.

 When multi-core commodity processors emerge as mainstream,
they become a promising candidate for building high-performance
network systems that support complicated Layer 2(L2) through
Layer 7(L7) processing at the Gbps speeds. The most obvious
advantages of multi-core processors are, to name a few, familiar
programming environments for programmers and abundant third-
party software and tools available for system development.
Furthermore, multi-core processors usually have more resources,
hence are more powerful than NPUs. For example, the on-chip L1
and L2 caches allow fast access to the memory while putting no
restrictions on instruction space. Therefore, multi-core processors
are sometimes the only solution to efficiently implementing L7+
network applications since both ASIC and NPU approaches failed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICS’09, June 8–12, 2009, York Town Heights, New York, USA.

Copyright 2009 ACM 978-1-60558-498-0/09/06...$5.00.

to handle the complexity appeared in the application-level
protocols.

 The industry wide shift to multi-core architectures [1] arouses
great interests in parallelizing sequential applications. However,
unlike high-performance scientific computation, network
applications are time-sensitive applications. Even though coarse-
grained applications in which a thread runs 10,000 cycles or more
can be successfully parallelized [22][32], fine-grained network
applications in which a packet must be processed within a few
thousand cycles are very difficult to be parallelized because the
fast communication and synchronization mechanisms that are
needed for fine-grained applications are not efficiently supported
on existing multi-core platforms. For example, a Pthread
lock/unlock operation can easily take more than 1,000 cycles to
execute while a fast-path TCP processing takes only about 2,000
cycles. For such fine-grained network applications, a lock/unlock
operation becomes a new performance bottleneck, and it should
hardly be used in practice.

 It has been demonstrated that 10Gbps line-rate processing
speed can be achieved for a single networking algorithm
[16][17][34] or 1Gbps line-rate can be achieved with a dummy
application using three CPU cores [3]. However, achieving 1Gbps
line-rate for a complete L2-L7 network application is still very
challenging, and thus the efforts were spent on parallelizing those
applications on multi-core platforms [2][9][29]. Unfortunately,
neither of them could reach 1Gbps line-rate in the worst case and
the speeds are far below the line-rate requirement for smaller
packets. We parallelize a complete TCP/IP stack and a port-
number independent protocol identification engine (L7+) based
on deep packet inspection (DPI) on an Intel Core 2 Quad
processor. Experiments show that the system can deliver not only
6Gbps processing speed 1 for large packet sizes but also more
challenging 2Gbps speed for smaller packets using only three
CPU cores.

 This paper presents the practice of parallelizing legacy
sequential network applications on multi-core architectures by
exploiting application domain knowledge and multi-core
architecture features. Network applications have two inherently
features that are suitable for parallelization: 1) they have naturally
layered structures that can be organized into a functional pipeline;
and 2) packets belonging to different flows can be processed in
parallel. However, it is still very challenging to implement a
software pipeline on multi-core architectures. First, network
applications are inherently memory and I/O intensive and thus
they may further exacerbate the disparity between computing
power and memory latencies of multi-core architectures. Second,
inter-core synchronization and communication must be handled
by software, which in general is much slower than the
mechanisms employed in NPUs. Particularly an X86 multi-core
processor doesn’t have efficient hardware FIFO to support fast
core-to-core communication. Therefore, new design principles
need to be carefully sought in parallelizing network applications
on multi-core architectures.

 This paper makes the following main contributions:

1 Some network equipment vendors claim to handle 10Gbps line-

rate for large packet sizes but this speed is achieved for stateless
UDP packets only.

• A fast core-to-core FIFO is implemented to support fine-
grained pipelining execution model on multi-core
architectures, which is a foundation for parallelizing any
fine-grained applications.

• A multi-core based network application parallelizing
framework is built by employing network domain
knowledge, concurrent lock-free data structures, and
functional pipelining. This practice provides valuable
experience on studying effective parallelizing principles
to build a high-performance network system on the
commodity multi-core processors.

• A prototype source-to-source compiler is implemented to
facilitate porting sequential network applications written
in C onto the parallel framework.

 To the best of our knowledge, the system we built is the first
one capable of delivering stable 2Gbps line-rate processing speed
for a complete L2-L7 network application using only three CPU
cores. Since only 75% of the CPU power of a quad-core processor
is utilized, enough headroom is reserved for other advanced L7
applications. Our experimental results show that general-purpose
multi-core CPUs are a viable alternative to NPUs or ASICs in
building network processing systems, especially for complete L2-
L7 network applications.

 The remainder of this paper is organized as follows. Section 2
discusses design principles and system design space. Section 3
presents runtime system implementation applying the parallel
design principles. Section 4 presents the evaluation results and
performance analysis. Section 5 discusses related work. We
conclude in Section 6.

2. System Design Space
This section reviews the basic and most important design
principles for parallelizing network applications on multi-core
platforms.

2.1 Design Principles
1) To exploit flow-level parallelism in a network application,
flow-pinning [2] can be used to ensure that all the packets
belonging to the same TCP flow are processed by a single CPU
core. Since each TCP connection consists of two TCP uni-flows,
we assign (bind) the two flows belonging to the same TCP
connection to one CPU core. Therefore no synchronization is
needed to access the connection table belonging to the same
connection, in which one connection entry consists of two flow
table entries. In addition, partitioning the connection table makes
the size of each table smaller, which will significantly increase
the L1/L2 cache locality, hence the cache hit rate. Therefore,
connection-affinity is one of the most valuable design principles
to develop networking software on multi-core processors.
2) A load-balancing approach is needed to dispatch packets
among CPU cores. Due to the nature of fine-grained parallelism,
we prefer the static load-balancing by trading the imbalance of
workload with the much less runtime overhead. In general, a
packet-classifying-hash function is used to dispatch packets
among CPU cores. There are two types of hash functions:
asymmetric and symmetric. Even though asymmetric hash
function distributes packets more evenly among CPU cores, it

