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ABSTRACT

RDMA communication in virtual private cloud (VPC) networks
is still a challenging job due to the difficulty in fulfilling all vir-
tualization requirements without sacrificing RDMA communica-
tion performance. To address this problem, this paper proposes a
software-defined solution, namely, MasQ, which is short for “queue
masquerade”. The core insight of MasQ is that all RDMA communi-
cations should associate with at least one queue pair (QP). Thus, the
requirements of virtualization, such as network isolation and the
application of security rules, can be easily fulfilled if QP’s behavior
is properly defined. In particular, MasQ exploits the virtio-based par-
avirtualization technique to realize the control path. Moreover, to
avoid performance overhead, MasQ leaves all data path operations,
such as sending and receiving, to the hardware. We have imple-
mented MasQ in the OpenFabrics Enterprise Distribution (OFED)
framework and proved its scalability and performance efficiency by
evaluating it against typical applications. The results demonstrate
that MasQ achieves almost the same performance as bare-metal
RDMA for data communication.
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1 INTRODUCTION

The remote direct memory access (RDMA) technique allows ap-
plications to transfer data directly to or from memories of two
computers over a network. By enabling zero-copy networking,
RDMA allows for high-performance data-intensive applications
and has been widely used in high-performance computing (HPC)
scenarios, supported by expensive InfiniBand (IB) networks [25].
Recently, many more economical RDMA technologies, such as
RoCE/RoCEv2 [24, 26] and iWARP [27], have been developed, and
the routable RoCEv2 [24, 26] has become the technology of choice
due to its low complexity. In the remainder of this paper, we will
therefore focus exclusively on RoCEv2 networks.

Currently, public clouds usually provide high-performance in-
stances equipped with RDMA networks by building separate re-
source pools, which significantly increases the capital expense.
Thus, enabling RDMA in the VPC network, where VPC is an on-
demand resource pool allocated within a public pool, becomes one
of the most important jobs for cloud vendors. Right now, virtual
switches are exploited to create a logically isolated VPC network,
but this solution does not work for RDMA, mainly because the
RDMA network interface controller (RNIC) offloads the network
protocol and then bypasses the virtual switches. To address this
problem, there are two categories of solutions: 1) hardware so-
lutions and 2) software solutions. However, neither of them can
simultaneously achieve both high performance and high scalability.

The core idea of hardware solutions is to put network virtualiza-
tion operations, such as encapsulating and decapsulating Virtual
eXtensible LAN (VXLAN) [37] headers, in the middle of two sin-
gle root input/output virtualization (SR-IOV)-enabled RNICs. New
functions can be realized in SmartNICs [6], in top-of-rack switches,
or in separate FPGA boards [22]. Hardware solutions, in general, are
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performance-optimized but lack scalability. For example, RNIC has
to cache the contexts of virtual networks (such as the VXLAN tun-
nel table) to realize network virtualization, but the on-chip cache is
usually limited. Therefore, if the VPC network is large, then commu-
nication performance is reduced since RNIC must frequently fetch
contexts from DRAM. As reported in [17], the throughput of stat
operations decreases by almost 50% when the number of clients
increases from 40 to 120 due to the sharply increased possibility of
cache misses.

Conversely, the core idea of software solutions is to redirect the
RDMA control path or even the data path to a software component,
such as a virtual switch, to apply network virtualization enforce-
ment [33]. The software solution is flexible, but involving software
in the critical path is not a good idea to obtain the best perfor-
mance. For example, involving virtio [40] in the critical path of the
“post_send” operation can slow down the performance by 101 times,
as discussed in Sec. 3.1. This dramatic performance degradation
prevents the solution from being widely adopted.

To address the above dilemma, we propose a new kind of RDMA
virtualization, where software defines the “communication rules”
(to keep the solution scalable), while hardware executes the “com-
munication operations” (to minimize performance overhead). We
name this solution software-defined virtualization and will present
the design of MasQ following this principle in this paper. The core
idea of MasQ is that each RDMA communication should associate
with one QP, and the QP context (QPC) maintains all necessary
information to send or receive a message . Thus, if QPC is properly
“virtualized”, then the RDMA network is accordingly correctly vir-
tualized. To this end, we first classify all Verbs into two categories
based on whether QPC is manipulated. For example, Verbs manip-
ulating QPC (such as “create_qp”) are labeled control path Verbs,
while others that only implicitly use QPC (such as “post_send”) are
classified as data path Verbs. Then, MasQ solely exploits the control
path Verbs to realize RDMA virtualization to avoid performance
overhead.

To achieve the above goals, two major challenges should be ad-
dressed. First, as RNIC bypasses the OS kernel and thereby virtual
switches running in the kernel, a virtual L2 RDMA network cannot
rely on VXLAN and virtual switches to support network virtu-
alization. Second, as the security group and firewall as a service
(FWaaS) are commonly implemented in virtual switches that are
also bypassed by RNIC, it is unclear how to apply security rules to
a virtual RDMA network. We note that instead of coming up with
new “custom-made” security mechanisms (the security properties
of which may be unproven) for virtual RDMA networks, we want
to support the same security mechanisms, i.e., security group and
FWaaS$, that have been widely deployed and employed by existing
public cloud providers, as their APIs are familiar to most application
developers and network operators of cloud tenants [29].

In this paper, MasQ first proposes the vBond and RConnrename
techniques, which together provide an abstract of virtual RoCE
networks for each VPC. Note that there is an important difference
between a virtual RoCE device and a virtual IB device, where the
RoCE device provides both Ethernet and RDMA interfaces, and

IThis paper mainly focuses on the connection-oriented RDMA communications.
Connectionless transports, such as unreliable datagram, will be shortly discussed
in Sec. 3.3.4.
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the IB device only provides RDMA interfaces. With MasQ, RDMA
applications can communicate with each other by still using their
virtual IPs. Furthermore, an RDMA version connection tracking
module, namely, the RConntrack, is proposed to support both the
security group and FWaaS$ to protect virtual RDMA networks from
attack. Note that all of the above techniques reside on the control
path, so MasQ’s performance overhead is negligible. We summarize
our main contributions as follows:

(1) To the best of our knowledge, MasQ is the first work that
targets RDMA network virtualization for VPC. It employs
three innovative mechanisms to tackle the challenges of pro-
viding virtual RoCE abstraction, tenant logical segregation
and applying security rules.

(2) A prototype of MasQ is implemented and evaluated against
big data and HPC applications. The results prove that RDMA
can be deployed in virtualized data centers with negligible
overhead.

2 RELATED WORK

RDMA 1/O virtualization: I/O virtualization is the first step in
enabling RDMA in a virtual machine (VM). Currently, there are two
prominent techniques: 1) direct device assignment and 2) paravir-
tualization. Direct device assignment, such as SR-IOV, can provide
near-native performance but is not flexible. In contrast, paravirtu-
alization is more flexible but at the expense of lower performance.
For example, VMware’s vRDMA [39] adopts this solution. A par-
avirtualized network stack splits the device driver into a frontend
driver and a backend driver. To complete a network I/O operation,
the frontend driver forwards the command to the backend dri-
ver, and then, the backend driver delivers it to the physical device.
Such separation provides greater flexibility but inevitably incurs
additional overhead during data path operations. To mitigate this
overhead, HyV [38] and virtio-RDMA [21] employ a hybrid virtu-
alization technique that is tailored for RDMA. Taking advantage
of RDMA’s separation of control and data paths, HyV adopts para-
virtualization for the control path but implements a zero-copy data
path. Therefore, no performance overhead is introduced. Compared
with the above counterparts, MasQ adopts a similar approach of
/0O virtualization but focuses on the new fundamental challenges
of enabling RDMA in VPC networks, such as network isolation and
applying security rules.

