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Abstract. Currently, most of the RSS-based localization approaches
rely on an isotropic radio propagation model to compute the distance
from RSS, which however has been proved to be impossible by recent
research work. Performance analysis is necessary to evaluate the appli-
cability of a localization algorithm, however, few work has been done
to evaluate and compare the performance of existing localization algo-
rithms in simulated realistic settings. This paper first investigates the
relationship between distance and RSS for symmetric and asymmetric
links based on a realistic radio propagation model; and then provide
the detail implementation of a RSS-based approach called LSBA; finally
gives a panorama of performance comparison of LSBA and other four
localization algorithms in terms of estimation error, convergence speed,
computational complexity and communication cost in the simulated real-
istic environment. Simulation results show that LSBA achieves the best
trade off among all the four metrics in networks with moderate number
of anchors, and has good adaptability to irregular node deployment.
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1 Introduction

Localization approaches are roughly classified as fine-grained approaches and
coarse-grained approaches. Fine-grained approaches normally require accurate
distance or angle measurements to compute the location of unknown node.
TDOA (Time Difference of Arrival) [7] [8] [9], AOA (Angle of Arrival) [10], and
RIPS (Radio Interferometric Positioning System) [12] rely on extra (sometimes
expensive and complex) hardware other than radio transceiver to get accurate
measurements. Use of RSS as ranging technique receives much recognition since
radio transceiver is the only available ranging device for most of the common sen-
sor nodes. Most of the existing RSS methods rely on an ideal radio propagation
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model [16] to get the distance from RSSI, which states that the received signal
strength diminishes with the distance according to certain law. However, recent
researches [13] [14] [15] show that radio propagation pattern is highly random in
real world, and no one-to-one mapping exists between RSSI and distance in most
situations. Therefore localization algorithms based on ideal radio model may per-
form poorly in realistic environment, and need to be reconsidered. Coarse-grained
approaches normally rely on proximity and near-far information or less accurate
distance estimation to infer the location of unknown node, of which Centroid [2],
geometry constrains [6], DV-HOP [4], Amorphous [5], LSBA (Link State Based
Annulus localization algorithm) [17] are typical. Coarse-grained approaches are
much popular in densely deployed large scale sensor networks since they avoid
the difficulty of getting accurate measurements; however their performance may
degrade due to inaccurate information and need careful evaluation.

Performance of a localization algorithm can be measured by various metrics,
in which estimation error, un-localizable ratio, convergence speed, computational
and communication complexity are the most important ones. Average estimation
error is a classical performance metric that measures the average localization ac-
curacy. Un-localizable ratio is the ratio of nodes that cannot be localized even
after certain rounds of localization, which can be used to depict how fast the
process winds up with stable estimation error. Since wireless sensor nodes are
tiny devices with constrained computing ability, storage, bandwidth, and energy,
computational complexity must be taken into account. The requirement of en-
ergy saving is usually translated into lowering the communication complexity,
since most of the energy is consumed by communication in WSN. However, most
of the previous work only take one or two of the performance metrics into consid-
eration, such as, [2] [4] [5] and [6] only focus on estimation accuracy; [3] and [17]
focus on estimation accuracy, communication cost or un-localizable ratio. In this
paper, we provide a comprehensive performance comparison of five algorithms
in terms of the four performance metrics in realistic experimental settings.

The remainder of this paper is organized as follows: section 2 investigate
the relationship between distance and RSSI for symmetric link and asymmetric
link based on a realistic radio propagation model; section 3 describes the design
and implementation of LSBA; section 4 compare LSBA with Centroid [2], APIT
[3], DV-HOP [4], and Amorphous [5] in various performance metrics in realistic
experimental settings; and section 5 concludes.

