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Abstract 
Packet classification is an enabling technology to support 
advanced Internet services. It is still a challenge for a software 
solution to achieve 10Gbps (line-rate) classification speed. This 
paper presents a classification algorithm that can be efficiently 
implemented on a multi-core architecture with or without cache. 
The algorithm embraces the holistic notion of exploiting 
application characteristics, considering the capabilities of the 
CPU and the memory hierarchy, and performing appropriate data 
partitioning. The classification algorithm adopts two stages: 
searching on a reduction tree and searching on a list of ranges. 
This decision is made based on a classification heuristic: the size 
of the range list is limited after the first stage search.  
Optimizations are then designed to speed up the two-stage 
execution. To exploit the speed gap (1) between the CPU and 
external memory; (2) between internal memory (cache) and 
external memory, an interpreter is used to trade the CPU idle 
cycles with demanding memory access requirements. By applying 
the CISC style of instruction encoding to compress the range 
expressions, it not only significantly reduces the total memory 
requirement but also makes effective use of the internal memory 
(cache) bandwidth. We show that compressing data structures is 
an effective optimization across the multi-core architectures. 

We implement this algorithm on both Intel IXP2800 network 
processor and Core 2 Duo X86 architecture, and experiment with 
the classification benchmark, ClassBench. By incorporating 
architecture-awareness in algorithm design and taking into 
account the memory hierarchy, data partitioning, and latency 
hiding in algorithm implementation, the resulting algorithm shows 
a good scalability on Intel IXP2800. By effectively using the 
cache system, the algorithm also runs faster than the previous 
fastest RFC on the Core 2 Duo architecture. 

Categories and Subject Descriptors    C.1.4 [Processor 
Architectures]: Parallel Architectures; C.2.6 [Computer-
communication Networks]: Internetworking – Routers; D.2.2 
[Software Engineering]: Design Tools and Techniques; 

General Terms   Algorithms, Experimentation, Performance 

Keywords   Network processor; packet classification; architecture; 
multithreading; thread-level parallelism; embedded system design 

1. Introduction 
Packet classification is an enabling technology to support 
advanced Internet services such as network security, QoS 
provisioning, traffic policing, and virtual private network. The 
following IP header fields: the source and destination addresses, 
source and destination ports, and protocol type, are generally used 
to classify packets into flows for appropriate processing. As more 
demand for triple-play (voice, video, and data) services arises, the 
pressure to perform fast packet classification becomes higher. 
However, it is still challenging to perform packet classification at 
10Gbps speed or higher by an algorithmic approach, whereas 
hardware-based solutions are both expensive and inflexible. 

There are two types of the shared memory based multi-core 
architectures: (1) the general-purpose multi-core with two or more 
levels of cache memories such as Intel Core 2 Duo [2], Sun 
Niagara [3], Cavium Octeon, and RMI XLR; (2) the special-
purpose multi-core without cache such as Intel IXP for 
networking [9] and IBM Cell for gaming [8]. However, each 
IXP’s microengine and Cell’s synergistic processor element has 
much faster on-chip memory, which the programmer can directly 
manage. The networking industry has been using both types of 
multi-cores in blade-server firewalls and in routers/switches. As 
the trend toward multi-core deployment in the networking space 
becomes strong, software design issues for network applications 
are worthy of further study. Particularly an across-platform 
classification algorithm is actively sought in order to realize 
multi-core potential. 

In general, a good packet classification algorithm focuses on 
striking a balance between space and speed to achieve optimal 
algorithmic performance. However, little work has been done in 
parallelizing these algorithms on the multi-core architectures. 
Furthermore, most of the existing classification algorithms were 
not designed for the multi-cores, and cannot be directly applied. 
New efforts are therefore required to design parallel packet 
classification algorithms for the multi-cores, which normally 
provides either hardware-assisted multithreading [3][9] to hide 
memory latency [20][21][22] or cache memories to reduce 
memory latency. 
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In this paper, we propose an architecture-aware classification 
algorithm that exploits both the application and the multi-core 
architectural features to reduce memory-access times as well as 
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hide the memory-access latency. In particular, we adopt a system 
approach in designing an efficient classification algorithm and 
finding the best solution in each algorithm decision point, from 
algorithm design to algorithm implementation. 

Even though there are many multi-core architectures, two 
challenges are common in any multi-core software design. First, 
as the speed gap between CPU and memory grows, it becomes 
increasingly difficult to keep a single CPU busy, and it is even 
more difficult to maintain multiple CPU cores running at full 
speed. Second, as the memory hierarchy becomes more complex, 
it gets harder to optimize data layout for the various levels of 
cache memories in a single CPU, and it is even harder to optimize 
data layout for the distributed cache memories in multi-cores. 
Cache compression is one way to improve the effectiveness of 
cache memories [1]. We explore the compression idea at the 
application level to address the two software design issues for the 
multi-cores. 

Firstly, compression enables cache (on-chip memories) to store 
more data, and therefore significantly reduce the memory access 
latency. For example, moving data from DRAM to SRAM on the 
Intel IXP2800 can save about 150 cycles per memory access. 
Accessing L2 cache on a Core 2 Duo processor is an order of 
magnitude faster than accessing DRAM. Furthermore, if each 
core tends to reference its own cache memories (on-chip memory), 
the shared memory becomes less of a performance bottleneck as 
more CPU cores are used. In a word, compression is a viable 
technique to allow the scalability for multi-cores. 

Secondly, decompression itself will not become a performance 
bottleneck. We observe that (1) idle CPU cycles can be utilized 
for decompression; (2) as more CPU cores are available, it is 
easier to find more CPU idle cycles on each core since the 
workload is accordingly reduced. Therefore, decompression will 
less likely become a new performance bottleneck in multi-cores. 