RDMA network virtualization: for containerized clouds, Free-
Flow [33] proposed a paravirtualization-based solution to virtualize
the RDMA network. To this end, the FreeFlow router (FFR) is ex-
ploited to manipulate intra- and inter-host RDMA flows. Similar to
vRDMA [39], FreeFlow also trades performance for manageability
by forwarding data path operations between container and FFR.
Microsoft Azure proposed AccelNet [22] to realize network vir-
tualization in an FPGA-based SmartNIC sitting outside the RNIC.
Basically, AccelNet can meet all our requirements, but it requires
specialized hardware. Furthermore, since network virtualization is
implemented in hardware, it also suffers from the scalability issue
due to its limited on-chip resources.

Other works using RDMA in clouds: recently, many efforts
have been made to pave the way for the application of RDMA in
clouds. The first group of efforts focuses on exploiting RDMA to
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improve the performance of key applications, such as latency sensi-
tive socket applications [43], RDMA-based HDFS [28], FaRM [20],
FaSST [32] and HERD [30]. Although the above works are not di-
rectly related to MasQ, they motivate our work by proving that
RDMA is the key technology for achieving high-performance ap-
plications. Based on this observation, another group of efforts [18,
23, 45] focuses on enabling the large-scale deployment of RDMA
in data centers. Although they are also orthogonal to MasQ, the
success of deploying RDMA in a large-scale system gives us enough
confidence to deploy RDMA for VPC.

In summary, there is still no software solution that can simulta-
neously realize both RDMA /O and network virtualization without
significant performance degradation. Thus, MasQ is proposed to
fill this gap.

3 PROPOSED MASQ

In this section, we will first discuss the rationale behind MasQ
and prove that RDMA can be efficiently virtualized in a software-
defined manner. Then, we will discuss how the software-defined
MasQ addresses the challenges of RDMA for VPC in detail.

3.1 Rationale

To obtain the optimized performance in data communication, RDMA
is designed in a software-defined manner by default, where the con-
trol path clearly separates from the data path. As shown in Fig. 1,
to communicate with each other, there are three phases in both
the client and server. The first phase is the setup phase, where
both the client and server prepare for communication by calling
the Verbs shown in red (or in italics), including creating resources,
exchanging communication information, and setting up the QP
states. One important feature of the first phase is that all involved
Verbs are one-time operations for an application at most times.
For example, once a QP is created, it can always be used to send
and receive messages, unless it is destroyed explicitly. During the
second phase, the client and server can exchange data with each
other. Note that the second phase should be repeated until all data
have been successfully exchanged. Once all communications finish,
the final phase will release all resources accordingly.

We find that the Verbs used in the first and third phases only
manipulate resources/QPC and are not directly involved in real
data communication in the second phase; then, these Verbs are
named control path Verbs. Conversely, Verbs in the second phase
are named data path Verbs. Furthermore, control path Verbs are
one-time operations, so they are not performance sensitive. This
provides us with the chance that if virtualization can be realized
only on control path Verbs with acceptable overhead, then the
proposed solution will be feasible.

To determine whether the overhead to virtualize the control path
Verbs is acceptable. We first evaluate the raw performance of each
Verbs and then estimate its virtualized performance by adding the
overhead of virtio. As shown in Table 1, the “Host-RDMA” column
represents the raw performance of Verbs, and the “w/ virtio” column
represents the results that further consider the latency introduced
by virtio (according to our evaluation, the average latency of a
roundtrip communication using virtio between VM and host is
20 ps). As shown in the “Slow down” column, we can find that
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Figure 1: An illustrative client-server RDMA application. Re-
lated Verbs are shown in red.

the maximal performance degradation for an individual Verbs is
130%. However, the following three facts prove that the overhead
is acceptable. First, if we take the first and third phases as a whole,
then the total performance overhead of the control path is only 9%
(2.62 ms vs 2.86 ms). Second, most RDMA applications maintain
long-lived connections, so that overhead is a one-time cost for each
application. Third, most RDMA applications run for tens of minutes
or even several days, and the overhead, which is smaller than 0.3
ms, is negligible.

3.2 I/0 virtualization

In general, MasQ adopts a hybrid I/O virtualization approach, as
shown in Fig. 2, where the control path is virtualized based on
virtio, and the data path is directly memory mapped. Thus, the data
path-related resources can be directly accessed by the RNIC and ap-
plications in the VM in both directions. For example, there are two
types of resources in RDMA’s data path. One is the hardware regis-
ters, such as Doorbell. Generally, hardware registers are mapped to
the VM’s physical address space so that applications in the VM can
access them through memory-mapped I/O (MMIO). The other is the
user memories in the VM, such as QPs and user-registered memory
regions (MRs). The above memories are visible in the host’s physi-
cal address space. Therefore, by mapping the guest virtual address
(GVA) to the host physical address (HPA), RNIC can directly ac-
cess user memories in the VM through DMA. In general, the above
solution is not a new idea and was also adopted by HyV [38] and
virtio-RDMA [21]. Therefore, we omit the details here and provide
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Table 1: Performance comparison between nonvirtualized and virtualized Verbs.

Call time (us
Class Step Verbs API Fost.RDMA g/vl 7 )vir o Slowdown
1 ibv_get_device_list(...) 396 416 1.1
2 ibv_open_device(...) 1115 1135 1.0
3 ibv_alloc_pd(...) 3 E 1.0
4 ibv_reg_mr(buf_size=1KB, ...) 78 98 1.3
Control path Verbs 5 ibv_create_cq(cqe=200, ...) 266 286 1.1
for resources setup 6 ibv_create_gp(max_send/recv_wr=100, max_send/recv_sge=1, ...) 76 96 1.3
7 ibv_query_gid(...) 22 E 1.0
8 ibv_modify_qp(INIT, ...) 231 251 1.1
9 ibv_modify_gp(RTR, ...) 62 82 1.3
10 ibv_modify_gp(RTS, ...) 73 93 1.3
Data path Verbs 11 ibv_post_send/recv(...) 0.2 20 101.0
for data exchanging 12 ibv_poll_cq(...) 0.03 20 667.7
13 ibv_destroy_gp(...) 170 190 1.1
14 ibv_destroy_cq(...) 79 929 1.3
fiorllzr:iriitshcl\;eafjp 15 ibv_dereg_mr(...) 35 55 1.6
16 ibv_dealloc_pd(...) 2 B 1.0
17 ibv_close_device(...) 16 36 2.3
* These Verbs are implemented in pure software and not forwarded to RNIC, so it is unnecessary to virtualize them.

Host Instance

G

| MasQ's Backend Driver I
I

RDMA APP

| Hypervisor

MasQ’s Frontend Driver |

| Device Driver I ]

[ {

RoCE RNIC l

Figure 2: Architecture of MasQ’s I/O virtualization, where
solid and dashed arrows represent control and data path, re-
spectively.

a short introduction in Appendix A. Interested readers can also
refer to [38] or [21] for more details.

3.3 Network virtualization

As shown in Fig. 3, as in the case of physical RoCE RNIC, a virtual
RoCE RNIC is also represented with two interfaces, i.e., a virtual
Ethernet interface and a virtual RDMA interface. More specifically,
MasQ reuses vhost_net to realize the virtual Ethernet interface
and exploits the above I/O virtualization technique discussed in
Sec. 3.2 to virtualize the RDMA interface. The rest of this section
will discuss how MasQ realizes network virtualization on the virtual
RDMA interface.

