
Scalable Packet Classification Using Interpreting
A Cross-platform Multi-core Solution

1Haipeng Cheng, 2Zheng Chen, 3Bei Hua
1,3Department of Computer Science and Technology

2Department of Electronic Engineering and Information Science
University of Science and Technology of China

Hefei, Anhui, 230027, China
{1hpcheng, 2jzchen}@mail.ustc.edu.cn

3bhua@ustc.edu.cn

Xinan Tang
Intel Compiler Lab

SC12, 3600 Juliette Lane
Santa Clara, California, 95054, USA

xinan.tang@intel.com

Abstract
Packet classification is an enabling technology to support
advanced Internet services. It is still a challenge for a software
solution to achieve 10Gbps (line-rate) classification speed. This
paper presents a classification algorithm that can be efficiently
implemented on a multi-core architecture with or without cache.
The algorithm embraces the holistic notion of exploiting
application characteristics, considering the capabilities of the
CPU and the memory hierarchy, and performing appropriate data
partitioning. The classification algorithm adopts two stages:
searching on a reduction tree and searching on a list of ranges.
This decision is made based on a classification heuristic: the size
of the range list is limited after the first stage search.
Optimizations are then designed to speed up the two-stage
execution. To exploit the speed gap (1) between the CPU and
external memory; (2) between internal memory (cache) and
external memory, an interpreter is used to trade the CPU idle
cycles with demanding memory access requirements. By applying
the CISC style of instruction encoding to compress the range
expressions, it not only significantly reduces the total memory
requirement but also makes effective use of the internal memory
(cache) bandwidth. We show that compressing data structures is
an effective optimization across the multi-core architectures.

We implement this algorithm on both Intel IXP2800 network
processor and Core 2 Duo X86 architecture, and experiment with
the classification benchmark, ClassBench. By incorporating
architecture-awareness in algorithm design and taking into
account the memory hierarchy, data partitioning, and latency
hiding in algorithm implementation, the resulting algorithm shows
a good scalability on Intel IXP2800. By effectively using the
cache system, the algorithm also runs faster than the previous
fastest RFC on the Core 2 Duo architecture.

Categories and Subject Descriptors C.1.4 [Processor
Architectures]: Parallel Architectures; C.2.6 [Computer-
communication Networks]: Internetworking – Routers; D.2.2
[Software Engineering]: Design Tools and Techniques;

General Terms Algorithms, Experimentation, Performance

Keywords Network processor; packet classification; architecture;
multithreading; thread-level parallelism; embedded system design

1. Introduction
Packet classification is an enabling technology to support
advanced Internet services such as network security, QoS
provisioning, traffic policing, and virtual private network. The
following IP header fields: the source and destination addresses,
source and destination ports, and protocol type, are generally used
to classify packets into flows for appropriate processing. As more
demand for triple-play (voice, video, and data) services arises, the
pressure to perform fast packet classification becomes higher.
However, it is still challenging to perform packet classification at
10Gbps speed or higher by an algorithmic approach, whereas
hardware-based solutions are both expensive and inflexible.

There are two types of the shared memory based multi-core
architectures: (1) the general-purpose multi-core with two or more
levels of cache memories such as Intel Core 2 Duo [2], Sun
Niagara [3], Cavium Octeon, and RMI XLR; (2) the special-
purpose multi-core without cache such as Intel IXP for
networking [9] and IBM Cell for gaming [8]. However, each
IXP’s microengine and Cell’s synergistic processor element has
much faster on-chip memory, which the programmer can directly
manage. The networking industry has been using both types of
multi-cores in blade-server firewalls and in routers/switches. As
the trend toward multi-core deployment in the networking space
becomes strong, software design issues for network applications
are worthy of further study. Particularly an across-platform
classification algorithm is actively sought in order to realize
multi-core potential.

In general, a good packet classification algorithm focuses on
striking a balance between space and speed to achieve optimal
algorithmic performance. However, little work has been done in
parallelizing these algorithms on the multi-core architectures.
Furthermore, most of the existing classification algorithms were
not designed for the multi-cores, and cannot be directly applied.
New efforts are therefore required to design parallel packet
classification algorithms for the multi-cores, which normally
provides either hardware-assisted multithreading [3][9] to hide
memory latency [20][21][22] or cache memories to reduce
memory latency.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
PPoPP’08 February 20-23, 2008, Salt Lake City, Utah, USA.
Copyright © 2008 ACM 978-1-59593-960-9/08/0002…$5.00.