2 Motivation

Our work is largely inspired by [14], where a Radio Irregularity Model (RIM)
is brought up based on empirical data obtained from MICA2 platform to char-
acterize the radio pattern in real wireless sensor networks. Radio irregularity is
mainly caused by heterogeneous sending powers and anisotropic path losses, and
is modeled as follows:

RSS =SP×(1+R×V SP )−PL×Ki+X (1)



Study of a Cost-effective Localization Algorithm 3

The first part of (1) accounts for the difference in hardware calibration and
battery status, where SP (Sending Power) is the power rating of node, VSP
(Variance of Sending Power) is defined as the maximum percentage variance of
signal sending power among different devices, and R is a normal random variable
that measures the variance caused by hardware. The second part reflects the
anisotropism of radio, where PL is the free space loss, and Ki represents the
difference in path loss in different directions.

Ki =

{
1,i=0
Ki−1±Rand×DOI,0<i<360∧i∈N

where |K0−K359|≤DOI

(2)

Ki is calculated according to (2), where DOI (Degree of Irregularity) is defined as
the maximum range variation per unit degree, and Rand is a Weibull distribution
random variable. The third part of (1) models the environment noise that follows
normal distribution. More details can be found in [14].

Experiments show that lots of asymmetric links exist in network due to
radio irregularity, and the number of asymmetric (symmetric) links increases
(decreases) with longer distance. This observation inspired us to exploit link
information to reduce the distance uncertainty between a pair of nodes. To
validate our imagination, we simulated with RIM model in various parameter
settings and got two curves on RSS vs. distance for symmetry links and asymme-
try links respectively. Fig.1 was gained with SP=-5dBm, VSP=0.1, DOI=0.002,
Weibull=[0.16, 0.67], and receiver threshold=-70dBm.

(a) Symmetry link (b) Asymmetry link

Fig. 1. RSS vs. Distance

The curves suggest that rough relationships exist between RSSI and range of
distance when link type is given. This result motivated us to design LSBA that
makes use of the link type and RSSI to refine the possible areas an unknown
node may reside in, and then calculates the centroid of the overlapping area as
the location. Since the curves of RSS vs. Distance vary with network settings
and environment, they need to be recomputed for each concrete situation. Nev-
ertheless, it will not add much difficulty, since all the device related parameters
such as SP, VSP and receiver threshold can be easily obtained from devices,
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and the environmental parameters such as DOI and Weibull distribution can be
obtained from empirical values or measured in real environment.

3 Design and Implementation of LSBA

The basic idea of LSBA is as follows: each unknown node exchanges messages
with its location-aware neighbors to find out the type of link (symmetric or
asymmetric) between itself and each of these neighbors; then calculates the range
of distance to each neighbor based on the type and RSSI of each link; after getting
all the distance ranges, draws an annulus for each link centering at the location-
aware node with the radius as the corresponding distance range; finally calculates
the centroid of the highest overlapping area as its location estimation. Therefore
LSBA consists of two steps: link state construction and location calculation, in
which a link state exchange protocol and a grid-based method are provided to
simplify the calculation of the highest overlapping area of annuli (fig.2(a)).

(a) Annuli Drawing (b) RSS vs. Distance lookup table of fig.1(a)

Fig. 2. Implementation of LSBA

The link state exchange protocol works as follows. Each node broadcasts its
ID and location (if it’s a location-aware node) in an advertisement message.
After receiving an advertisement, a node records the sender and RSSI of the
message and puts [sender, RSSI] in its Asymmetry-RSSI-Array, then calculates
the distance range (expressed as a [min, max] pair) to the sender using the
curve for asymmetric link and puts [sender, [min, max]] in the Asymmetric-
Distance-Array, at last sends back a response message containing the sender and
the intended receiver. If an asymmetric link exists between a pair of nodes, say
from A to B, then only B receives A’s advertisement and A cannot hear B, and
the message exchange between A and B ends at this point. If a symmetric link
exists between a pair of nodes, then either side can receive the advertisement
and response message of the other side. After receiving a response message that
replies to its previous advertisement, a node removes the corresponding item of
[sender, RSSI] from the Asymmetry-RSSI-Array to the Symmetry-RSSI-Array,
and deletes the corresponding item of [sender, [min, max]] from the Asymmetric-
Distance-Array, then recalculates the distance range using the curve for symmet-
ric link and puts the new [sender, [min, max]] in the Symmetric-Distance-Array,
at last sends back a distance notification message containing the distance range
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it calculates. The exchange of distance range is to further reduce the uncertainty
of distance between a pair of nodes. Therefore after receiving a distance notifi-
cation, the unknown node takes the intersection of the two distance ranges as
the final distance range. The current link state exchange protocol doesn’t take
into account collision and packet lost.