3.3.1 Tenant isolation. MasQ proposes a new per-connection
instead of a traditional per-packet virtualization technique, namely,
the RConnrename. The core idea is that tenants (applications in
VMs) and the cloud provider (MasQ’s backend driver) can refer
to the same connection by different names, where tenants use vir-
tual addresses, and cloud provider uses the corresponding physical
addresses. Therefore, once the connection is established, packets
can be encapsulated by RNIC with the physical addresses directly,
without any per-packet overhead. Actually, the connection-based

User space
RDMA APP Instance-0 Instance-1
MasQ Frontend
vrdma0
[ veth0 ]—--I vBond I Instance-n
Kernel |space MasQ Backend

I tap0 I I RConnrename
ovs RConntrack
RCT_Table
VTEP (vni, src_vip, dst_vip, gpn)
Hardwgre 7\
[ etho |[amaorr| Irdma(l)/VFOl---’rdmaO/VFnl

RoCE RNIC

Figure 3: Architecture overview of the control path of pro-
posed MasQ, where green components are proposed to ad-
dress the problem of network virtualization.

virtualization technique has been used in the TCP/IP networks pro-
posed by Slim [46]. However, when this idea is applied to RDMA
networks, there are several new challenges to be addressed.

A VM may have multiple virtual RNICs, but an application may
only specify a virtual destination IP address to start a communica-
tion. Therefore, MasQ must be able to determine which local virtual
RNIC should be used. For a physical RoCE network, this is not a
problem since both Ethernet and RDMA interfaces are abstracted
from the same PCle device. For example, drivers can first obtain the
Ethernet interface by looking up the local routing table and then
obtain the associated RDMA interface belonging to the same PCle
device. However, virtual interfaces are abstracted from separate
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Instance Instance
Client Server
®) an @ @ @ @ O (3)
4 4 4 A
! MasQ [Fronterd asQ Frontend|
I Y l ’ vrdma0 l ’ vrdma0 l I vetho I
vhosltinet asQ Backend MasQ Backend vhos}_net
and o ﬁRemoteI’ 1 and
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Figure 4: Key steps of MasQ (RConnrename) to establish an
RDMA connection.

virtio devices. Thus, an artificial bond between two virtual inter-
faces is necessary. The vBond is developed to tackle this challenge.
Since the presentation of RConnrename depends on vBond, we will
discuss vBond first.

vBond is designed to allow for the application running in a VM to
use two virtual interfaces by specifying only one single IP address,
as in the case when an application is accessing a physical RoCE
device. To address this problem, vBond is developed to dynamically
bind the virtual Ethernet and virtual RDMA interfaces. For this,
vBond first obtains the (virtual) MAC address of the virtual Ethernet
interface, to which the virtual RDMA interface should bind (note:
tenants are not allowed to modify virtual MAC addresses). This is
done by querying the backend driver during the initialization. If
the virtual Ethernet interface has been assigned a valid IP address,
then vBond will immediately initialize the global identifier (GID)
accordingly and binds the virtual Ethernet interface with the cor-
responding virtual RDMA interface. Thereafter, vBond registers a
callback function to the notification chain of inetaddr events in
the OS. Whenever the IP address of a virtual Ethernet interface
changes, OS will notify vBond to check and update the GID accord-
ingly. Note that GID is used to identify the RDMA interface in an
RDMA network.

RConnrename is proposed to guarantee that correct network
addresses are used to encapsulate RDMA packets. To prevent RNIC
from using the remote virtual (IP/MAC) addresses as the destination
addresses 2, the configuration commands issued by the application
must be properly managed. Fortunately, as shown in Fig. 3, all
commands issued by the application are first handled by MasQ’s
backend driver before being sent to the real device driver. Therefore,
MasQ can exploit this opportunity to present two different views
of the same QPC to the application and RNIC. In other words, the
application will see the QPC as configured with virtual network
addresses, while RNIC will view it as configured with physical
addresses. We call this solution the RDMA Connection Rename or
RConnrename in short. A major benefit of RConnrename is its low
cost since network addresses are configured only once for each
connection.

We now use an example to illustrate how RConnrename works in
detail. As shown in Fig. 4, to establish an RDMA connection, both
the client and server need to create a QP and register their memory
regions following the control path (1). The “create_qp” command

2Note that source addresses are configured by host device driver using the physical
IP/MAC addresses of the RNIC.
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and the address mapping (GVA, GPA) of the QP are forwarded to the
host. Upon receiving the command, the backend driver will further
map the QP’s GVA to HPA and then create the QPC by calling the
device driver. Note that QPC is maintained on the host. Once the
local resources are ready, the application can query its local GID.
Note that the vBond module maintains the virtual GID as discussed
above. Thus, vBond can directly reply to the query request as the
control path (2) shows. After obtaining local connection information
such as QP number (QPN) and virtual GID (vGID), the application
needs to exchange these information with the peer. This is usually
done over a pre-established TCP connection, as shown in step (3).

With the peer’s connection information, the application needs
to configure its QPC with the other side’s vGID as the destination
address. As discussed above, RConnrename will intercept the com-
mand and replace the peer’s virtual address in the command by the
peer’s physical address. Now, the challenge is how to obtain the
corresponding physical address. Recall that the vGID, which is dy-
namically synchronized with the IP address of the virtual Ethernet
interface, has no relationship with the physical GID. Therefore, an
additional mechanism to maintain the mapping between virtual
and physical GIDs is necessary.

Furthermore, since the public cloud provides tenants with inde-
pendent IP address spaces, different tenants’ virtual IP addresses
may be the same. This means that there may be multiple identical
virtual GIDs in the cloud, so we need other information to identify
the physical GID. To this end, we use the tenant ID and vGID as the
key to find the corresponding physical GID in a mapping table. In
practice, the tenant’s VXLAN network identifier (VNI) can be used
as the tenant ID. We propose the utilization of a logically central-
ized controller to maintain such a mapping table. Once a vGID is
created or updated, vBond should immediately notify the controller
to update its mapping table. RConnrename can then query the con-
troller to obtain the physical GID corresponding to the vGID. To
reduce the performance overhead, we further employ a local cache
of the mapping table. Specifically, the mapping record returned
by RConnrename’s first query will be inserted into the local cache.
Then, the queries hitting the local cache will be completed in a few
microseconds, which are negligible compared with RDMA’s connec-
tion setup time. In addition, in a common case, a mapping record
will not be updated after insertion into the local cache. Therefore,
the cache hit will always be maintained. To further avoid the over-
head of cache misses, the controller can be configured to push down
the mappings in advance. Generally, at least 35 bytes of memory
are required to hold a mapping record, including virtual GID (16
B), VNI (3 B), and physical GID (16 B). Therefore, the local cache
will take up ~0.33 MB of memory to support ten thousand VM
peers, which can be easily satisfied in DRAM. We should note that
controller performance is a key issue for all software-defined net-
working solutions, including the proposed MasQ. Fortunately, SDN
has been widely studied and deployed in public clouds, and many
practical solutions have been proposed, such as DevoFlow [19] and
Onix [34]. In our opinion, improving the performance of an SDN
controller is very important but out of the scope of this paper.

Therefore, to configure the QPC, the application will issue the
command following the control path (4). Upon receiving the com-
mand, RConnrename will query the remote controller to retrieve the
physical GID for communicating with the peer. As the local cache
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Table 2: Behavior of the application and RNIC when QP state
is modified to ERROR.