Thirdly, a succinct encoding scheme must be designed to tame the 
decompression complexity. Normally a high compression ratio 
comes with high processing power. We need balance the 
requirements between processing power and space reduction. For 
example, the decompression code should avoid referencing the 
external memory to take advantage of data locality. 

For classification rules, the IP addresses are represented in prefix 
and the TCP ports in range. By dividing classification into two 
stages, range-to-prefix transformation is eliminated. For example, 
a four-bit range [2 : 14] is transformed into five prefixes 001*, 
01**, 10**, 110*, and 1110. If prefix match were used to search 
all the fields, the number of rules would increase five times, 
which is contrary to the goal of reducing memory space. 
Furthermore, previous studies on classifier database 
characteristics [6] have revealed that 99.9% of the time the 
number of classifier rules that match a given source-destination 
prefix pair is no more than 5. By taking advantage of this 
classification characteristic, TIC (Two-stage Interpreting based 
Classification) is designed to handle prefixes and ranges 
separately. 

In the first-stage the RFC [13] style of reduction tree made from 
source and destination addresses is searched since RFC is still the 
fastest classification algorithm. This kind of search can be 
efficiently implemented by a multithreaded architecture. For 

instance, multiple outstanding operations can be issued 
simultaneously from a single thread to overlap CPU execution 
with memory accesses. In the second stage, an interpreter 
executes a sequence of ALU instructions to find a matching range.  
Each instruction is encoded in the CISC (Complex Instruction Set 
Computer) format in order to reduce the total program size. 

By avoiding range-to-prefix transformation and applying 
instruction-encoding scheme, the TIC algorithm can save up to 
97% of memory space compared to RFC, and the resulted 
classification data structures can be easily fit into the 4MB L2 
cache.  Furthermore, the instructions are loaded in blocks whose 
size equals to the cache-line size or internal memory block size. 
By exploiting such spatial locality, the interpreter can calculate 
range expressions efficiently. Such interpreting based 
classification shows good scalability as more cores are available. 

To summarize, the goal of this paper is to design and implement a 
high-performance packet classification algorithm on a multi-core 
through the system approach. We identify the key design issues in 
implementing such an algorithm and exploit the architectural 
features to address these issues effectively. Although we 
experiment on two representative multi-cores: the Intel Core 2 
Duo and Intel IXP2800, the same high-performance can be 
achieved on other similar multi-cores. This paper makes four 
main contributions: 

• It shows that a two-stage interpreting based packet 
classification can be efficiently implemented on the two 
distinct yet representative multi-cores. Experiments show 
that it can reduce space by 97%, its speedup is almost 
linear, and it can run even faster than 10Gbps on both 
types of multi-cores. 

• It studies and analyzes the performance issues in TIC 
algorithm design and implementation. We apply the 
systematical approach to address these issues by 
incorporating architecture awareness into parallel 
algorithm design. 

• It promotes compression as an effective means to address 
the speed gap between CPU and memory and between on-
chip and off-chip memories in multi-cores. The 
experimental results indicate that the interpreting based 
decompression technology is not a performance 
bottleneck if fetching a cache-line size of data can be 
efficiently supported in the architecture.  

• To the best of our knowledge, TIC is the first across-
platform multi-core solution for packet classification that 
achieves 10Gbps speed. It significantly reduces the space 
complexity and pre-processing time of the previous fastest 
RFC algorithm. Our experiences may be applicable to 
parallelizing other networking applications on the similar 
multi-cores. 

The rest of this paper is organized as follows. Section 2 
introduces related work on algorithmic classification schemes. 
Section 3 formulates the packet classification problem. Section 4 
briefly introduces the basic ideas of the RFC algorithm, and 
presents the TIC algorithm and its design space. Section 5 
discusses design decisions made related to the multi-core 
implementation. Section 6 gives simulation results and 
performance analysis of TIC. Section 7 presents guidance on 
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effective network application programming on multi-cores. 
Finally, section 8 concludes and discusses our future work. 

2. Related Work 
Prior work on classification algorithms have been reported in 
[6][7][12][13][14][16][17]. Below we mainly compare 
algorithmic classification schemes. 

Bit vector linear search algorithms [7][16] treat the classification 
problem as an n-dimensional matching problem and search each 
dimension separately. When a match is found in one dimension, a 
bit vector is returned identifying the match and the logical AND 
of the bit vectors returned from all dimensions identifies the 
matching rules. However, fetching the bit vectors requires wide 
memory and wide buses, and thus are memory intensive. This 
technique is more profitable for ASIC than for NPU because the 
NPU normally has limited memory and bus width. 

Hierarchical Intelligent Cuttings (HiCuts) [12] recursively 
chooses and cuts one searching dimension into smaller spaces, 
and then calculates the rules that intersect with each smaller space 
to build a decision tree that guides the classifying process. 
HyperCuts [14] improves upon HiCuts, in which each node 
represents a decision point in the multi-dimensional hypercube. 
HyperCuts attempts to minimize the depth of the decision tree by 
extending the single-dimensional search into a multi-dimensional 
one. On average HiCuts and HyperCuts achieve good balance 
between speed and space, however they require more memory 
accesses than RFC in the worst case. 

Trie-based algorithms, such as grid-of-tries [17], build 
hierarchical radix tree structures. If a match is found in one 
dimension another search is started on a separate tree pointing to 
another trie. In general, trie-based schemes work well for one- or 
two-dimensional searches, however, their search time and 
memory requirements increase significantly with the number of 
search dimensions. For a d-dimensional classifier, the worst-case 
search time is Wd-1 and the storage requirement is O(dWN), where 
N is the number of rules in the classifier and W is the length of IP 
address. The Extended Grid-of-Tries with Path Compression 
(EGT-PC) algorithm proposed in [6] describes a two-stage 
approach: first determine the matched source-destination prefix 
pair via Grid-of-Tries with Path Compression, and then linearly 
search a list of candidate rules that match the prefix pair. If k-bit 
expansion is used, the worst-case search time is (H + 2)*W/k + L, 
where H is the maximum length of the tries, and L is the number 
of candidate rules. 