To simplify the computation of distance range, we use two lookup tables
calculated offline to replace the two RSS vs. Distance curves. Each table is
organized as an array, where N is the size of the table and each entry records the
[min, max] pair of a RSSI. As an example, fig.2(b) approximates the curve in
fig.1(a) with the range of RSSI from -5dBm to 70dBm and a step size of 1dBm.
For a non-integral RSSI, the nearest integral RSSI is taken.

If there are only a few anchors in the network, many nodes may remain un-
known after the first round of localization. In the following rounds, all location-
aware nodes, including anchors and those getting their locations in the previous
round, broadcast their locations, and non-anchor nodes either locate themselves
or refine the locations obtained in the previous rounds. This process repeats until
the algorithm converges. The decision of when to stop is made in a distributed
way. When a non-anchor node finds that the variance of its location estimation
is below a threshold, it stops updating its location and stops broadcasting ad-
vertisement, but it can still respond to other node’s advertisement. When all the
nodes cease broadcasting advertisement, the localization process winds up.

4 Performance Evaluation

We simulated Centroid, APIT, DV-HOP, Amorphous and LSBA on Matlab and
compared them in terms of estimation error, residual ratio of un-localized nodes,
communication complexity, and computational complexity in realistic simulation
environment. Estimation error is defined as the average variance between esti-
mated location and real location. Residual ratio of un-localized nodes (called
residual ratio for short) is the ratio of un-localized nodes after certain rounds of
localization, which can be used to reflect the convergence speed as well as the
localization ability of algorithm. Communication and computational complexity
are defined respectively as the total number of packets exchanged for and the
total amount of time spent on localization.

Network settings generally have great influence on performance of localiza-
tion algorithms, among which average connectivity (AC), number of anchors
(AN), and distribution of nodes (ND) are the most important ones. Average
connectivity is defined as the average number of neighbors per node, and is an
indicator of network density. Evenly deployed network is assumed by many lo-
calization algorithms, yet it is hard to achieve in real world. The adaptability to
irregular node distribution is crucial to the robustness of algorithm. To evaluate
these algorithms in a realistic simulation environment, we use RIM model to
model the radio propagation pattern, and change the radio irregularity via DOI
and VSP. The values of DOI, VSP, Weibull and the environment noise are all
from [14], which is obtained from the empirical data.
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We conducted the experiments on Matlab 7.0.4 that runs on laptop IBM
ThinkPad R51BC1, and omit the detailed implementation of the other algo-
rithms due to limitation of space. For ease of comparison we didn’t include iter-
ative localization refinement in our experiments, since no such process exists in
DV-HOP and Amorphous, and it greatly increases the computational complex-
ity of APIT. For communication complexity, we didn’t take collision, packet lost
and traffic control into account. For computational complexity, we only counted
the time spent on localization related calculations, and the computation methods
are derived from APIs of Matlab without any modification.

In the following experiments, without specification, sensors (include anchors)
are uniformly distributed in an area of 300×300m2; the free space propagation
radius of sensors is 48.9m; the value of DOI and VSP are 0.002 and 0.1 respec-
tively; the value of Weibull is [0.16, 0.67]. Each experiment was run 500 times
with different random seeds to get the performance.