cannot guarantee connection-affinity. Therefore, we use a
symmetric hash function to distribute packets among CPU cores,
since on multi-core platforms cache locality is more important
than load balance.
3) A balanced workload partitioning scheme is required to divide
the workload evenly among pipeline stages. To make an optimal
decision, the execution time of each pipeline stage needs to be
accurately measured or predicted. We tried different partitioning
schemes and derived a 2-stage pipelining in which one CPU core
does packet capturing and L2 processing, and the other three CPU
cores do the L3 above protocol processing work.
4) A high-efficient FIFO implementation is needed to provide fast
core-to-core communication on multi-core platforms. For
example, on a 2.3GHz Intel Core 2 Quad processor, a Pthread
lock/unlock pair cost at least 250ns per operation, whereas a
packet’s processing time should take less than 672ns to meet
1Gbps line-rate requirement. We develop a cache-friendly
concurrent lock-free FIFO queue by aggregating read/write
operations based on cache line access to reduce the bus traffic
used for maintaining the shared cache coherence and thus to make
access time more stable.
5) Packet buffer management needs to be carefully studied. It is
often unnoticeable that the reentrant library (Libc) calls contain
hidden lock operations that may become performance bottlenecks
in multi-core architectures. Malloc() that is often used for
allocating a buffer whenever a new packet arrives contains locks.
Therefore, eliminating the malloc usage is preferable in fine-
grained multi-core network applications.
6) Sequential Libnids and Flex generated C code must be
modified to run on the multi-core platform. As shared memory
model is used in multi-core programming development, a naive
way to make sequential code run in parallel is to change every
global data access into atomic one; however the resulting parallel
program may run slower than the original sequential program due
to the overhead involved in atomicity enforcement. Since
connection-affinity based parallelizing approach divides global
connection state table into independent sub-tables, and each sub-
table is private to its corresponding CPU core, it makes the
sequential code one step closer to run in parallel by transforming
a global table access with an extra pointer based dereferences.
7) In general, automatically parallelizing a sequential application
is a hard problem with limited success [23][24]. We believe that
domain knowledge could help lead to a viable solution in
automatically parallelizing a sequential application. Network
applications are amenable to pipelined processing due to their
naturally layered stack structure. For example, HTTP (L7) is built
on top of TCP (L4) which is built on top of IP (L3) which is built
on top of Ethernet (L2). In principle, each layer can be regarded
as one pipeline stage. Network applications also have inherent
flow-level parallelism. Each flow is identified by the source and
destination IP addresses, and source and destination port numbers.
Such natural flow-level parallelism can be effectively used to
parallelize network applications by running different flow
processing in parallel. We rely on this domain knowledge to
identify inherent parallelism, and then use the above parallelizing
principles to utilize the parallelism.
 In summary, domain knowledge guided parallelization,
connection affinity, and lock-free data structures are the main
parallel design principles used in building our parallel framework.

2.2 System Building Blocks
We make use of several open source software to implement our
parallel runtime system in user space to make the system more
portable. The system consists of the following modules:

1. Pf_ring [13] to improve the packet capture speed of the
NIC and optimized Pcap[10] to get packets from trace
files.

2. A cache-friendly lock-free FIFO to link pipeline stages
together.

3. A TCP/IP stack implemented in Libnids[11], including IP
defragmentation, TCP stream assembly, and TCP port
scan detection for preventing denial-of-services (DOS)
attacks.

4. A Flex [15] based protocol identification engine using
L7-filter patterns [12].

 We build a test bed based on Pf_ring for real traffic and
optimized Pcap for stored packet traces, where a ring of buffers is
added between Pf_ring/Pcap and the rest of L2-L7 network
processing to allow them run in parallel. The system uses mmap()
to reduce the memory copy between kernel space and user space.
 Four cores are organized into a functional pipeline, with one
core forming the first pipeline stage (Input), and the other three
cores forming the second stage (Application) shown in Figure 1.
Each pair of neighboring cores is linked with a cache-friendly
lock-free FIFO. Original Libnids and Flex generated C code are
parallelized using our compiler to make the sequential code run in
a multi-core environment.

CPU Cores P1 (IP)

P2 (APP)

P3 (APP)

P4 (APP)

Figure 1. A tree-like data-parallel pipelines

3. Important Implementation Details
This section presents important implementation details on how to
parallelize a complete L2-L7 network application system by
applying connection-affinity and lock-free parallel design
principles to achieve high speed.
 We use m-stage-n-way to describe a pipelining scheme in
which m is the number of pipeline stages and n is the number of
pipelines. The more pipeline stages the higher system throughput
for a single packet. The more pipelines the more flow-level
parallelism is exploited. The actual m and n need to be determined
by profiling the application to make the pipeline execution in a
balanced way.

3.1 Optimized Concurrent Lock-Free Queue
For the single-producer/single-consumer case, lock-free FIFO has
been proposed in [3][6]. We improved the FIFO on speed and
stability by:
1. Aggregating read/write operations within the same cache line

and only modifying a cache line once per operation, i.e., the
unit of read/write to the FIFO is a single cache line instead of
one data item.

2. Introducing a timer to handle the extreme timeout case.

 As shown in Figure 2, a local buffer temp is introduced in
producer. If temp is not full, the producer puts data in temp (Line
5) without touching the global area queue, and returns
immediately. To handle the extreme timeout case, a timer is
introduced into the queue. Only when the local buffer is full or
the timer times out (Line 7), the producer copies temp into queue.
Similarly, the data transfer in the consumer side incurs only one
transfer per cache line instead of one per data item.

Figure 2. Aggregation of queue write operations

For a single packet, it seems that tiny delay is introduced due to
aggregation operation. However, the producer saves lots of global
operations, which results in less traffic in enforcing the cache
coherence protocol, therefore performance of the whole system
increases, especially for systems dealing with realistic network
workload. The aggregation based FIFO works steadily in practice
with each read/write operation taking around 45ns/op, 36% faster
than the FastForward FIFO [3]. More performance details are
shown in Section 4.5.

3.2 Pipeline Organization
Figure 1 depicts a 2-stage-3-way pipelined system to be mapped
onto an Intel Core 2 Quad processor, in which a tree-like three
data-parallel pipelines are used and each pipeline consists of two
stages, Input (IP) and Application (APP). Since it lacks of
hardware FIFO support on a multi-core commodity processor, the
efficient lock-free FIFO described in section 3.1 is the key to
enabling such a pipelined execution model to be implemented on
a multi-core platform.