Allowed
Allowed
Allowed but get an error CQE
Flushed with error

Post receive request
Post send request
Poll completion queue
Receive request processing
Send request processing Flushed with error
Incoming packets Dropped
Outgoing packets None

Application

RNIC

should have maintained the mapping information, the query can be
completed within a few microseconds. Once QPCs on both sides are
configured, the connection is thereby successfully established. We
see that both the client’s and the server’s QPCs are configured with
peer’s physical GIDs. This ensures that all subsequent data packets
will be encapsulated with the correct physical network addresses
so that they can be routed correctly to their destinations through
the underlay network.

3.3.2  Security isolation. RDMA security in VPC includes both
network security and user memory security. Specifically, any traffic
violating the network security rules should not be injected into the
network. In addition, a user’s memory, such as QPs and MRs, should
not be accessed by any unauthorized user. In the following, we will
present MasQ’s solution to address the above two challenges.

Network security: to protect virtual RDMA networks in public
clouds, we would like to support the same two-level security mech-
anisms, FWaas$ at the network level and security group at the VM
level, that have been deployed by public clouds and are familiar to
most tenants. Generally, security rules follow a similar structure —
INPUT rules, OUTPUT rules, and FORWARD rules — and each of
them is organized as a chain. Upon receiving a packet, it is checked
against the rules of each chain, one by one in descending order of
priority, and if a rule matches, then the corresponding action is
taken. If none of the rules apply, then by default, the packet is denied
and thus dropped. These security rules are commonly implemented
in virtual bridges or virtual switches in the hypervisor.

However, since the data path of a virtual RDMA network by-
passes the hypervisor, it is impossible to fully reuse the traditional
solution. Fortunately, we can exploit a feature of security rules
to circumvent this problem. Clearly, scanning the policy chains
is time-consuming. Hence, a feature called “connection tracking”
is utilized, through which the state of each connection is tracked.
Packets belonging to established (thus permitted) connections are
allowed without the need to scan policy chains. Using this obser-
vation, we can divide the problem of applying security rules to
virtual RDMA networks into the following three subproblems. First,
an RDMA connection cannot be established unless it is explicitly
allowed by a security rule. Second, no RDMA packet is allowed
unless it belongs to an established RDMA connection. Third, once
rules are updated, connections that are no longer allowed should
be blocked as soon as possible.

The first two subproblems are relatively easy to address since
MasQ’s backend can deny all requests violating security rules and
RNIC never sends an RDMA message until the connection is estab-
lished. In general, we can enforce security rules during the connec-
tion establishment phase, as the connections through the virtual
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Figure 5: The state machine of QP. Dashed red lines indicate
that an QP can switch to ERROR state from any other state.

Ethernet interface do not bypass the hypervisor and are protected
by security groups and firewalls. For example, if a VM attempts to
establish an RDMA connection with another VM that is not allowed,
then the installed security group or firewall security rules will drop
the packets carrying the corresponding connection request infor-
mation. Without such information, the RDMA connection will not
be established. Therefore, no data will be transferred through the
virtual RDMA interface (and thus the physical RNIC to which it is
mapped).

To address the third subproblem, MasQ proposes the RCon-
ntrack to perform connection tracking for all RDMA flows. Thus,
RConntrack can identify and disable a virtual RDMA data path as
soon as a previous rule allowing this connection has been deleted
or updated to deny it. When a violating connection is found, no
packets should be transmitted over that connection. In the TCP/IP
network, the firewall only needs to drop the packets that violate
security rules. However, since the RDMA data path bypasses the
host, RConntrack cannot drop packets like TCP. Therefore, we need
other ways to abort the transmission.

Since the control path is para-virtualized in MasQ, the states of
QPs can be controlled by the host. As shown in Fig. 5, an QP has
several states such as initialized (INIT), ready to receive (RTR), ready
to send (RTS) and error (ERROR), and the QP behaves differently in
different states. For example, a QP should be in the RTS state when
transmitting data. Therefore, when an RDMA connection violates
security rules, we need to switch the QP’s state to another state
that cannot send data. Moreover, we need to notify the application
that the connection has been disconnected. Table 2 shows that if a
QP switches to the ERROR state, then RNIC will immediately stop
data processing and generate an error completion queue element
(CQE) to notify the application. In addition, any state can change to
the ERROR state by modifying QP, which means that RConntrack
can actively switch that QP state to the ERROR state at any time.

Now we exploit an illustrative example to present how RCon-
ntrack works. As shown in Fig. 6, we assume that a tenant has two
subnets with masks of 192.168.1.0/24 and 192.168.2.0/24. First, secu-
rity rules allow virtual machines in different subnets to establish
RDMA connections. For example, suppose that VM A issues an
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Figure 6: An illustrative example of Rconntrack.

RDMA connection request (1) to VM B in the other subnet. The
request (i.e., “modify_gp to RTR”) will be intercepted by the back-
end, and then, the RConntrack finds that this is a request from
192.168.1.1 (VM A) to 192.168.2.1 (VM B); this request is allowed by
security rules. Then, the request will be forwarded to RConnrename
to complete the remaining work. After successfully establishing the
connection, RConntrack will record the following tuple (<Tenant
ID: 192.168.1.1, 192.168.2.1>) in the connection table.

Next, suppose the user updates the security rules to prevent
the two subnets from communicating through the RDMA network.
Once the rule is updated, the new cross-subnet connection request
(2) will be detected as illegal when the request is processed by the
RConntrack. Thus, request (2) will be refused. Moreover, RConntrack
will also check the connection table to find established connections
that violate the rules. In this example, connection (1) will be found
and disconnected by modifying the QP to the ERROR state.

User memory security: MasQ relies on RDMA’s security mech-
anisms to protect user memory. First, RDMA resources, such as
QPs, MRs, and protection domains (PDs), are created by the back-
end driver of MasQ; then, one VM cannot manipulate resources
belonging to other VMs. Second, to communicate with a remote
QP, a connection should be established in reliable connection mode,
or a Q-Key will be required in unreliable datagram mode. Thus,
illegal requests can be easily identified and denied in this phase.
Third, to correctly access a remote MR, a memory key is required,
and the remote QP and MR belong to the same PD. Furthermore,
any memory operation should be associated with a QP in RDMA.
Therefore, the above three “preconditions” hold, regardless of the
relative position of QPs. Finally, RNIC checks the boundaries of the
MR targeted by each RDMA operation. Thus, it is impossible to
access a memory location outside the legal region of a legal MR; in
summary, there is no additional overhead introduced by MasQ to
protect user memory.

Actually, it was recently found that a side-channel attack is
possible in the RDMA network [41]. Pythia [41] depends on the
accurate detection of small changes in network latency to steal
information. However, considering that network latency always
changes in a large network due to traffic bursts and network con-
gestion, the possibility of applying the above attack is relatively low.
Generally, hardware architecture techniques, such as new cache
architectures [36, 44], are adopted to address side-channel attacks.
Therefore, the security problem caused by a side-channel attack is
orthogonal to MasQ.
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3.3.3 Quality of service. In modern data centers, quality of ser-
vice (QoS) is also an important requirement, especially for high-end
users. To minimize the performance overhead introduced by QoS
operations, such as rate limiting, MasQ leverages hardware-based
rate limiter to do this job. Specifically, MasQ provides QP-level QoS
by mapping QPs to different rate limiters, where each is configured
with a predefined QoS policy. In addition, to achieve better scalabil-
ity given limited hardware resources, MasQ proposes QP grouping,
with which QPs can be grouped following a certain rule, and then
mapped to one rate limiter. For example, MasQ’s default policy is
first grouping QPs by tenant and then performing the mapping.
Thus, this approach can provide as many tenants as the number of
rate limiters, while the QoS of each tenant is guaranteed.