4.1 The Influence of Average Connectivity

In this experiment, we investigate the influence of average connectivity (AC) on
algorithm performance with AN =36.

(a) Estimation Error (b) Residual Ratio

(c) Computation Complexity (d) Communication Cost

Fig. 3. The Influence of Average Connectivity

In fig.3(a), APIT has the lowest estimation error with LSBA following on
the heels of it. In fig.3(b), the residual ratio of APIT is above 50% after two
rounds of localization, yet the residual ratio of other algorithms almost reach 0.
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This is due to the stringent localizable constraints in APIT that each localizable
node must reside in at least one triangle formed by three location-aware neigh-
bors, whereas other algorithms have much relaxed constraints. Similar results
are observed in other experiments indicating that APIT has the lowest conver-
gence speed. In fig.3(c), the computation time of APIT increases most rapidly,
since larger AC brings more nodes to participate in the PIT test; DV-HOP and
Amorphous nearly overlap and grow quickly as well, this is because they use
the same estimation methods; Centroid and LSBA have the lowest computation
complexity. In fig.3(d), communication complexity of DV-HOP and Amorphous
increase most rapidly and DV-HOP consumes more packets than Amorphous,
since they need more packets to construct routing tables and DV-HOP has to
broadcast Hop-Size whereas Amorphous computes it offline.

DV-HOP and Amorphous can get better estimation accuracy at higher AC,
which also leads to higher communication cost; APIT achieves the best estima-
tion accuracy, but its residual ratio and computational complexity is the highest;
LSBA and Centroid have the lowest residual ratio, communication and compu-
tational complexity, and LSBA has better estimation accuracy than Centroid.

4.2 The Influence of Number of Anchors

(a) Estimation Error (b) Residual Ratio

(c) Computation Complexity (d) Communication Cost

Fig. 4. The Influence of Number of Anchors

In this experiment, we study the influence of number of anchors on algorithm
performance. Since DV-HOP and Amorphous get better estimation accuracy at
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high AC while other algorithms are not sensitive to it, we choose to conduct this
experiment with AC =33.

In fig.4(a), DV-HOP, Amorphous and APIT are not sensitive to the number
of anchors. Estimation error of Centroid and LSBA decrease rapidly when num-
ber of anchors increases, and LSBA performs much better than Centroid as it
makes use of the link information. Although APIT achieves the highest location
accuracy with only a few anchors, more anchors will greatly improve its conver-
gence speed, see fig.4(b). In fig.4(c), the computation time of APIT increases
rapidly when the number of anchors increases, since more anchors appearing in
the neighborhood of an unknown node increase the number of PIT tests. Other
curves hardly change, since the amount of nodes in the network doesn’t change
when average connectivity is fixed, and moreover the number of unknown nodes
decreases when the number of anchors increases. In fig.4(d), the communica-
tion cost of DV-HOP is the highest, and moreover it increases rapidly with the
number of anchors, since more anchors require more broadcast of Hop-Size.

To sum up, if only a few anchors exist in the network, DV-HOP and APIT are
better choices due to their lower estimation error; however when more anchors are
available, LSBA is preferable as it achieves the best tradeoff between localization
accuracy and energy saving.

4.3 The Influence of DOI

(a) Estimation Error
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Fig. 5. The Influence of DOI
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In this experiment, we study the influence of DOI on algorithm performance.
Since average connectivity changes with DOI, we choose to fix the number of
nodes (NN) instead of average connectivity in this experiment. In this case, the
average connectivity is around 7 that is the most common situation in real world.