 The IP core uses a symmetric packet-classifying-hash
algorithm, discussed in section 2.1, to evenly distribute packets
among the three APP cores. Specifically, the checksum on
source/destination IP addresses and source/destination port
numbers is used as the hash function. Since all the packets
belonging to the same TCP connection are dispatched to the same
APP core, each connection sub-table is accessed only by its APP
core, therefore the access can be done in totally lock-free manner
as if the connection sub-table was private.

3.3 Pipeline Mapping
To map the L2-L7 network stack on the pipelined model, a
protocol stack processing is divided into seven functional pipeline
stages, shown in Figure 3(a). An input packet is read from Pf_ring
or Pcap, then memory is allocated by malloc() and the packet is

copied. Next, the system checks the packet’s integrity and
reassembles IP fragments if necessary. Then the TCP process
starts and TCP state tracking and detection of DOS attacks are
done. Finally, L7 deep packet inspection (DPI) is performed by
inspecting the packet’s payload using pattern matching.

 To select a proper cutting point that evenly divides the
workload between IP and APP stages, we do the mapping based
on accurate profiling on execution time of each pipeline stage. In
general, to reach 1Gbps line-rate for the minimal 64-byte Ethernet
packet input, a system must handle 1,488,095 frames per second
(including the frame gap). This means that a new packet arrives
every 672ns or 1545 cycles for a 2.3GHz CPU. So, on a 2-stage-
1-way pipelined implementation, both the IP and APP cores
should finish their processing in (1545-100) cycles assuming that
the FIFO takes 100 cycles on average. On a 2-stage-2-way
pipelined module, APP core’s workload can be almost double that
of the IP core, i.e., the APP’s workload can be as high as
(1545*2-100) cycles. In general, if FIFO communication takes
Cfifo cycles, the IP core takes Cip cycles, and the APP core takes
Capp cycles in a 2-stage-N-way pipelined model, on a F-GHz CPU
1Gbps line-rate can be reached if

 1 FIFO_ELEM temp[ELEM_PER_CACHELINE];
 2 int enqueue_aggregation(FIFO_ELEM * data) {
 3 if (NULL != queue[head])
 4 return FALSE; /* the queue is full */
 5 temp[current] = *data; /* put data in local buffer. */
 6 current ++;
 7 if ((current == ELEM_PER_CACHELINE) ||
 (timeout == TRUE)) { /* write back local buffer temp */
 8 memcpy(queue[head], temp,

sizeof(FIFO_ELEM) * ELEM_PER_CACHELINE);
 9 head = NEXT(head, CACHELINE_SIZE);
10 current = 0;
11 }
12 return TRUE;
13 } max {Cip, Capp/N} + Cfifo <= 672*F

 (a) (b)

 (c)

Figure 3. (a) Original pipeline stages; (b) Two staged
pipeline; (c) 2-stage-2-way data-parallel pipeline

 Figure 3(b) shows a partitioning scheme by dividing the
workload just before TCP stage. This scheme favors network
applications with heavy L4-L7 workload. However, our

experimental results (shown in Section 4) reveal that the pipeline
stages with this cutting point are unbalanced, and splitting
between Defragmentation and Checksum is the best for 2-stage-1-
way pipeline model. Figure 3(c) depicts an improved cutting
scheme for 2-stage-2-way pipeline model, in which the APP
phase is duplicated. This scheme permits each APP phase to
consume twice the inter-frame arrival rate by doubling the
system’s throughput. With the 2-way data-parallel model, L3-L7
layers can do more work than the original pipeline model allows.

3.4 Eliminate Lock/Unlock Operations
Since malloc() contains locks and it should be used as minimal as
possible for fine-grained network applications which only have a
budget of a few thousands of CPU cycles. We replace a malloc()
by pre-allocating a bulk of memory space to the core responsible
for the input packets, and then the subsequent buffer allocation is
done locally on the core. Section 4.4 reports how eliminating
malloc boosts system performance dramatically.

 Besides, there is another hidden lock between Pcap and the
upper layer network stack. In general, Pcap gets a packet once a
time and then forwards it to the upper layer stack. Pcap does not
handle the next packet until the current packet is being completely
processed. We implement a ring of buffers shown in Figure 3(c),
which is inserted between Pcap and the L2 layer to (1) decouple
the Pcap interface and upper-layer functions; (2) eliminate the
malloc operation.

3.5 Fast Memcpy
After eliminating unnecessary malloc, the performance of the
pipeline execution shown in Figure 3(c) depends on a fast
implementation of library function memcpy. To optimize it, the
following methods are applied:

1. The SSE load/store instructions are used to access memory
in 128 bits.

2. The loop unrolling technique is used to make full use of the
SSE registers to

a. Prefetch more data;

b. Overlap latencies of the memory loads and stores by
manually applying instruction scheduling technique.

3.6 Source-to-Source Parallelizing Compiler
For a parallelizing compiler, it must (1) detect parallelism, (2)
utilize parallelism. Sometimes detecting parallelism is much
harder than utilizing parallelism, especially for sequential legacy
code. For example, without accurate points-to analysis [22], it is
hard to identify all global variables accessed in a function.
Without a good shape analysis [22], it is hard to know if two link
lists collide.

The connection-affinity parallelizing approach allows to
sequentially process packets on each CPU core while running
multiple threads of such sequential processing on different cores
in parallel. The idea is to keep the control-flow of original
sequential code unchanged but to make global data accesses
atomic. For example, accessing the TCP connection table needs to
be modified to access each entry atomically. One way to
guarantee the atomic property is to partition the connection table

into independent sub-tables so that each one can be accessed in
parallel on each CPU core. Since packets belonging to different
TCP connections can be processed independently, assigning
packets based on TCP connection-affinity guarantees the atomic
access of each sub-table assigned to different CPU cores. This
parallelization approach simplifies the task of parallelizing
sequential code due to the sequential semantic maintained in each
CPU core. Therefore, we rely on domain knowledge and the
programmers to identify parallelism. The role of the compiler is to
perform source-to-source translation under the domain knowledge
guidance to make global data accesses atomic.