RFC algorithm [13], which is a generalization of cross-producting 
[17], is so far the fastest classification algorithm in terms of the 
worst-case performance. Bitmap is a compress technique widely 
used in networking. Bitmap has been used in IPv4 forwarding 
[10][18], IPv6 forwarding [19], and packet classification [5].  We 
designed the bitmap-RFC [5] classification algorithm that reduces 
memory space significantly by compressing the cross-product 
tables. However, the bitmap-RFC relies on an NPU bit-
manipulation instruction (POP-COUNT) to achieve high-
performance. The TIC algorithm performs compression by using 
the CISC instruction encoding to save memory space. This 
interpreting scheme can be efficiently implemented on any multi-
core processor while achieving better space reduction than 
bitmap-RFC. 

3. Problem Statement 
Packet classification is the process of assigning a packet to a flow 
by matching certain fields in the packet header with a classifier. 
The following IP header fields (5-tuple) are generally used: the 
source and destination addresses, source and destination ports, 
and protocol type. A classifier is a database of N rules, each of 
which, Rj, j=1, 2, …, N, has d fields and an associated action that 
must be taken once the rule is matched. The ith field of rule Rj, 
referred to as Rj[i], is a regular expression pertaining to the ith 
field of the packet header. The expression could be an exact value, 
a prefix, or a range. A packet P is said to match a rule Rj if each 
of the d fields in P matches its corresponding field in Rj. Since a 
packet may match more than one rule, a priority must be used to 
break the ties. Therefore, packet classification is to find a 
matching rule with the highest priority for each incoming packet. 

Since the speed of a packet classification algorithm is dominated 
by memory accesses in a single-core, previous studies focus on 
using the number of memory access to measure the classification 
speed. For the multi-core architectures, the memory hierarchy 
such as two levels of cache memories and on-chip and off-chip 
SRAM memories make such measurement inaccurate.  In addition, 
other optimizations can be used to address the latency issue. Data 
locality can be exploited to reduce the memory latency, and 
thread-level parallelism (TLP) to hide memory latency. Therefore, 
the throughput should be used as a performance metric to measure 
the classification speed. In this paper, we investigate a way of 
trading the CPU idle cycles for reducing the memory accesses. 
We exploit both locality and TLP to reduce and tolerate the 
memory latency. The goal is to design a scalable classification 
algorithm that can run on a wide range of multi-cores at 10Gbps 
speed or higher.   

4. Developing TIC Algorithm 

4.1 RFC Reduction Tree 
Reduction tree is the most important data structure in RFC and it 
enables RFC to be the fastest classification algorithm. Let us use a 
simple example to illustrate the building process of a reduction 
tree. Figure 1 is a two-phase RFC reduction tree constructed from 
the classifier defined in Table 1, in which each rule has three 
fields and each field is 3 bits long. The reduction tree is formed 
by two phases. 

 

Table 1.  Example of a simple classifier 

Rule# F1 F2 F3 Action 
R1 001 010 011 Permit 
R2 001 100 011 Deny 
R3 01* 100 *** Permit 
R4 *** *** *** Permit 

 

In the first phase (Phase 0), each field (F1-F3) is expanded into a 
separate preprocessed table (Chunk 0-2). Each chunk has an 
accompanying equivalence class ID (eqID) array, and each chunk 
entry is an index to its eqID array (table). Each entry of eqIDi is a 
bit vector (Class Bitmap, CBM) recording all the rules matched as 
if the corresponding index to the Chunk array is used as input. For 
example, the value of the first entry of Chunk 0 is 0, which points 
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to the first element of array eqID0 whose bitmap is ‘0001’. Each 
bit in a bitmap corresponds to a rule, with the most significant bit 
corresponding to R1, and the least significant bit to R4. Each bit 
records whether the corresponding rule matches or not for a given 
input. Thus, bitmap ‘0001’ means only rule R4 matches when 
index 0 of Chunk 0 is used as F1 input. Similarly, the first entry of 
Chunk 2 has value 0, and it points to the first entry of eqID2 
whose bitmap is ‘0011’, indicating only rules R3 and R4 match if 
index 0 of Chunk 2 is used as input for field F3. 

In the second phase (Phase 1), a cross-producting table (CPT) and 
its accompanying eqID table are constructed from the eqID tables 
built in Phase 0. Each CPT entry is also an index, pointing to the 
final eqID table whose entry records all the rules matched when 
the corresponding index is concatenated from “eqID0eqID1eqID2”. 
For instance, the index of the first entry of CPT is 0, calculated 
from concatenating three bit strings ‘00’+‘00’+‘00’. The rules 
matched can be computed as the intersection of eqID0[0] (‘0001’), 
eqID1[0] (‘0001’), and eqID2[0] (‘0011’). The result is ‘0001’, 
indicating rule R4 matches when ‘000-000-000’ is used as input 
for the three fields F1, F2, and F3. 

The lookup process for the sample packet P(010,100,100) in 
Figure 1 is as follows: 

1) use each field, P1, P2 and P3 (i.e., 010,100,100) to look 
up Chunk 0-2 to compute the index of cross-producting 
table A by Chunk0[2]*3*2+Chunk1[4]*2+Chunk2[4], 
which is 16;  

2) the value of CPT[16] is 3 and it is used as an index to 
eqID3. The result of ‘0011’ indicates that rules R3 and R4 
match the input packet P. Finally, R3 is returned as it has 
higher priority than R4 according to the longest match 
principle.  
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Figure 1. A two-phase RFC reduction tree 

 
Figure 2. 4-phase RFC reduction tree 

 

A 4-phase RFC reduction tree for 5-tuple IP packet classification 
is composed in Figure 2. There are seven chunks (corresponding 
to 16 bits lower/higher src/des IP address, 16 bits src/des port 
number, 8 bits protocol type respectively) in phase 0, three CPTs 
in phase 1, two CPTs in phase 2, and one CPT in phase 3. It 
achieves the fastest classification speed by using 13 memory 
accesses per packet.  Astute readers may notice that the size of 
CPTs increases non-linearly in later reduction phases. The fast 
speed of RFC is thus obtained at the cost of memory explosion. 