Currently, MasQ exploits SR-IOV VF to implement QoS. The
reason is that SR-IOV is well supported by commodity RNICs, and
the way to configure QoS policies per VF is also well studied [5]. The
main difference is that we do not pass VF directly to VMs; instead,
we ask the MasQ’s backend driver to determine which VF is used
to serve the requests (e.g., “create_qp”) from different tenants or
different VMs or different applications as shown in Fig. 3. Note that
the mapping policy between QPs and VFs is left for future work.
However, the solution leveraging SR-IOV VF as the hardware-based
rate limiter is a little “overkill”. We suggest that the future RNIC
support more lightweight and finer-grained rate limiters, such as
providing QoS guarantees to each QP group.

3.3.4 Connectionless transport. This paper mainly focuses on
connection-based transport, such as the reliable connection (RC)
mode. However, it is well known that RC-mode RDMA faces the
challenge of scalability issues [20, 42]. Therefore, supporting data-
gram-based RDMA is also very important. We should note that
extending the proposed MasQ to support datagram-based RDMA
is straightforward. Since network information will be carried by
the work queue element (WQE) of each RDMA datagram mes-
sage, we can ask the user space library to forward all datagram
WOQESs through the control path instead of the zero-copy data path.
Therefore, the RConnrename can easily replace the virtual network
information by the physical one before forwarding the WQE to the
real device driver. Once receiving the WQE, the RNIC can directly
write the message data to the application’s user space through DMA.
MasQ handles the datagram WQEs in a similar way as vVRDMA [39]
and FreeFlow [33]. Therefore, we omit the detailed discussions.
Furthermore, some software, such as Mellanox’s VMA [7], may
depend on the raw Ethernet mode. Note that raw Ethernet can also
be supported by MasQ in exactly the same way as supporting the
datagram transport.

4 EVALUATION

In this section, we will answer the following two questions by com-
paring MasQ with state-of-the-art solutions — 1) whether MasQ can
provide competitive performance and 2) whether all virtualization
requirements of VPC are fulfilled — and we summarize the main
conclusions here:

(1) MasQ achieves almost the same performance as Host-RDMA
among all test cases against both benchmarks and typical
applications. MasQ’s overhead mainly resides on the control
path, which will result in a slightly longer time to setup
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Table 3: Experiment settings.

Parameter Setting
CPU Two Intel Xeon E5-2690 v4 2.60 GHz 14
Server core CPUs
Memory DDR4 96 GB
oS Ubuntu 14.04.1 (3.13.0-32-generic)
CPU 14 cores
VM Memory 32 GB
0os Ubuntu 14.04.1 (3.13.0-32-generic)
CPU 14 cores
Container | Memory 32 GB
Image Ubuntu 14.04
Topology Direct
RNIC Mellanox CX-3 Pro 40 Gbps RoCE
RDMA driver Mellanox OFED-4.0-2.0.0.1 for Ubuntu
14.04
Hypervisor QEMU-2.1.5, Docker-17.03.0-ce
Virtual TCP/IP network | Open vSwitch-2.7.0 & VLXAN, Weave-
2.5.2 & VXLAN

connections. However, for most applications, connection
establishment is not on the critical path and thus has little
effect on the overall performance.

(2) MasQ’s flexibility makes it very effective to realize all re-
quirements of VPC, such as supporting a large number of
instances and providing isolations for traffic, performance,
and security.

Host-RDMA FreeFlow SR-IOV MasQ
Host Container vm vm

D S y

Lve ]

RNIC
RDMA TCP/IP . o RDMA ___o TCPIP
- interface |:| interface network ¢ .network
Figure 7: Architecture overview of four candidates under
test.

4.1 Methodology

As shown in Fig. 7, four candidates are evaluated in this section,
including Host-RDMA to identify the upper-bound performance
of virtualization technologies. As shown in Table 3, all candidates
are evaluated in the same testbed consisting of two servers directly
connected by Mellanox CX-3 Pro 40 Gbps RoCE RNICs. Each server,
which runs Ubuntu 14.04.1 with kernel version 3.13.0-32-generic, is
equipped with two Intel Xeon E5-2690 2.60 GHz 14 core CPUs and
96 GB RAM. We run virtual machines using QEMU (v2.1.5) [16] and
set up a VXLAN-based virtual TCP/IP network using Open vSwitch
(v2.7.0) [10]. To prevent VM resources from being the bottleneck, we
provide 14 cores and 32 GB memory for each VM. Since FreeFlow is
only available in containers, we also use Docker (v17.03.0-ce) [1] to
run containers and set up a VXLAN-based virtual TCP/IP network
using Weave (v2.5.2) [15]. We use Docker’s runtime options [14] to
limit the CPU and memory resources of each container to the same
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settings as the VM. Unless otherwise specified, all abovementioned
hardware resources are on the same NUMA node.

4.2 RDMA performance and overhead

In this subsection, we will evaluate the basic communication per-
formance of MasQ through both the perftest and MPI benchmarks.
Furthermore, we will determine MasQ’s overhead by profiling the
process of RDMA’s connection establishment.

4.2.1 Basic RDMA performance. Since high-performance data
communication is one of the most important reasons why appli-
cations choose RDMA, we first evaluate MasQ’s latency, through-
put, and scalability to show that the proposed MasQ can provide
competitive performance for applications running in the VMs of
public clouds. RDMA supports both two-sided (send) and one-sided
(write/read) operations. We use ib_send_lat and ib_send_bw
to test two-sided performance, and ib_write_lat and ib_write_-
bw to test one-sided performance. All these tools come from the
perftest suite (v3.0) [12].

Latency: we measure the latency of send/write by sending/wri-
ting a 2-byte message 1000 times. Furthermore, to determine how
much overhead is introduced by the software of the data path,
we also measure the average call time of relevant Verbs with the
standard system API for time acquisition, i.e., gettimeofday. From
Fig. 8a, we can see that MasQ has the same performance as that
of SR-IOV. We also observe that the latency of VF-based virtual
networks (MasQ/SR-IOV) is a slightly longer than that of PF-based
(Host-RDMA) virtual networks. We suspect more complex com-
munication and resource management on the RNIC when dealing
with VF to account for lower performance. However, the difference
is negligible considering that the network queueing delay is usu-
ally higher than 10 us [45]. In addition, if the best-effort service
model is adopted, MasQ can map VMs to PF instead of VF so that
applications can achieve almost the same RDMA latency as that
of Host-RDMA, as shown in Fig. 9. send latency on FreeFlow is



MasQ: RDMA for Virtual Private Cloud

40 —e— Host-RDMA 40 —o— Host-RDMA

— 30 |-—*— FreeFlow =130 —4— FreeFlow

@ —=— SR-IOV a —=— SR-lOV

& 20 | ¢ MasQ (-% 20 ¥ MasQ

S0} S10F

o o

= 0 a0 i B S = o - 1 1

2 32 512 8k 2 32 512 8k
Message size (B) Message size (B)

(a) send throughput (b) write throughput

Figure 10: RDMA throughput between a pair of VMs on dif-
ferent hosts.