 For example, the function listed in Figure 4(a) cannot run in
parallel due to a global variable timenow. With traditional lock-
based multithreaded programming, any operation on shared data
that is susceptible to race conditions must be made atomic by
locking and unlocking with a mutex. Through the connection-
affinity analysis, each core can have a localized version of
timenow, and the compiler can use the connection-affinity
principle to infer that each local access is atomic without applying
any lock. Figure 4(b) shows the parallelized code that accesses a
local copy directly without any lock operation.

1 static int timenow = 0;
 /* timenow cannot be used in parallelized code directly. */
2 static int jiffies() {

 3 if(timenow)
 4 return timenow;
 5 timenow = ...;
 6 return timenow;
7 }

(a)

1 static int
2 jiffies(IP_THREAD_LOCAL_P ip_thread_local_p) {

 /* timenow is a private data of each thread. */
 3 if(ip_thread_local_p->timenow)
4 return ip_thread_local_p->timenow;
5 ip_thread_local_p->timenow = ...;
6 return ip_thread_local_p->timenow;
7 }

(b)

Figure 4. (a) sequential legacy code; (b) parallelized code
 The parallelizing transformation is as follows. For each
functional pipeline stage corresponding to each layer of the
protocol stack, a local storage (C structure) is pre-allocated for
each CPU core, in which each global variable used in that layer
takes one field position in the local structure. A function that
accesses those global variables then has one extra parameter, a
pointer to the local structure (ip_thread_local_p), and a read/write
to a global variable is transformed into the pointer deference to
the corresponding field of the local structure. In the example
shown in Figure 4(b), pointer ip_thread_local_p is for the IP
functional pipeline stage. By referencing the local copy of
variable timenow, function jiffies can run in parallel.

 Similarly, for any pointer dereferenced global data, its
enclosing function will add an extra parameter, a pointer to the

pre-allocated local storage. A pointer dereference will be
transformed into an indirect pointer dereference. For example, in
the TCP stage the following line

tcp_oldest->nids_state = TIMED_OUT;

is transformed into

tcp_thread_local_p->tcp_oldest->nids_state= TIMED_OUT;

in which tcp_thread_local_p is a pointer to the local storage pre-
allocated for the TCP layer.

 Adding a level of pointer deference for each function may
introduce the runtime overhead. However, its cost is neglect
compared to a lock/unlock pair. In addition, the compiler
performs function in-lining as much as possible to reduce the
overload caused by passing an extra parameter.

 Finally, a runtime system including thread initialization, buffer
management, packet distribution, lock-free FIFO and linked lists,
and time-out handling is implemented to facilitate parallelizing
effort. The code for initialization, buffer assignment, and selection
of cutting point using FIFO for m-stage-n-way pipeline is
generated based on pragma line indication.

3.7 L7 Deep Packet Inspection
Based on Flex [15], we implement a deep packet inspection
engine, which uses regular expression based pattern match to
inspect packet payload. Firstly, L7-filter patterns [12] are
translated into Flex ones by a pre-processor. For example, a
pattern starting with a wild character * is replaced by the
corresponding pattern starting with ^, indicating the beginning of
TCP payload. Such rewriting can dramatically cut down the
number of DFA states. Then, the Flex generated C code is fed
into the parallelizing compiler to generate multi-core code as
described in the previous subsection.

 The protocol automatic identification engine identifies
protocols according to protocol patterns instead of TCP port
numbers. This engine is much more processor and memory
intensive than that only checks for port numbers, however it is
much more powerful because it can match any protocols that use
unpredictable ports (e.g. P2P file sharing), non-standard ports
(e.g. HTTP on port 1000) and the same ports (e.g. P2P file sharing
using port 80).

4. Experimental Results and Performance

Analysis
In this section we demonstrate that our system is capable of
processing packets at the much higher line-rate speed.
Specifically, our framework can finish the workload of prevention
of DOS attacks (L2-L4) and deep packet inspection (L7+) up to
6Gbps speed for large packets.

 The X86 64-bit time stamp counter (TSC) is used to measure
execution time of each pipeline stage. The TSC measures elapsed
cycles since the system is started and is accurate within a few
cycles. Firstly, we make only Pcap stage run in the system. Then,
we add other following pipeline stages one by one to derive the
execution time of each pipeline stage.

4.1 Evaluation Platform
We run experiments on one Dell server equipped with Intel Core
2 Quad processors. DELL PowerEdge 2900 has a dual Xeon
E5410 processors running at 2.3GHz, and it has two 6MB L2
caches with 64B cache-line size and 1333MHz FSB. The two
Gigabit Ethernet cards (Intel 9400PT and Broadcom BCM5721)
are connected by a cross cable (back-to-back). The system is
configured to run the 64-bit Linux 2.6.x kernel and the code is
compiled by the GCC 4.1.2.

 The characteristics of the packet trace files used in the
experiments are described in Table 1. File-7 and File-8 come from
the 1998-1999 DARPA intrusion detection evaluation at MIT
Lincoln Lab [30]. File-9 and File-10 come from the Defcon 9
Capture the Flag contest [31]. The other trace files are collected
from the gateway of a university campus. In Table 1, column
#Conn. denotes the number of total connections, column #Packet
Len lists the average packet size, and column #Conn. Rate gives
the number of connections per 1,000 packets. The higher the
connection rate is, the more difficult it is for the L4-L7
applications to process.

Table 1. Characteristics of trace files

FILE #Packets #Conn. #Conn.
Rate

#Packet
Len.