4.2 TIC Algorithm Description 
Since the space will explode in RFC when the number of rules 
becomes large, two-stage classification algorithms [6][11] were 
proposed to balance classification speed and memory space. In a 
two-stage classification algorithm, the IP address fields and TCP 
port numbers are searched separately. The advantages of such 
separation are as follows: 

Firstly, the IP address fields are normally represented in prefix 
and the TCP port fields in range. Because range-to-prefix 
transformation increases the number of actual rules, it will 
increase memory space accordingly. Furthermore, matching a 
prefix is memory-intensive operation and matching a range is 
ALU-intensive operation. It will be more efficient to handle them 
separately, especially on a multi-core where there are idle CPU 
cycles when more CPU cores are available. 

Secondly, previous studies on classifier database characteristics 
[6] have revealed that 99.9% of the time the number of classifier 
rules that match a given source-destination prefix pair is no more 
than 5. Our analysis on the synthetic classifiers generated by 
ClassBench [4] find that 95.8% of the time the number of 
matching rules is no more than 10. Therefore, the number of 
ranges to be matched after the first stage is limited. 

Our Two-stage Interpreting based Classification (TIC) algorithm 
consists of the following two stages: 

The first stage is to search a RFC reduction tree composed from 
the source and destination addresses. As shown the upper part of 
Figure 2, there are three phases of search with 7 memory accesses. 
In phase 0, it contains 4 chunks: chunk 0 and 1 searches the low 
and high 16 bits of source IP address, and chunk 2 and 3 searches 
the low and high 16 bits of destination IP address respectively. In 
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phase 1, it contains 2 CPTs made from the results of the 16-bit 
address match. In phase 2, a list of range expressions is returned. 

The second stage is to search a list of range expressions made 
from the port numbers and protocol fields. Ranges in the list are 
encoded as a sequence of ALU instructions to further reduce 
memory space, and an interpreter is implemented to execute those 
instructions to find a match. The Range Interpreter (RI) is a kind 
of simple virtual machine. It fetches a block of code from external 
memory to internal memory (cache), and then it decodes and 
executes each instruction sequentially. The interpreter exploits 
data locality by matching the block size to the cache-line size or 
internal memory block size. By doing so, the external memory 
accesses are dramatically reduced. 

Our analysis on the experimental classifiers shows that 94.9% of 
lists of candidate ranges can be encoded into one block, whose 
size is 64 bytes, the same as the cache-line size of an X86 multi-
core. Therefore, 94.9% of the time the number of external 
memory accesses in the second stage is one. On the other hand, 
since the interpreter only accesses this cache line until all 
instructions in a block finish execution, it enables highly efficient 
ALU execution. 

4.3 Instruction Encoding 
In preprocessing, after the reduction tree of the first stage is 
constructed, it presents lists of potential matching rules. For the 
rule example in Table 1, four lists are available, which are (R4), 
(R1, R4), (R2, R4) and (R3, R4). Then for each list there is a code 
block that is formed by encoding the range information in the 
candidate rules. If one block can not accommodate the whole list, 
more blocks are needed. 

ClassBench [4] gives five classes of port range: WC (wildcard), 
HI ([1024 : 65535]), LO ([0 : 1023]), AR (arbitrary range), and 
EM (exact match), and two classes of protocol range: WC and 
EM. So we have about 50 (5*5*2) operators for the CISC 
instructions. 

There are three instruction formats, with one operand, three 
operands, and five operands as shown in Figure 3. Since 8 bits are 
used for encoding the operator and 16 bits for rule ID and the 
protocol field is 8 bits, the minimum of bytes required for an 
instruction is 4. For example, operator `EM-WC-WC` means that 
the protocol field requires exact match, and the source and 
destination port fields can match any port number since they are a 
wild character. Therefore, instruction `EM-WC-WC` can be 
encoded in 4 bytes in which only the protocol field is required in 
matching. Because an arbitrary range requires two 16-bit numbers 
to represent, the 8-byte and 12-byte instructions are for these 
instructions having one or two AR operands. We use 16 bits to 
store rule ID, which means that the maximum number of rules in 
the classifiers is 64K. 

When port number specification in classifiers is WC, LO or HI, 
no operand is needed. At least one operand is needed for EM, and 
two for AR. Table 2 and Table 3 show the distribution of port 
number specifications in real classifier seeds of ClassBench. For 
both source and destination port number the proportions of AR 
are very limited, so instructions of 12-byte appear very 
infrequently. In fact, the average length of instructions is less than 
1.8 long-words. 

operator operand0 Rule ID
0 7 15 31
Instruction of 4 Bytes   

operator operand0 Rule ID
0 7 15 31
Instruction of 8 Bytes 

operand1 operand2/reserved

operator operand0 Rule ID
0 7 15 31
Instruction of 12 Bytes

operand1 operand2/reserved

operand3 operand4/reserved  
Figure 3. Three instruction formats with 4, 8, and 12 bytes 

 

Table 2. Distribution of source port number 
Classifier WC HI LO EM AR 

seed1 100% - - - - 
seed2 99.90% - - 0.10% - 
seed3 99.94% - - 0.06% - 
seed4 100% - - - - 
seed5 82.85% 0.35% - 14.80% 2.00%

 

Table 3. Distribution of destination port number 
Classifier WC HI LO EM AR 

seed1 30.42% - - 57.98% 11.60%
seed2 9.25% 13.96% - 65.75% 11.04%
seed3 8.56% 12.15% - 68.08% 11.21%
seed4 30.00% 4.08% - 60.72% 5.20% 
seed5 55.46% 6.52% - 35.48% 2.53% 

 

In addition, the following instructions are supported: 

NOP is to avoid handling a partial instruction in a block. An NOP 
instruction is padded at the end of each instruction block to align 
the block size to the cache-line size. It simplifies the interpreter 
execution by eliminating these partial instructions. 