40

@

Q —_ —o— |deal

Gl & 30 —=—SR-OV

= o —%—MasQ

3 —e— Host-RDMA =200

P —=— SR-IOV 340k

© —%— MasQ =10

% o Il Il Il Il Il Il Il Il Il O Il | 1

S N T b a6 Q,bc.\f;%rﬁ%c)’\'}\g’])‘ 0 10 20 30 40
g Number of QP Bandwidth capability (Gbps)

Figure 11:
throughput of
QP connections.

Aggregate Figure 12: MasQ can effec-
multiple tively control the rate of
flows.

approximately 2.6 and 2 times higher than that on Host-RDMA
and MasQ, respectively, because FreeFlow needs to redirect each
data path operation to its software-based backend, i.e., FFR, which
introduces extra overhead to the corresponding Verbs and nega-
tively affects end-to-end latency. As shown in Fig. 8b, the time to
perform FreeFlow’s data path Verbs is at least 5 times higher than
that for Host-RDMA, while MasQ and SR-IOV remain the same.
Since MasQ is built on hardware and directly maps the data path
resources, e.g., QPs and MRs, to the VM, there is no more overhead
on the data path. This fact guarantees that MasQ can obtain almost
the same RDMA latency as that of SR-IOV or even Host-RDMA,
and the experimental results confirm this expectation.

Throughput: we measure throughput by sending and writing
different sizes of messages ranging from 2 B to 32 KB through one
QP connection. The result in Fig. 10 shows that MasQ achieves the
same throughput for all sizes of messages compared to Host-RDMA
and SR-IOV. FreeFlow, however, has lower throughput when the
message size is not large enough (~8 KB). This is because FreeFlow
consumes more CPU cycles in the data path than does MasQ when
sending one message. This negatively affects throughput when the
FFR CPU is a bottleneck. This finding again confirms that MasQ
introduces no overhead into the data path.

Scalability: to prove that MasQ has the same scalability as Host-
RDMA and SR-IOV, we evaluate the aggregate throughput of MasQ
over multiple QP connections. We use the tool ib_write_bw and
set the message size to 65536 bytes. As shown in Fig. 11, when we
increase the number of QPs from 1 to 1024, the throughputs of MasQ
and SR-IOV remain the same. This proves that MasQ introduces
negligible overheads in the critical path and has the same scalability
as Host-RDMA and SR-IOV.

4.2.2  MPI benchmark performance. MPI is the standard commu-
nication paradigm adopted by most HPC applications. Therefore,
its performance is one of the most important metrics. We exploit
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the MVAPICH2 (v2.3.2) [9] and built-in OSU micro-benchmarks to
evaluate the performance of different MPI operations. The tests run
with two processes distributed on two VMs/hosts/containers in our
testbed. The results are shown in Fig. 13. For both the communi-
cation latency and bandwidth, MasQ has the same performance
as that of SR-IOV. Furthermore, we compare the performance of
collective MPI operations that are widely used by HPC applications.
Typically, there is a set of collective operations, such as broadcast,
scatter/gather, and allreduce. In this paper, we choose the broadcast
and allreduce operations as the representative. It should be noted
that all reduce-related operations failed to run on FreeFlow due to
memory corruption. Therefore, we omit FreeFlow in some tests.
Again, as shown in Fig. 14, we can find that the proposed MasQ can
obtain the same or even better performance than that of SR-IOV.
It should be noted that both SR-IOV and MasQ perform slightly
worse than Host-RDMA in all tests. However, MasQ can achieve
better performance by mapping VMs to PF.

4.2.3 Control path overhead. The overhead introduced by MasQ
mainly resides on the control path and slightly increases the delay of
connection establishment. To clarify these effects, a simple program
following the procedure of Fig. 1 is used. The program establishes a
specific number of connections at a time. In the end, it reports the
average delay to establish one RDMA connection and the average
call time of each Verbs. For MasQ, we also use ftrace [2] to measure
the execution time of all critical functions in each Verbs’ kernel
routine. Then, we can determine the cost of each software layer
illustrated in Fig. 16a.

Currently, we do not consider the overhead of the remote con-
troller for the following three reasons. 1) Although the round trip
time for querying the controller usually takes approximately 100
s, it is not necessary at most times with the help of a local cache.
2) For latency-sensitive applications, the controller can push down
the mapping information in advance. As discussed in Sec 3.3.1,
the overhead to maintain such a mapping table is negligible. 3) In
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Figure 16: Overhead breakdown of MasQ.

addition, both FreeFlow and SR-IOV solutions depend on remote
controllers, so it is fair to omit the controller factor here.

As shown in Fig. 15a, MasQ takes approximately 2.1 ms to estab-
lish an RDMA connection, which is 0.2 ms longer than does SR-IOV.
The overhead is mainly caused by virtio-based frontend/backend
communication, which introduces a delay of approximately 25 us
for each Verbs. Since most RDMA-based applications, such as HPC
and distributed machine learning applications, maintain long-lived
RDMA connections, the connection overhead has little effect on the
application’s overall performance regardless of the message size.
However, for short connections, it takes slightly longer (~11% in
our test cast) time to establish an RDMA connection over MasQ
than that over SR-IOV based solutions. We also observe that both
MasQ and SR-IOV take much longer to establish a connection than
does Host-RDMA. This gap is caused by VF, which increases the
processing delay of each control path Verbs on the RNIC. FreeFlow
takes the slowest time to establish an RDMA connection, which is
1.8 and 4.8 times longer than MasQ and Host-RDMA, respectively.
This is because FreeFlow must virtualize data path resources on
the control path, which requires additional memory allocation and
mapping operations. As shown in Fig. 15b, these operations intro-
duce large overhead for Verbs such as “reg_mr”, “create_cq” and
“create_qp”.

For all control path Verbs on MasQ, Fig. 16b shows their detailed
cost on each software layer. Note that the cost of MasQ (labeled
“MasQ Driver”) is obtained by adding up the delay introduced by
both frontend and backend components of MasQ. We can see that
more than 80% of the overhead actually comes from the RDMA
kernel driver and user space library, while less than 20% comes
from MasQ. This proves that the implementation of MasQ is very
efficient.

4.3 Feature validation

In this subsection, we will validate whether all claimed features of
MasQ have been effectively achieved.
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Table 4: Cost of security-related operations.

Caller Basic op. function | Time cost (us)
insert_rule() 1.5
update_rules reset_conn() 518
. valid_conn() 2.5
modify_qp RTR insert_conn() 1.5
destroy_qp delete_conn() 1.5

Table 5: Maximum number of VMs.

RDMA Virtualization | Max #VM | Limitation factor
SR-IOV 8 Non-ARI PCle
MasQ 160 Host memory

4.3.1 QoS and performance isolation. The proposed MasQ im-
plements QoS, i.e., rate limiting, by exploiting SR-IOV VFs. We first
show that when the bandwidth of a VF is well limited, the aggre-
gate bandwidth of all corresponding MasQ RNICs can be limited
accordingly. We start a single flow using ib_write_bw between
two VMs on different hosts. We limit the flow rate of the VF and set
the maximum bandwidth from 1 Gbps to 40 Gbps. From Fig. 12, we
can find that the controlled bandwidth is close to the bandwidth we
set. It should be noted that MasQ achieves this without any CPU
overhead.

MasQ can isolate performance between two VMs, which means
that the throughput of one VM can be accurately regulated without
affecting the other. We demonstrate this by running two concur-
rent flows between VM pairs and report their average throughput
over each second. As shown in Fig. 17, two VMs first obtain similar
bandwidth of approximately 18.9 Gbps in the absence of rate limit-
ing. Then, the bandwidth of VM 0 is limited to 10 Gbps and then
to 5 Gbps, and we find that VM 1 can quickly consume all spare
bandwidths since there is no limitation on it.