(Byte)
File-1 646,703 9,191 13.9 186
File-2 297,024 4,384 14.8 201
File-3 594,064 8,768 14.5 205
File-4 2,376,256 35,072 14.7 204
File-5 9,496,620 140,194 14.7 202
File-6 17,092,300 253,371 14.8 208
File-7 3,393,924 111,777 32.9 307
File-8 3,201,341 103,578 32.3 243
File-9 3,960,205 12,736 3.2 194

File-10 1,050,364 1,043 1.0 851

4.2 Packet Input
In our experiments, we use two methods to generate input
packets:

1. One NIC (Broadcom BCM5721) injects packets into the
cable, and then another (Intel 9400PT) captures the packets
and delivers them to the applications by assistance of
Pf_ring. The packet traces are injected into the Gigabit link
using Tcpreplay [14]. To achieve high speed traffic, we had
to “speed up” the traffic by setting “--topspeed” to send
packets as soon as possible. We assume that this would not
affect the correctness of our experiments. Since Tcpreplay
can play back the trace files at 410Kpps rate in our testbed,
1Gbps is reached if the average packet length is larger than
304 bytes.

2. Since the recipient is not the performance bottleneck [13],
for higher speed testing the input packets must come from
tcpdump files because it is very challenging to use software
approach to generate traffic at a speed greater than 1Gbps
without heavy investment on hardware testing equipment.
On the other hand, our work focuses on the protocol
processing. Therefore, we rely on input files to feed packets
to measure higher processing speeds.

4.3 System Performance
In this section, we evaluate the system performance for the entire
L2-L7 application. Lincoln Lab traces (File-7 and File-8) are
simulations of large military networks generated during an online
evaluation of IDSes. The Defcon traces (File-9 and File-10) are
logs from a contest in which hackers attempt to attack and defend
vulnerable systems. These traces contain a huge amount of attacks
and anomalous traffic, representing a sort of pathological cases
for network processing system. Table 2 lists main identified
threats, protocols, and applications after the L7 processing. Row
Alerts shows the number of TCP port scan attempts that are
detected by our system. Row HTTP, POP3, SMTP, IMAP,
TELNET and BITTO. show the number of HTTP, POP3, SMTP,
IMAP, TELNET and BITTORRENT flows respectively, and row
Others counts the number of other flows recognized by our
system, including SSH, EDONKEY, IRC, X11, AIM, and
Unknown. Although the number of protocols that can be
recognized by our system is more than 60, only a few widely used
protocols are contained in the trace files.

Table 2. Results of L7 Content Processing

 File-4 File-7 File-8 File-9 File-10
Alerts 21,270 1,407 12,064 94,579 483
HTTP 1,504 110,103 67,621 3,934 765
POP3 0 39 7,407 1 0
SMTP 4 1,265 3,254 11 0
IMAP 0 0 2,533 0 0

TELNET 0 390 3,347 55 0
BITTO. 18,000 0 0 0 0
Others 32 201 190 692 139

PI-per-C 6 6 5 3 3

 For each new connection, L7 DPI is called to inspect the
payload of first few packets to identify the protocol type. Row PI-
per-C shows the average number of packets that are inspected to
recognize the protocol type for each new connection. Since File-1
to File-6 all come from the campus, only File-4 is listed in this
table. Based on L7 DPI, our system checks the packet payload
instead of simply port numbers. That is why HTTP like P2P
BitTorrent protocol can be detected correctly.

System Performance

0
1
2
3
4
5
6
7

File-
1

File-
2

File-
3

File-
4

File-
5

File-
6

File-
7

File-
8

File-
9

File-
10

Th
ro

ug
hp

ut
 (G

bp
s)

Figure 5. System performance achieved with trace files

 Careful reader may find that the sum of per column in Table 2
doesn’t match the corresponding #Conn. entry listed in Table 1.
This is because a connection may triger multiple alters while
some anomalous traffics are not categorized by the L7 DPI
engine. However, in Table 2 only the sum of column File-8 is

slightly smaller than the corresponding #Conn. entry in Table 1,
which indicates that the protocol identifier can detect most of the
protocols correctly.

 Figure 5 shows the system performance achieved with the ten
trace files listed in Table 1 after all the optimization techniques
are applied. The system has the lowest throughput of 2Gbps with
File-9, which contains many small alert packets, and the highest
throughput of 6Gbps with File-10, which has the largest packet
size. To sum up, even deployed in the vicious environment (File-
9) that has many small attack packets, our system can still achieve
2Gbps network processing speed.

 As shown in Figure 5, the system performance measured in
data rate (Gbps) varies greatly with the average packet size, and
the throughput discrepancy between large-packet traffic and
small-packet traffic could be very large. Since many protocol
processing operations require a fixed amount of CPU time per
packet, the number of packets processed is more important than
the data rate. In addition, our system can easily achieve higher
1Gbps speed. Therefore, in the following discussion we will use
the more challenging metric, packet processing rate (Million
Packet Per Second, MPPS), to measure the system performance in
the worst case (i.e., even with small packets). The maximum
packet rate required to support 1Gbps data rate with minimum 64-
byte frames is about 1.49Mpps, and we will use this lower bound
no matter what the packet size is. We encourage other research
results to be measured in MPPS to have a fair comparison in the
future.

4.4 Pipeline Partitioning and Mapping
This section presents the test results on trace File-1 to
demonstrate the effects of connection-affinity and lock-free
design principles described in Section 3.

Table 3. Execution time of each pipeline stage for File-1

Cycles Mode
1

Mode
2

Mode
3

Mode
4

Mode
5

Pcap 450 450 450 300 300
Malloc 450 700 700 --- ---

Memcpy 440 440 440 440 440
FIFO --- 100 100 100 100

Defrag. 250 250 250 250 250
TCP 500 500 500 500 500

L7 DPI 400 400 400 400 400
Per-frame 2490 1940 1690 1250 840

Speed (mpps) 0.97 1.18 1.36 1.83 2.73
Imp. (%) ----- 21.6 15.3 34.6 49.2

 Table 3 shows the execution time of each pipeline stage with
different pipelining schemes. Mode 1 (Figure 3(a)) corresponds to
the sequential pipeline in which all stages run on the same CPU
core, therefore the FIFO overhead is zero. The average execution
time per packet is 2490 cycles, which is greater than 1,545 cycles
required for reaching 1Gbps line-rate speed. Mode 2 (Figure 3(b))
corresponds to the 2-stage-1-way pipeline in which the cutting
point is between L3 and L4, and Mode 3 moves the cutting point
of Mode 2 to between L2 and L3, and Mode 4 further uses pre-
allocated Pcap buffers to link the two pipeline stages of Mode 3.
Mode 5 (Figure 3(c)) corresponds to the 2-stage-2-way pipelining

scheme. The 2-stage-3-way pipelining scheme (Figure 1) was also
evaluated in our experiments. However, for 2-stage-n-way
pipelining schemes with n>2, IP core becomes the bottleneck and
adding more APP cores has little effect on lifting performance. So
the results of 2-stage-3-way pipelining scheme are not listed
except in section 4.6. To achieve higher speed, the workload of IP
core can be transferred to a hardware based solution [35].