HI is to handle well-known TCP port number comparison.  TCP 
port numbers that are less than 1024 are assigned by IETF directly. 
These two ranges LO ([0 : 1023]), HI ([1024 : 65536]) are widely 
used in classification rules. Two special instructions are added to 
denote these two arranges. The size of the two instructions is 
reduced from 3 to 1 since the two well-known ranges do not need 
to store into the corresponding instructions. 

As Table 2 and Table 3 show that the frequency of the wild 
character appearance is very high. This suggests to encode this 
information in the operator field rather than the operand field 
since the potential number of operators can be as large as 256. 

4.4 The Range Interpreter 
The pseudocode of the range interpreter is listed in Figure 4. All 
instruction blocks are stored in external memory, and after the 
first stage, we get the address of the first code block. In Lines 1-2 
the blocki is fetched from external memory to internal memory 
whose size is equal to the size of cache line. Then (lines 3-4) the 
current instruction is decoded and executed. If true is returned, 
the best matching rule is found. Thus, it returns the rule ID (lines 
5-6); otherwise the search must be continued (lines 7-8). If all 
instructions in the blocki are executed and still no matching rule is 
found, then the next blocki+1 must be fetched (line 10). Please note 
that the loop (lines 3-9) accesses the current data cache-line only. 
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Figure 4. Pseudocode for the range interpreter 

 

5. Architecture-aware Design and Implementation 
We investigate TIC performance in two representative multi-core 
processors, Intel Core 2 Duo with two levels of cache and Intel 
IXP2800 without cache. The interesting architectural features of 
the Core 2 Duo are 4MB L2 cache size and 64B cache line size. 
We implement TIC in the Pthread library on Linux. 

Figure 5 draws the components of the Intel IXP2800, in which 16 
Microengines (MEs), 4 SRAM controllers, 3 DRAM controllers, 
and high-speed bus interfaces are shown. Each ME has eight 
hardware-assisted threads of execution, and 640-word local 
memory of single-cycle access. There is no cache on each ME. 
Each ME uses the shared buses to access off-chip SRAM and 
DRAM. The average access latency for SRAM is about 150 
cycles, and that for DRAM is about 300 cycles. We implemented 
TIC algorithm in MicroengineC, which is a subset of the ANSI C 
plus parallel and synchronization extensions, and simulated it on a 
cycle-accurate simulator.  

In the following, we will discuss the crucial design issues that 
have great impacts on algorithm performance. 

 

 
Figure 5. IXP2800 component diagram without I/O interfaces 

 

5.1 Space Reduction Input: Ei      //address of the first encoded block 
In addition to adopt a two-stage classification scheme to eliminate 
range-to-prefix transformation to curb the number of rules’ 
growth, we choose the CISC style instruction encoding to further 
compress the memory space for the list of ranges. It is a well-
known fact that CISC instruction encoding produces smaller 
program size than the RISC encoding. Since space reduction is 
the first priority, we adopt the CISC encoding to compress the 
memory space maximally. 

Output: ID //id of the best matching rule 
------------------------------------------------------------------------ 
1: entry = Ei ; 
2: fetch ( entry);//read the block 
3: while( getInstruction() ){ 

//get an instruction from the block 
4:  result = decode_execute(); 
5:  if (result)  
6:   return ID; 

Table 4 gives the distribution of instruction sizes for the 5 
classifiers used in our experiments, which are generated using the 
seeds listed in Table 2. On average one third of instructions is 4 
bytes. Compared to an 8-byte RISC encoding, the variable-size 
instruction encoding can save up to 15% of memory. 

7:  else 
8:   continue; 
9: } 
10: entry = Ei+1;   //another block must be fetched 
11: goto 2; 

 

Table 4. Distribution of Instruction Sizes 

Classifier 4 Bytes 8 Bytes 12 Bytes Average
(4 Bytes)

DB1 30.42% 69.58% - 1.70 
DB2 23.13% 76.87% - 1.77 
DB3 20.65% 79.35% - 1.79 
DB4 34.08% 65.92% - 1.66 
DB5 45.53% 54.40% 0.06% 1.55 

 

5.2 Data Locality and Alignment 
For a multi-core with two levels of cache memories, we 
investigate the compression approach to enable data to be stored 
in L2 cache as much as possible. When fetching a code block, its 
size must be equal to the size of L2 cache line to help the 
interpreter exploit the spatial locality. Furthermore, in order to 
store each encoded block in a cache line, the starting address of 
code blocks must be properly aligned to avoid cache line false 
sharing and code block occupying two cache lines. 

For the cache-less IXP2800, the single-cycle local memory can be 
used to store each code block. The maximal size of internal local-
memory block is 64 bytes, and we can fetch at most 64 bytes per 
SRAM read.  However, unlike the cache memories which are 
optimized for a block move, the SRAM operation is optimized for 
32-bit operations. Choosing the right size of code block needs 
careful evaluation. Our study suggests that 32-byte is the right 
size for the IXP2800.  
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5.3 Data Partitioning 
There are four independent SRAM controllers on the IXP2800 
that allow parallel access. To avoid a SRAM controller becoming 
a bottleneck, we distribute the intermediate tables of the reduction 
tree and the code blocks uniformly among the four available 
SRAM memory channels. 