It’s easy to know from formula 1 that DOI has smaller influence on RSS
than VSP as it changes from 0.002 to 0.01. Nevertheless the estimation error of
Amorphous is affected greatly by DOI, since its Hop-Size is calculated based on
average connectivity that is influenced by DOI. The estimation error of LSBA
also increases, as increased DOI enlarges the distance uncertainty. However, the
estimation error of Centroid and APIT hardly change, as they only care about
the locations of heard anchors, meanwhile the number of heard anchors is less
affected by DOI. In fig.5(a), the computation time of DV-HOP and Amorphous
is very high, because irregular signal pattern causes more inaccurate distance
estimation which in turn takes the estimator more time to search the optimal
solution. In fig.5(d), the communication cost of all the algorithms are not sensi-
tive to DOI, in which DV-HOP is the highest.

4.4 The Influence of VSP

In this experiment, we study the influence of VSP on algorithm performance.
Since average connectivity also changes with VSP, we fix the number of nodes
instead of average connectivity in the experiment.

(a) Estimation Error
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Fig. 6. The Influence of VSP
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Compared with DOI, VSP has much greater contribution to radio irregularity
when it changes from 0.2 to 1, so nearly all the algorithms experience increased
estimation error in fig.6(a). An interesting observation is that increased VSP
helps to reduce the residual ratio of APIT (fig.6(b)). Similar to fig.5(c), the
computational complexity of DV-HOP and Amorphous in fig.6(c) is very high
due to the large number of inaccurate distance estimation caused by increased
VSP. Another observation in fig.6(c) is that the computation time of APIT
increases very fast than that in fig.5(c), the reason may be that highly irregular
radio pattern brings more nodes to the neighborhood of an unknown node, and
thus increases the number of PIT tests. This also explains why increased VSP
reduces the residual ratio of APIT. Similar to section 4.3, communication cost
of DV-HOP is still the highest in fig.6(d).

4.5 The Convergence Speed of APIT

Above experiments show that although APIT has the highest estimation ac-
curacy, its convergence speed is very low. In this section, we investigate the
convergence characteristic of APIT using the same environment setting as that
in section 4.1.

(a) Estimation Error (b) Residual Ratio

(c) Computation Complexity (d) Communication Cost

Fig. 7. The Convergence Speed of APIT

From fig.7, both the estimation error and residual ratio decrease rapidly in
the first three rounds, and then decline very slowly; meanwhile the computation
and communication cost increase steadily. The residual ratio is as high as 35%
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after tens of rounds even under high AV, the reason is that the nodes near the
boundary as well as those in regularly deployed area cannot find three neighbors
that can hold it in a triangle. Therefore mobile anchors are needed to help APIT
improve the convergence speed and localizable ratio.

4.6 Performance in C-Shaped Area

In this experiment we study the adaptivity of algorithms to irregular node de-
ployment. We conduct the experiment in a C-shaped area that is limited in a
square with AC increasing from 7 to 70, see fig.8(a). In this section we only focus
on the estimation error, since others are much similar to that in section 4.1.
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Fig. 8. Performance in C-Shaped Area

In fig.8(b), the estimation error of Centroid, LSBA and APIT hardly change
when AC increases, meanwhile LSBA and APIT have the lowest estimation er-
ror. The estimation error of DV-HOP and Amorphous increase quickly at first
and then stay at high level afterwards. The reason is that in both algorithms ac-
curate estimation of Hop-Size depends on both high connectivity and uniformly
deployment of nodes, yet the last condition cannot be met in C-shaped area.
Moreover, more participant nodes may add more estimated errors in C-shaped
area, that’s why DV-HOP and Amorphous suffer from high estimation error
when average connectivity increases. It seems that DV-HOP and Amorphous
are not suitable to work in highly irregular regions.

5 Conclusion

In this paper, we provide the motivation, description, and implementation of
LSBA, a coarse-grained RSS-based localization algorithm, and the comprehen-
sive performance evaluation of LSBA and four other typical coarse-grained al-
gorithms: Centroid, APIT, DVHOP and Amorphous. Simulation results demon-
strate that LSBA achieves the best cost-performance ratio in networks with
moderate number of anchors, and moreover LSBA has good adaptability to ir-
regular node deployments.
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