 Row Pcap, Malloc, Memcpy, FIFO, Defrag(Defragmentation),
TCP and L7 DPI display the average execution time of each
pipeline stage. The reason TCP stage takes only 500 cycles is that
after connection-affinity based parallelization is applied, the lock-
free TCP pipeline stage can execute much faster. L7 DPI is
calculated by averaging the total number of cycles spent on L7
DPI stage over the total number of packets processed by the
system. Therefore, although a single L7 DPI operation takes
around 4,000 cycles, the average L7 DPI workload is not so high,
since only the first few packets of each connection are inspected
(Table 2 PI-per-C rows).

 Row Per-frame shows the average frame (packet) processing
time with different pipelining schemes by calculating the larger
number between (Cip+Cfifo) and (Capp/N+Cfifo) (Section 3.2). For
example, for the pipelining scheme in Mode 3, the IP core takes
1,690 cycles in all (450 for Pcap, 700 for Malloc, 440 for
Memcpy, and 100 for FIFO), and the APP core takes 1250 cycles
in all (250 for Defragmentation, 500 for TCP, 400 for L7 DPI and
100 for FIFO). Therefore, on average each packet takes 1,690
cycles to be processed, and the equivalent packet processing rate
is 1.36Mpps.

 Comparing the speed of Mode 2 with that of Mode 1, we can
see that adding one more CPU core does not necessarily double
the packet rate if an unbalanced pipelining scheme (Mode 2) is
used. However, if the workload is more evenly partitioned and the
malloc function is eliminated (Mode 4), the packet rate can reach
1.83Mpps (that is above the 1Gbps line-rate requirement) with
only two CPU cores. By adding one more CPU core to form a 2-
stage-2-way pipeline in Mode 5 to apportion the heavy workload
of APP stage of Mode 4, the packet rate increases to 2.73Mpps
that is 49.2% improvement over Mode 4, and almost triple of the
speed of the single-core solution (Mode 1). Even if taking into
account the worst behavior of hash function that the Mode 5
almost degenerates to Mode 4 (2-stage-1-way pipeline), the
system can still achieve line-rate (>1.49Mpps).

 The experimental results in Table 3 also reveal the performance
impact of malloc on multi-core based systems. The overhead of
malloc increases 35.7% from 450 cycles in the single-core
environment (Mode 1) to 700 cycles in the two-core environment
(Mode 2), and Mode 4 achieves 34.6% performance improvement
over Mode 3 by only eliminating the malloc function call.

4.5 Performance of Optimized FIFO
This section evaluates the performance of our optimized FIFO
with FastForward [3] as the baseline of the evaluation.
Experimentally, we find out that if the consumer has dummy
workload or no workload, both FIFOs can achieve high and stable
performance. For example, if the consumer has no workload, both
FIFOs can finish a put/get operation within 35ns. If the consumer
takes spin loop as workload, FastForword takes 70ns and our
optimized FIFO takes 45ns to finish a put/get operation.

 However, if the producer and consumer have realistic network
processing workload, the performance of both FIFOs decreases
due to unbalanced stages. Table 4 lists the system performance
achieved with different FIFOs as stage-to-stage communication
mechanism. Row FastForward and Optimized display the system
performance with FastForward and optimized FIFO, respectively.
Row Inc shows the performance improvement of Optimized FIFO
over FastForward. Since File-1 to File-6 all come from the
campus, we list File-4 only in this table. Table 4 indicates that the
Optimized FIFO is more robust and the performance
improvement overall can be as high as 9%, and 6.6% on average.
The optimized FIFO is more robust and practical, and as a result,
it can be used as a foundation for parallelizing in multi-core
commodity processors that lack hardware queue support.

Table 4. System performance with two different FIFOs

(Gbps) File-4 File-7 File-8 File-9 File-10
FastForward 3.60 4.57 3.92 2.06 5.68
Optimized 3.93 4.74 4.13 2.21 6.12
Inc. 9.2% 3.7% 5.4% 7.3% 7.4%

4.6 TCP Connection Scalability
In our system, each TCP connection is tracked with the state of
connection stored in a C structure. For each TCP packet, function
find_tcp_stream() is called to determine whether the connection
has been established. If the connection already exists, the packet
is processed and the state stored in the C structure is modified;
otherwise a new connection is created. As we introduced pre-
allocated local storage to this data structure, we’d like to explore
how well the system performance is when the number of TCP
connections grows big. I.e., how many of TCP connections can be
opened in the system while the 1Gbps processing speed is still
maintained?

Table 5. System performance with increased number of TCP
connections

(Mpps) File-2 File-3 File-4 File-5 File-6
1 Core 1.35 1.34 1.25 1.04 0.97
Dec. -- -0.7% -7.5% -16.8% -6.7%
2 Cores 1.82 1.81 1.72 1.32 1.22
Dec. -- -0.5% -4.9% -23.3% -7.5%
3 Cores 2.68 2.68 2.59 2.39 1.72
Dec. -- 0.0% -3.4% -7.7% -28.0%

 Table 5 shows the system performance with five trace files that
have large number of TCP connections. The row 1-Core, 2-Cores,
and 3-Cores show the packet processing speed with 1-way, 2-
way, and 3-way pipeline models respectively. Rows Dec shows
the performance decrease when the number of connections
increases column by column.