5.4 Latency Hiding 
On a multi-threaded architecture (such as IXP2800), we hide the 
latency of memory access by (1) issuing outstanding memory 
requests whenever possible; (2) overlapping the memory access 
with the ALU execution [20][21][22]. For example, four memory 
operations in phase 0 at the first stage can be simultaneously 
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issued; their memory address calculation can then be overlapped 
with other memory operations. 

On a multi-core architecture (such as Core 2 Duo X86), one CPU 
core can be used as a helper thread to warm up L2 cache, and then 
the other main thread can be executed faster if the same cache 
lines are already fetched. The unified L2 cache on a Core 2 Duo 
processor can be exploited to reduce the memory access latency. 

6. Simulation and Performance Analysis 
To overcome the lack of publicly available classifiers, 
ClassBench [4] was developed for classification benchmarking 
purpose. The characteristics of the rules produced by ClassBench 
are close to the real ones’, and it is a good benchmark to compare 
the performance of classification algorithms. We construct the 
synthetic classifiers from ClassBench. In section 6.1, we 
introduce the experimental environment. In section 6.2, we show 
the effectiveness of space reduction. In section 6.3 and 6.4, we 
demonstrate the scalability of TIC algorithm on Core 2 Duo and 
IXP processor respectively. In section 6.5, we show the impact of 
block size on IXP2800. 

6.1 Experimental Setup 
We use Intel Xeon 5160 Dual-Core running at 3.00GHz with 
32KB L1 data cache, 4MB L2 cache, and a 1333MHz system bus.  
There are two dual cores on the same chip and totally there are 
four CPU cores. We also use a cycle-accurate IXP2800 simulator 
to run experiments, and each Microengine runs at 1.2GHz with 8 
threads of execution. All 4 SRAM channels are populated with 
64MB SRAM each. 

We generate packet traces from ClassBench, and use the low 
locality traces on Xeon 5160 to cancel the locality brought from 
traces as much as possible. 

We generate 10 synthetic classifiers, 5 classifiers having about 2K 
rules and other 5 having about 4K. By varying the size of these 
classifiers, we measure the effectiveness of space reduction. Since 
the classification performance of RFC and TIC on IXP2800 are 
independent to the size of classifiers and trace locality, we only 
present the results for the 2K rules. 

We use the minimal packets as the worst-case input [15]. For the 
OC-192 core routers a minimal packet has 49 bytes (9-byte PPP 
header + 20-byte IPv4 header + 20-byte TCP header). Thus, a 
classifying rate of 25.5Mpps (Million Packets per Second) is 
required to achieve the OC-192 line rate. 

 

Table 5. Memory size (MBytes) for RFC and TIC 
Size Classifier #Rules RFC TIC Imp.

DB1 1921 2.46 1.52 38%
DB2 2020 14.86 2.63 82%
DB3 2008 11.93 2.43 80%
DB4 1671 2.82 2.07 27%

2K 

DB5 2012 47.31 2.88 94%
DB6 3461 2.66 1.53 42%
DB7 3989 39.17 4.76 88%
DB8 4009 36.81 5.12 86%
DB9 2925 2.93 2.04 30%

4K 

DB10 3688 82.52 2.30 97%

6.2 Effective Space Reduction 
Table 5 lists the total memory requirements for 4-phase RFC and 
TIC. For all classifiers, the memory requirements of TIC are 
smaller than those of RFC. For DB10, we have achieved up to 
97% of memory size reduction. In addition, the memory size of 
DB10 for RFC is larger than 64MB, which is too large to store 
into any of IXP2800 SRAM channels. Furthermore, the 
preprocessing time for TIC is under 10 minutes, which are two 
orders of magnitude smaller than that for RFC. These two features 
make TIC a good candidate of classification algorithm being put 
into practical use. 

Table 6 shows the memory sizes for two stages (reduction tree 
and code block) in TIC. Most of the code blocks are within the 
range of from a few tens of KB to hundreds of KB. With such 
small memory footprint, the code blocks can be comfortably 
stored in L2 cache. Furthermore, the combined memory footprint 
is also less than 4MB when code block is small. This makes TIC 
scalable when more cores are available. 

However, in Table 6 all of the code block sizes are more than 
32KB. This indicates that L1 data cache cannot hold these code 
blocks, and it is difficult to optimize space for L1 cache.  

A careful reader may ask: with such a small code block is it 
worthwhile to do the CISC style encoding to reduce its size? The 
large code blocks as shown in cases DB7 and DB8 justify the 
necessity to reduce the code block size.  In those two cases, the 
code block sizes are more than 1MB. Without compression, it 
might be hard to store all entries in the L2 cache.  In addition, the 
size of the code blocks is comparable to that of their counterparts. 
This is because the classification rules in those two cases have 
more overlapped source and destination prefixes.  This produces 
the longer lists of the candidate rules after the first stage search. 
Therefore, the CISC style of encoding is definitely required to 
tame such memory growth for the second stage of search. 