4.3.2  Security. In the rest, we will determine whether RDMA
connections can be successfully torn down if the corresponding
rules request it. As shown in Fig. 17, VM 0’s bandwidth successfully
drops to 0 once the security rule kicks off. Now, let us analyze the
cost of the above mechanism. Generally, RConntrack exposes two
types of operations, one for maintaining security rules and the
other for tracking RDMA connections. We use ftrace to measure
performance. Table 4 shows that the delay to reset a connection is
approximately 518 us, while other operations can finish in a few
microseconds. Furthermore, as shown in Fig. 18, we find that the
cost of resetting an RDMA connection mainly comes from the RNIC
and varies with different traffic loads. Generally, connection reset
is faster on PF than VF. In addition, a longer delay is expected with
increased traffic load. Note that connection reset is only triggered
when the IT facility updates security rules and never introduces
overhead into normal RDMA communication. Although we believe
that the overhead is acceptable, we strongly suggest that future
RNICs provide more efficient ways to stop a QP.

4.3.3  Scalability. As discussed in section 3, MasQ enables the
flexibility to compose virtual devices for VMs at a finer granularity,
i.e., the QP-level. To demonstrate the benefit, we launch as many
VMs as possible on the host, where each VM’s vCPU is set to 1, and
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memory is set to 512 MB. As shown in Table 5, MasQ’s maximum
number of VM on a single host is approximately 20 times that
of SR-IOV. Note that the number of VMs supported by MasQ in
this experiment is limited by the capacity of the main memory.
Therefore, we can increase the number of VMs simply by either
adding more DRAM or reducing the memory size of each VM.
Furthermore, We randomly select a certain number of VMs and run
one flow using ib_write_bw for each. Fig. 19 shows the aggregate
throughput of all flows and proves that MasQ can obtain scalability
without sacrificing communication performance.

4.4 Application performance

In this section, we show the performance of Graph500, KVS, and
Spark. Graph500 [3] is an MPI benchmark for data-intensive HPC
workloads. KVS is an implementation of HERD [31], which is the
state-of-the-art solution for RDMA-based key-value stores. Spark
is a large-scale data analytic engine. We compare the application
performance on MasQ with that on platforms using Host-RDMA,
FreeFlow, and SR-IOV.

4.4.1 Graph500. There are three kernels in Graph500, kernel
1 is used to construct graphs according to the input parameters,
kernel 2 is used to perform the breadth-first search (BFS) on the
graph constructed by kernel 1, and kernel 3 performs single source
shortest path (SSSP) computation on the same graph. All results are
validated by the validation procedure provided by the benchmark.

We run graph500 (v3.0.0) BFS and SSSP tests with parameters
“scale=26" and “edge_factor=16", which consumes approximately
26 GB and 38 GB memory, respectively. The tests are run with 16
MPI processes that distribute on two VMs/hosts in a round-robin
fashion. Each test is run five times, and the average results are
reported. The performance metric TEPS means “traversed edges
per second”. Fig. 20 shows the performance of the two tests on
different platforms (we omit FreeFlow here because we were unable
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mance. Spark Groupby.

to run this benchmark on FreeFlow due to memory corruption).
Compared with Host-RDMA and SR-IOV, MasQ has almost no
performance degradation.

4.4.2 KVS. Key-value stores are widely used in large-scale web
systems. We use them to compare the performance of different
virtual networks driven by a large number of small messages. Both
the program and the benchmark are derived from rdma_bench [13],
and we revise its RPC to use RC only. To prevent the CPU from
becoming a bottleneck, we run a KVS server with 14 workers. Each
worker owns a key space partition populated with 8 million key-
value pairs, each of which maps a 16-byte key to a 32-byte value.
Then, we use a variable number of client threads on a separate
machine to issue requests. The workload consists of 95% GET and
5% PUT operations, with keys chosen uniformly at random from
the inserted keys.

Fig. 21 shows the aggregate throughput of the KVS server. The
maximum throughput on MasQ and Host-RDMA is 9.7 Mops. At
this point, the RNIC is the bottleneck and we cannot further improve
the throughput by adding more clients or workers. The highest
throughput of SR-IOV is approximately 1 Mops lower than that
of MasQ due to the cost of IOMMU (e.g., Intel VT-d). In principle,
MasQ does not require IOMMU to perform DMA address transla-
tion, thus avoiding such overhead. FreeFlow has the worst perfor-
mance, with throughput only up to approximately 1 Mops. This is
because FreeFlow requires its software-based backend, i.e., FFR, to
forward each data path operation. Thus, FFR quickly becomes a
bottleneck. The only way to eliminate this bottleneck is to assign
more forwarding threads to the FFR but at the cost of consuming
more CPU cores.

4.4.3 Spark. Apache Spark is a popular platform for big data
applications. The RDMA extension for Spark is published in binary
from OSU’s high-performance big data project [4]. We run RDMA-
Spark (v0.9.5) and the basic benchmarks (v0.9.2) [11], GroupBy
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and SortBy, on two nodes. Each of them runs one worker and one
executor. Moreover, we restrict the worker cores to 4 and memory to
32 GB on each node. Each benchmark is performed with 8 mappers
and 8 reducers so that the job is running with a full subscription on
8 cores of the two nodes. The dataset has 131072 key-value pairs
with a 1 KB value size. The experiment runs ten times, and the
average job execution time is shown in Fig. 22. According to the
results, we find that MasQ can obtain similar performance as that
of SR-IOV.

We also observe that the performance of MasQ and SR-IOV is
slightly worse than that of Host-RDMA and FreeFlow. We believe
that it is mainly caused by the overhead of the VM. To reveal
VM’s effects, we do a breakdown of GroupBy job by DAG stages.
This can be done with the help of Spark’s application monitoring
tool [8]. The GroupBy job is divided into two stages, FlatMap and
GroupByKey, and executed by the Spark job scheduler sequentially.
The first stage (FlatMap) has no network communication, but the
second stage (GroupByKey) generates much network traffic due
to data shuffling. As shown in Fig. 23, FlatMap consumes more
time on VM (MasQ/SR-IOV) than on the host (Host-RDMA) and
container (FreeFlow). However, since FreeFlow introduces overhead
in network communication, MasQ and FreeFlow end up with almost
the same completion time in the second stage. It should be noted
that MasQ achieves this with no CPU involvement, while FreeFlow
consumes at least one CPU core.

5 DISCUSSION

To achieve good performance, RoCEv2 requires a lossless network
that is achieved by enabling priority-based flow control (PFC)
within the network. The PFC pauses all related upstream send-
ing queues once it detects a risk of packet loss. Although PFC helps
to reduce the packet loss and the retransmission overhead, PFC
storms may occur and punish victim flows. To address this prob-
lem, advanced congestion control algorithms are expected either
to minimize the possibility of PFC storms or to enable PFC-free
deployment of RDMA networks, such as DCQCN [45], NDP [23]
and HPCC [35]. Since MasQ is orthogonal to them, any advanced
algorithm can be used, and all MasQ’s good features still hold.