 For an Intel Quad-core processor with 2x6MB L2 cache, the
size of connection C structure is 280 bytes on a 64-bit machine;
therefore maximum 2*6*1024*1024/280 = 44,940 entries can be
stored in the L2 cache, assuming that no cache collision occurs.
That is why the system performance incurs only single-digit loss
when the connection count increases but not exceeds the capacity
of L2 cache (File-2 to File-4). Significant performance decrease (-

23.3%) is observed on File-5 whose connection count (140K)
exceeds the capacity of L2 cache, but situation gets better when a
3-way pipeline is used since both L2 caches are fully used. File-6
has much larger connection count, and even the 3-way pipeline is
used the performance still drops by 28.0%. Therefore, the
number of TCP connections opened simultaneously has dramatic
impacts on performance.

 To analyze the cache behavior under different number of TCP
connections, we use Valgrind to analyze the L2 cache miss rate.
As Valgrind does not support machine equipped with 6MB L2
cache, we run Valgrind with 2x4MB L2 cache that can maximally
maintain 2*4*1024*1024/280 = 30,000 TCP connections in L2
cache.

Table 6. L2 cache miss rates with increased number of TCP
connections

File #Reference #Miss #Miss Rate Inc.
File-2 14,243,536 63,369 0.44% --
File-3 28,515,072 177,805 0.62% 41%
File-4 75,837,429 629,647 0.83% 34%
File-5 328,858,387 9,747,387 2.96% 256%
File-6 575,212,699 29,246,911 5.08% 72%

 Table 6 shows the L2 cache miss rate reported by Valgrind.
Column #Reference shows the number of references to the
connection table, and column #Miss shows the total number of L2
cache misses. Column #Miss Rate gives the L2 cache miss rate,
and the last column calculates the increase of miss rate over the
previous row. The greatest miss-rate increase occurs when the
connection count increases from 35K to 140K, which explains the
great performance drop between column File-4 and column File-5
in Table 5.

 In summary, even with as large as 253K TCP connections our
system can still maintain 1.72Mpps, which demonstrates the
potential of the commodity multi-core processors. Furthermore,
L2 cache is the key to boost system performance. Table 6 shows
that if the miss rate increases to almost 3% the system
performance can decrease dramatically.

5. Related Work
Prior work on using commodity multi-core processors on
networking have been reported in [2][3][25][29]. Unlike previous
work, our system achieves 2Gbps speed even under small packets
input and handling complicated L2-L7 network applications.

 Using a Cell SPE to speed up TCP processing is discussed in
[33]. However, the results were measured against 128 TCP flows
that are too small to be used in practice.

 FastForward[3][7] is a single producer/single consumer
concurrent lock-free queue for supporting pipeline parallelism. It
uses the similar idea proposed in [27] by retrying a data access if
a conflict in terms of the same cache line access occurs. However,
its performance is only verified with dummy workload. We
proposed a new lock-free FIFO in which aggregated read/write is
applied on the cache-line boundary. The new FIFO is more robust
and efficient in practice.

 There is some work focusing on improving the performance of
malloc() to benefit the performance of any sophisticated multi-

threaded application [4][5][18]. We focus on eliminating malloc
operations as much as possible with pre-allocated memory area.

 Aspen [25] is a language designed to help capture flow-locality
in network applications. However, it only supports L5 above
layers (socket level). Whether such a language is useful for L2-L4
network applications needs to be proven.

 Snort is an open-source network intrusion prevention and
detection system, which attracts much research interest in porting
it onto the multi-core architecture [2][26][29]. However, the
previous porting efforts are far short of reaching the 1Gbps line-
rate speed in the worst case. We believe that the combination of
connection-affinity, lock-free, and multiple pipelines as the first-
priority parallel design principles dramatically increases the
performance of our system.

 Our parallelizing approach is unlike other general automatic
compiling approaches. We rely on domain knowledge to help
solve the hard problems such as parallelism detection and load
balance. The compiler performs source-to-source translation on
global data accesses to support the connection-affinity based
pipeline execution model.

 Intel’s ETA[8] is designed to accelerate the processing of
packets by dedicating a processor to act as a TCP/IP onloading
engine [9]. On the other hand, Receive-Side Scaling (RSS) [28] is
a driver approach to integrate the hashing function in network
adapters. However, RSS is unsuitable for an inline-device.

6. Conclusions and Future Work
This paper presented a high performance connection-affinity
based lock-free multi-core network processing system, a software-
only framework that can achieve multiple Gbps network
processing speed while finishing complicated tasks. Our
experiments suggest that (1) connection-affinity is an effective
means in parallelizing sequential network applications onto the
multi-core architectures; (2) it is the same important to eliminate
lock operations in the user space; specifically, we try to build a
non-blocking system that has almost no lock at all; (3) a delicate
partitioning scheme is required to map the pipelined structure
onto a multi-core architecture.

Our system implementation indicates that lock-free data
structures are very useful in parallelizing network applications.
We will continue to study lock-free data structures and explore
their effective usage in network applications.

7. Acknowledgements
We would like to thank the anonymous reviewers for their
valuable comments. This work was supported by the National
Natural Science Foundation of China under Grant No.60673173,
and the Fund for Foreign Scholars in University Research and
Teaching Programs under Grant No.B07033.

8. References
[1] CNET News.com. Intel pledges 80 cores in five years.

http://news.com.com/2100-1006_3-6119618.html, Sep.
2006.

[2] Intel Corporation, Supra-linear Packet Processing
Performance with Intel Multi-core. http://www.intel.com/
technology/advanced_comm/311566.htm, 2006.

[3] J. Giacomoni, T. Moseley, and M. Vachharajani.
Fastforward for efficient pipeline parallelism: A cache-
optimized concurrent lock-free queue. In PPoPP’08, New
York, NY, USA, February 2008. ACM Press, 2008.

[4] Lever C, Borheham D. malloc() Performance in a
Multithreaded Linux Environment. In USENIX 2000 Annual
Technical Conference: FREENIX Track, May 2000.

[5] Dave Dice and Alex Garthwaite. Mostly Lock-Free Malloc.
Proceedings of the 3rd international sysposium on Memory
management, Berlin, Germany. 2002.