 

Table 6. TIC memory size (MBytes) for two stages: reduction 
tree and code block 

Classifier RT Code Total 
DB1 1.48 0.04 1.52 
DB2 2.21 0.42 2.63 
DB3 1.99 0.44 2.43 
DB4 2.03 0.04 2.07 
DB5 2.58 0.30 2.88 
DB6 1.47 0.06 1.53 
DB7 2.71 2.05 4.76 
DB8 4.02 1.10 5.12 
DB9 1.98 0.06 2.04 

DB10 1.64 0.66 2.30 
 

6.3 Relative Speedups for Core 2 Duo 
Table 7 lists the classification speeds of Core 2 Duo for five 2K 
classifiers in the average cases, and Table 8 for the worst cases. 
The worst-case classification speed is calculated by the number of 
packets divided by the longest thread’s execution time, and the 
average case classification speed by the number of packets 
divided by the mean of thread’s execution times. 
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Table 7. Classifying speeds (Mpps) for RFC and TIC on average 
cases 

 1 T 2 T 3 T 4 T 
RFC 15.42 30.78 43.92 56.75 
TIC 12.89 25.31 36.85 47.73 DB1 
Imp. -16.4% -17.8% -16.1% -15.9% 
RFC 10.89 21.02 31.27 40.68 
TIC 11.43 22.37 32.37 40.24 DB2 
Imp. 4.9% 6.4% 3.5% -1.1% 
RFC 11.47 22.82 33.35 41.48 
TIC 11.72 21.07 33.36 43.28 DB3 
Imp. 2.2% -7.7% 0.0% 4.3% 
RFC 14.84 23.53 42.05 54.78 
TIC 13.06 25.95 37.41 44.86 DB4 
Imp. -12.0% 10.3% -11.0% -18.1% 
RFC 9.05 17.71 24.49 34.87 
TIC 10.64 20.79 26.73 38.88 DB5 
Imp. 17.6% 17.4% 9.1% 11.5% 
RFC 12.33 23.17 35.02 45.71 
TIC 11.94 23.09 33.34 42.99 Ave. 
Imp. -3.1% -0.3% -4.8% -5.9% 

 

Table 8. Classifying speeds (Mpps) for RFC and TIC on the 
worst cases 

 1 T 2 T 3 T 4 T 
RFC 15.42 21.54 24.31 26.61 
TIC 12.89 20.52 25.28 30.02 DB1 
Imp. -16.4% -4.7% 3.9% 12.8% 
RFC 10.89 14.59 17.09 20.49 
TIC 11.43 16.08 18.57 21.13 DB2 
Imp. 4.9% 10.2% 8.7% 3.1% 
RFC 11.47 15.57 17.96 20.96 
TIC 11.72 16.38 19.73 21.27 DB3 
Imp. 2.2% 5.2% 9.9% 1.5% 
RFC 14.84 19.08 22.52 24.43 
TIC 13.06 19.43 22.95 24.87 DB4 
Imp. -12.0% 1.8% 1.9% 1.8% 
RFC 9.05 12.14 15.19 16.44 
TIC 10.64 14.82 21.63 18.59 DB5 
Imp. 17.6% 22.1% 42.4% 13.1% 
RFC 12.33 16.58 19.42 21.78 
TIC 11.94 17.44 21.63 23.18 Ave. 
Imp. -3.1% 5.2% 11.4% 6.4% 

 

Table 9. Interpreter characteristics in processing code block 

Classifier Ave. Number of 
Range Evaluated 

Ave. Number of 
Fetched 

DB1 4.28 1.23 
DB2 1.42 1.00 
DB3 1.64 1.02 
DB4 2.31 1.05 
DB5 1.17 1.00 

 

We observe the followings: 

1. On average three CPU cores are required for TIC to achieve 
the 10Gbps wire-speed or above. TIC and RFC are 
comparable in speed since their speed differences are within 
the single digit range.  

2. The performance behavior of the worst-case and the 
average-case is different. In most cases the TIC 
performance is better than RFC in the worst-case. The 
reason is that in the worst-case it mainly measures the 
helper thread’s performance in which it has quite large 
number of L2 cache misses. In this setting, the interpreter 
overhead is insignificant. On the other hand, in the average-
case, the main thread has a very few L2 cache misses, the 
interpreter overhead might be noticeable. For example, in 
Table 8 it shows TIC’s worst-case classification speeds are 
slower than RFC’s in 1-thread and 2-thread cases. However, 
TIC’s speeds are faster than RFC in 3-thread and 4-thread 
cases.   Furthermore, when more threads available, TIC’s 
performance is better than RFC’s as shown in Table 8 when 
thread number is 2, 3, and 4. There is one regression of TIC 
worst-case performance in DB5 when 4 CPU cores are used.  
We are still investigating the causes of such regression. 

3. For the average cases, if the memory space of RFC is 
smaller than L2 cache size, RFC is better than TIC in terms 
of classification speeds. For example, for the DB1 and DB4 
classifiers TIC runs slower than RFC on average. This is 
because the interpreter overhead becomes noticeable when 
the memory is not a performance bottleneck.   On the other 
hand, if the memory space of RFC is bigger than L2 cache 
size, TIC is faster than RFC in terms of classification speed. 
For DB2, DB3 and DB5 classifiers, TIC runs faster than 
RFC in terms of classification speeds. This is because TIC 
has much less L2 cache misses than RFC which results 
from that TIC’s data structures can be locked into L2 cache 
after compression.  

Table 9 lists the code block behavior in the second stage of 
interpreting execution. Most of cases, fetching one code-block is 
enough to find a match, and no more than 2 ranges are searched 
for a match. For DB1, there are on average 4.28 ranges are 
searched. This explains why the single-thread performance of 
RFC is better than TIC in DB1. However, such advantage will be 
diminished when more cores are used since the workload is 
reduced accordingly on each core as shown in Table 8. 

6.4 Relative Speedups for IXP2800 
Table 10 lists the classification speeds of IXP2800 for five 2K 
classifiers. On average the classification speed of TIC algorithm 
reaches 10Gbps speed on 4 Microengines. Only for DB1, 10Gbps 
is ultimately reached when 5 MEs (40 threads) are used. 

Surprisingly, the RFC is faster than the TIC even though the TIC 
has 5 fewer memory accesses than the RFC. Using the cycle-
accurate simulator, we found out two causes make TIC run slower. 