Live migration for RDMA-capable VM is a difficult job for both
hardware- and software-based virtualization solutions. The main
reason is that RDMA bypasses the kernel as well as the hypervisor,
so it is difficult to mark dirty pages during migration. Furthermore,
one-sided RDMA operations bypass the software on the receiver
side, so the software never knows which pages are modified by the
remote peer. Recently, AccelNet [22] proposed a live migration solu-
tion with the help of applications. To migrate a VM, the application
actively disconnects all RDMA connections, falls back to TCP/IP,
and then starts migration. After migration, all RDMA connections
should be re-established explicitly. We believe that this solution
also applies to MasQ.

Modern data centers may use packet headers to perform net-
work diagnosis or achieve other functionalities. Most of the features
only rely on the information of the underlay network, but some
may require tenants’ information (e.g., virtual IPs) in the overlay
network. Generally, MasQ has the ability to provide such infor-
mation, which can be achieved by maintaining a mapping table
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between the (physical IP, QPN) and the virtual IP. Compared with
tunnel-based solutions, this method introduces the overhead of ta-
ble maintenance. However, one of the advantages is that it requires
no additional header so that MasQ can carry more payload given a
fixed MTU.

6 CONCLUSIONS

RDMA has become increasingly more important for improving
the performance of large-scale applications. However, RDMA is
still unavailable in VMs of public clouds due to the lack of a prac-
tical RDMA network virtualization solution. To fill this gap, we
propose a software-defined RDMA virtualization solution, namely,
MasQ, to achieve this goal with negligible overhead. In particular,
MasQ proposes a low-cost solution, namely, vBond, to realize a vir-
tual RoCE device by dynamically binding the virtual Ethernet and
RDMA interfaces. Furthermore, to isolate tenants’ RDMA traffic
without degrading communication efficiency, a new per-connection
technique, instead of the traditional per-packet technique, namely,
RConnrename, is proposed. Then, we thoroughly discuss the re-
quirements of applying security rules to virtual RDMA networks
and propose a Neutron-compatible solution, namely, RConntrack,
to guarantee that all RDMA connections are properly protected.
This work does not raise any ethical issues.
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A SOFTWARE-BASED 1/0 VIRTUALIZATION

In this section, we will introduce two software-based I/O virtu-
alization methods for RDMA: paravirtualization and hybrid I/O
virtualization.

A.1 1/O para-virtualization

Paravirtualization splits the I/O device’s driver into a frontend and
a backend driver, which runs in virtual machine (VM) and host,
respectively. To complete an I/O operation, the frontend driver
first forwards the command to the backend driver, which further
delivers it to the physical device. Currently, the virtio framework
is the de facto way to implement such a frontend and backend
driver. The core of virtio is that it provides a mechanism, namely,
virtqueue, to exchange the I/O command between the frontend and
backend driver. Specifically, to deliver an I/O command, there are
three steps. 1) The frontend driver in the VM first enqueues the
I/0 command into a pre-allocated virtqueue and then calls the kick
API. The kick call will VM-exit into the host kernel and notify
the corresponding backend driver that the arrival of a new I/O
command. 2) After waking up, the backend driver first dequeues
the I/O command from the virtqueue and then forwards it to the
physical device for further processing. Once it obtains the result,
the backend driver enqueues it into the virtqueue and injects an
interrupt into the VM. 3) The corresponding interrupt handler will
execute the callback function registered by the frontend driver to
complete the I/O request’s subsequent processing.

A.2 Hybrid I/O virtualization

Hybrid I/O virtualization is proposed by HyV tailored for RDMA.
It adopts paravirtualization to virtualize the control path but imple-
ments a zero-copy data path. Therefore, only control operations,
such as creating a QP and registering a memory region, are vir-
tualized in a “paravirtual” manner. Data path operations, such as
posting a WQE and transmitting user data, are performed directly
in a zero-copy manner. For example, to create a QP, a system call
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into the frontend driver is issued by an application running in a VM.
Upon receiving the call, the frontend driver forwards the “create_-
qp” command to the backend driver through the virtio virtqueue.
The backend driver then delivers the command to the unmodified
host device driver to create a QP in RNIC. In addition, the frontend
driver maps the newly created QP into the address space of the
guest application. Thereafter, I/O requests by the application, such
as “post_send”, are posted directly to the QP through the unmodi-
fied user space device driver in a zero-copy manner. similarly, as
the application memory is registered similarly as in the QP creation,
RNIC can also directly access the application data. In the next Ap-
pendix, we will present the way in which to establish the direct
memory mapping between the guest application and the RNIC to
enable the above zero-copy data operations.

B MEMORY MAPPING

In this section, we will present how memories are correctly mapped
between VM and hardware in both directions, including both from
VM to hardware and from hardware to VM.

B.1 From device to VM

Application’s virtual QEMU’s virtual CPU’s .
Physical
address space address space address space devices
(GVA) (HVA) (HPA)
Step (2b) T Step (2c) pcimmio  (Step (2a)|  RwviC
App.’s vDoorbell QEMU's Doorbell
gCcortel page | fvdoorbell_hva: page | [(doorbell_hpa Eeortel
table table
Host RAM DRAM
Step (2b)

vDoorbell vDoorbell

Figure 24: Steps to map the RNIC’s registers (e.g., Doorbell)
to the application in the VM.

Generally, the application accesses RNIC hardware registers through
MMIO. To allow for this work in VM, we should introduce an addi-
tional mapping process to map the RNIC’s registers, e.g., Doorbell,
to the application’s virtual address space in the VM. We illustrate
this through an example of allocating a Doorbell during device ini-
tialization. (1) To initialize a device context, an application should
call Verbs “open_device”. (2) The corresponding library routine
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splits the handling process into three parts, as shown in Fig. 24.
(2a) The backend driver is requested to allocate a Doorbell on the
RNIC. Then, the backend driver obtains the Doorbell’s address in
the CPU’s address space, i.e., HPA space. We record the address as
doorbell_hpa. (2b) The frontend driver is requested to allocate a
piece of memory with the same size as the allocated Doorbell and
then maps it to the application’s virtual address space. We record
the memory (as well as the backing physical memory) as vDoorbell
and its address in QEMU’s virtual address space (i.e., HVA space)
as vdoorbell_hva. (2c) The backend driver is requested to estab-
lish a mapping between the vdoorbell_hva and doorbell_hpa by
adapting QEMU’s page table so that access to the vDoorbell will be
routed to the real Doorbell on the RNIC. To this point, a Doorbell
on the RNIC can be accessed by the application in the VM through
MMIO.

B.2 From VM to device

To allow for RNIC to access the user memories, e.g., QPs and MRs,
in the VM through DMA, mappings between the virtual address
and physical address of these memories should be configured into
the RNIC’s memory translation table (MTT). For applications run-
ning in VM, this can be achieved with extra memory pinning and
translation. We use the example of creating a QP to illustrate this
process. (1) To create a QP, an application should call the Verbs
“create_qp”. (2) The corresponding library routine first allocates a
piece of memory for the QP. We record the virtual address of the
memory as qp_gva. Then, it forwards the request with the memory
information to the frontend driver. (3) The frontend driver first
pins the memory and translates qp_gva to qp_gpa by walking the
application’s page table and then forwards the request with the
memory information to the backend driver, including the address
mapping (qp_gva, qp_gpa). (4) Upon receiving the request, the back-
end driver first translates gp_gpa to gp_hva. Then, it again pins
the memory and translates gp_hva to gp_hpa by walking QEMU’s
page table. Futhermore, the backend driver has both gp_gva and
gp_hpa of the QP memory, and the only thing left is to write them
into the RNIC’s MTT. To this point, a QP is successfully created for
the application in the VM and can also be accessed by the RNIC
through DMA. For MR, the creation process is the same as that
illustrated above.
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