[6] L. Lamport. Specifying concurrent program modules. ACM
Transactions on Programming Languages and Systems,
5(2):190-222, 1983.

[7] John Giacomoni and John K. Bennett et. al. Frame Shared
Memory: Line-Rate Networking on Commodity Hardware.
In ANCS’07, Orlando, Florida, USA, 2005. ACM Press.

[8] G. Regnier, D. Minturn, G. et al., ETA: Experience with an
Intel Xeon processor as a packet processing engine. IEEE
Micro, Jan./Feb. 2004, pp. 24-31.

[9] G. Regnier, S. Makineni, et. al. TCP onloading for data
center servers. Special issue of IEEE Computer on Internet
data centers, Nov 2004.

[10] Libpcap, http://www.tcpdump.org .
[11] Libnids, http://libnids.sourceforge.net .
[12] L7-filter, http://l7-filter.sourceforge.net .
[13] Pf_ring, http://www.ntop.org/PF_RING.html .
[14] Tcpreplay, http://tcpreplay.synfin.net/trac/.
[15] Flex, http://flex.sourceforge.net/.
[16] Haipeng Cheng, Zheng Chen, Bei Hua, Xinan Tang.

Scalable Packet Classification Using Interpreting—A Cross-
platform Multi-core Solution. In PPoPP'08, Salt Lake City,
USA, Feb.20-23, 2008.

[17] Xianghui Hu, Xinan Tang and Bei Hua. High-Performance
IPv6 Forwarding Algorithm for Multi-core and
Multithreaded Network Processor. In PPoPP’06, New York ,
USA , Mar. 29-31, 2006.

[18] Maged M. Michael, Scalable Lock-Free Dynamic Memory
Allocation. ACM SIGPLAN Notices, pp.35-46, 2004.

[19] Ron Wilson. Cisco taps processor array architecture for
NPU.
http://www.eetimes.com/showArticle.jhtml?articleID=26806
315, Aug. 9th. 2004.

[20] Huawei Technologies Co.. Huawei Launches NetEngine80
Core Router At Networld Interop 2001 Exhibition in US.
http://www.huawei.com/news/view.do?id=88&cid=-1001 ,
2001.

[21] Intel Corporation. IXP2XXX Network Processors.
http://www.intel.com/design/network/products/npfamily/ixp
2xxx.htm.

[22] Xinan Tang, Rakesh Ghiya, Laurie J. Hendren and Guang R.
Gao, Heap Analysis and Optimizations for Threaded
Programs. In Proc. of PACT’97, Sanfracisco, CA, Nov.,
1997.

[23] Xinan Tang and Guang R. Gao, Automatically Partitioning
Threads for Multithreaded Architectures. In Journal of
Parallel Distributed Computing, 58(2) pp.159-189, 1999.

[24] Xinan Tang and Guang R. Gao. How hard is thread
partitioning and how bad is a list scheduling based
partitioning algorithm? Proc. of the tenth annual ACM
symposium on Parallel Algorithms and Architectures, pp.
159-189, 1998.

[25] Gautam Upadhyaya, Vijay Pai, and Samuel Midkiff.
Expressing and Exploiting Concurrency in Networked
Applications with Aspen. In PPoPP’07, San Jose, USA,
Mar. 14-17, 2007.

[26] Aaron Kunze, Stephen Goglin, and Erik Johnson. Symerton -
Using Virtualization to Accelerate Packet Processing. In
ANCS’06, San Jose, CA, USA, Dec. 4-5, 2006.

[27] Keir Fraser and Tim Harris. Concurrent programming
without locks. In ACM Transactions on Computer Systems,
Vol. 25 (2), May 2007.

[28] Microsoft, Scalable Networking with RSS.
http://www.microsoft.com/whdc/device/network/ndis_rss.ms
px, 2005.

[29] Derek L. Schuff, Yung Ryn Choe and Vijay S. Pai.
Conservative vs. Optimistic Parallelization of Stateful
Network Intrusion Detection. In ISPASS’08, Austin, Texas,
April 20-22, 2008.

[30] J. W. Haines, R. P. Lippmann, D. J. Fried, E. Tran, S.
Boswell, and M. A. Zissman. 1999 DARPA Intrusion
Detection System Evaluation: Design and Procedures.
Technical Report 1062, MIT Lincoln Laboratory, 2001.

[31] Shmoo Group. Defcon 9 Capture the Flag Data, Sept. 2001.
[32] M. Kulkarni, P. Carribault, K. Pingali, et. al. Scheduling

strategies for optimistic parallel execution of irregular
programs. In SPAA’08, Munich, Germany, June 14-16, 2008.

[33] Yuji Kawamurra, Takeshi Yamazaki, Tatsuya Ishiwata et. al.
Network Processing on an SPE Core in Cell Broadband
Engine. In Proc.of 16th IEEE Symposium on High
Performance Interconnects. 2008.

[34] Duo Liu, Zheng Chen, Bei Hua, Nenghai Yu, Xinan Tang.
High-performance Packet Classification Algorithm for
Multithreaded IXP Network Processor. In ACM Transactions
on Embedded Computing Systems, Vol.7, No.2, Article 16,
2008.2.

[35] Livio Ricciulli, et al. Programmable Multifunctional Line
Rate Analyzer for 10 Gbps Networks.
http://www.force10networks.com.

	1. Introduction
	2. System Design Space
	2.1 Design Principles
	2.2 System Building Blocks

	3. Important Implementation Details
	3.3 Pipeline Mapping
	3.4 Eliminate Lock/Unlock Operations
	3.5 Fast Memcpy
	3.6 Source-to-Source Parallelizing Compiler
	3.7 L7 Deep Packet Inspection

	4. Experimental Results and Performance Analysis
	4.1 Evaluation Platform
	4.2 Packet Input
	4.3 System Performance
	4.4 Pipeline Partitioning and Mapping
	4.5 Performance of Optimized FIFO
	4.6 TCP Connection Scalability

	5. Related Work
	6. Conclusions and Future Work
	7. Acknowledgements
	8. References