First, SRAM controller in IXP2800 is optimized for 32-bit access. 
Even though the total number of SRAM accesses in TIC is less 
than that of SRAM accesses in RFC, the amount of data read in 
TIC is larger than that in RFC since at the second stage 32B is 
read in at once. As shown in Table 11, TIC has 5 fewer memory 
accesses than RFC, but it accesses 2 more long-words at least. If 
more than one code block is fetched, the difference of the total 
words accessed between those two becomes even bigger.   

Table 12 compares the SRAM FIFO size for DB1 in the average 
and the worst cases. We can see the FIFO size of TIC is bigger 
than that of RFC for both average and the worst cases. This 
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indicates that the time of a TIC SRAM operation stays in FIFO is 
longer than that of a RFC SRAM operation. Thus, it will 
eventually slow down the TIC’s classification speed. 

Second, some of 32B read are wasteful and we will analyze its 
impacts in the following section. 

 

Table 10. Classifying speeds (Mpps) of IXP2800 for RFC & TIC 
 1 T 2 T 4 T 8T 16 T 32 T

RFC 1.81 3.59 6.91 11.01 21.06 35.29 
TIC 1.38 2.38 4.76 6.72 12.22 20.49 DB1 

Imp.(%) -23.8 -33.7 -31.1 -38.9 -41.9 -41.9 
RFC 1.78 3.59 6.89 10.98 20.61 34.98 
TIC 1.70 3.24 6.25 9.39 18.23 29.98 DB2 

Imp.(%) -4.5 -9.7 -9.3 -14.5 -11.5 -14.3 
RFC 1.77 3.57 6.86 10.89 20.43 35.01 
TIC 1.67 3.20 6.19 9.02 17.99 30.07 DB3 

Imp.(%) -5.7 -10.4 -9.8 -17.2 -11.9 -14.1 
RFC 1.78 3.58 6.86 10.73 20.75 35.11 
TIC 1.59 3.01 5.79 9.08 17.28 26.90 DB4 

Imp.(%) -10.7 -15.9 -15.6 -15.4 -16.7 -23.4 
RFC 1.75 3.51 6.84 10.90 20.59 35.03 
TIC 1.71 3.23 6.24 9.41 18.16 29.58 DB5 

Imp.(%) -2.3 -7.9 -8.8 -13.7 -11.8 -15.6 
 

Table 11. Memory access behavior of RFC vs. TIC 
 # Memory Access # Long-words Accessed

RFC 13 13 LW 
TIC 7 + 1 = 8 7 + 8 = 15 LW 

 

Table 12. The SRAM read FIFO average and maximum size for 
DB1 

 Cha. 
#0 

Cha. 
#1 

Cha. 
#2 

Cha. 
#3 Ave.

Max 8 8 8 8 8 TIC Ave 0.71 1.17 2.70 3.55 2.03
Max 8 7 7 7 7.25RFC Ave 2.76 1.34 1.29 1.29 1.67

 

 
Figure 6. Classifying speeds (Mpps) and speedups for 32B and 

64B block size for DB5 

6.5 Block Size Impact on IXP2800 
Figure 6 shows the classifying speeds and speedups of TIC on 
IXP2800 when the block size is chosen as 32B and 64B 
respectively for DB5. We can see that when the block size is 32B, 
the classification speed and the speedup is all higher. 

There are two reasons: (1) Fetching 64B of code block is wasteful 
because on average the number of range evaluated is 1.17 (as 
shown in Table 9); (2) Fetching 64 bytes from SRAM makes the 
utilization of SRAM channel higher and the size of SRAM read 
FIFO larger, which causes the latency of SRAM access increasing 
badly. 

As shown in Table 12, on average the average size and the 
maximal size of SRAM read FIFO is larger in TIC than in RFC. 
This suggests that a SRAM operation will stay in FIFO longer for 
TIC than for RFC. Therefore, it takes more time for TIC to access 
SRAM data than that for RFC.  Therefore, choosing the right size 
of the code block will influence the classification performance. 

7. Programming Guidance on Multi-core 
Architectures 
We have presented the implementation and performance analysis 
of TIC in two representative multi-core processors: Intel Core 2 
Duo and Intel IXP2800. Based on our experiences, we provide the 
following guidelines for creating an efficient network application 
on a multi-core architecture. 

1) Both application and multi-core architectural features 
must be exploited to design and implement a high 
efficient networking algorithm.  

2) Compress data structures and store them in as high 
memory hierarchy as possible (e.g., SRAM, cache, on-
chip memory) to fill the speed gap between CPU and 
memory. 

3) Proper compression scheme must be chosen to balance 
the decompression complexity and space reduction, so 
that decompression will not become a new performance 
bottleneck.  

4) In general, multi-core architecture has many different 
shared resources. Pay attention to how those shared 
resources are used because they might become a 
bottleneck in algorithm implementation. 

5) Exploit as many latency hiding techniques as possible to 
hide memory access latency or reduce memory 
references. 

8. Conclusions and Future Work 
This paper proposed a scalable packet classification algorithm 
TIC that can be efficiently implemented on a multi-core 
architecture with or without cache. We implemented this 
algorithm on both Intel IXP2800 network processor and Core 2 
Duo X86 architecture. We studied the interaction between the 
parallel algorithm design and architecture mapping to facilitate 
efficient algorithm implementation on multi-core architectures. 
We experimented with an architecture-aware design principle to 
guarantee the scalability and high-performance of the resulting 
algorithm. Furthermore, we investigated the main software design 
issues that have most significant performance impacts on 
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networking applications. We effectively exploited data structure 
compression and thread-level parallelism on multi-core 
architectures to enable an efficient algorithm mapping. 

Our performance analysis indicates that we need spend more 
effort on eliminating various hardware performance bottlenecks, 
such as the SRAM buses. In addition, how to select an appropriate 
size of loading block in IXP2800 to make TIC run faster requires 
more study. We will do more research along these two directions. 
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