In this paper, we propose an architecture-aware classification
algorithm that exploits both the application and the multi-core
architectural features to reduce memory-access times as well as

33

hide the memory-access latency. In particular, we adopt a system
approach in designing an efficient classification algorithm and
finding the best solution in each algorithm decision point, from
algorithm design to algorithm implementation.

Even though there are many multi-core architectures, two
challenges are common in any multi-core software design. First,
as the speed gap between CPU and memory grows, it becomes
increasingly difficult to keep a single CPU busy, and it is even
more difficult to maintain multiple CPU cores running at full
speed. Second, as the memory hierarchy becomes more complex,
it gets harder to optimize data layout for the various levels of
cache memories in a single CPU, and it is even harder to optimize
data layout for the distributed cache memories in multi-cores.
Cache compression is one way to improve the effectiveness of
cache memories [1]. We explore the compression idea at the
application level to address the two software design issues for the
multi-cores.

Firstly, compression enables cache (on-chip memories) to store
more data, and therefore significantly reduce the memory access
latency. For example, moving data from DRAM to SRAM on the
Intel IXP2800 can save about 150 cycles per memory access.
Accessing L2 cache on a Core 2 Duo processor is an order of
magnitude faster than accessing DRAM. Furthermore, if each
core tends to reference its own cache memories (on-chip memory),
the shared memory becomes less of a performance bottleneck as
more CPU cores are used. In a word, compression is a viable
technique to allow the scalability for multi-cores.

Secondly, decompression itself will not become a performance
bottleneck. We observe that (1) idle CPU cycles can be utilized
for decompression; (2) as more CPU cores are available, it is
easier to find more CPU idle cycles on each core since the
workload is accordingly reduced. Therefore, decompression will
less likely become a new performance bottleneck in multi-cores.

Thirdly, a succinct encoding scheme must be designed to tame the
decompression complexity. Normally a high compression ratio
comes with high processing power. We need balance the
requirements between processing power and space reduction. For
example, the decompression code should avoid referencing the
external memory to take advantage of data locality.

For classification rules, the IP addresses are represented in prefix
and the TCP ports in range. By dividing classification into two
stages, range-to-prefix transformation is eliminated. For example,
a four-bit range [2 : 14] is transformed into five prefixes 001*,
01**, 10**, 110*, and 1110. If prefix match were used to search
all the fields, the number of rules would increase five times,
which is contrary to the goal of reducing memory space.
Furthermore, previous studies on classifier database
characteristics [6] have revealed that 99.9% of the time the
number of classifier rules that match a given source-destination
prefix pair is no more than 5. By taking advantage of this
classification characteristic, TIC (Two-stage Interpreting based
Classification) is designed to handle prefixes and ranges
separately.

In the first-stage the RFC [13] style of reduction tree made from
source and destination addresses is searched since RFC is still the
fastest classification algorithm. This kind of search can be
efficiently implemented by a multithreaded architecture. For

instance, multiple outstanding operations can be issued
simultaneously from a single thread to overlap CPU execution
with memory accesses. In the second stage, an interpreter
executes a sequence of ALU instructions to find a matching range.
Each instruction is encoded in the CISC (Complex Instruction Set
Computer) format in order to reduce the total program size.

By avoiding range-to-prefix transformation and applying
instruction-encoding scheme, the TIC algorithm can save up to
97% of memory space compared to RFC, and the resulted
classification data structures can be easily fit into the 4MB L2
cache. Furthermore, the instructions are loaded in blocks whose
size equals to the cache-line size or internal memory block size.
By exploiting such spatial locality, the interpreter can calculate
range expressions efficiently. Such interpreting based
classification shows good scalability as more cores are available.

To summarize, the goal of this paper is to design and implement a
high-performance packet classification algorithm on a multi-core
through the system approach. We identify the key design issues in
implementing such an algorithm and exploit the architectural
features to address these issues effectively. Although we
experiment on two representative multi-cores: the Intel Core 2
Duo and Intel IXP2800, the same high-performance can be
achieved on other similar multi-cores. This paper makes four
main contributions:

• It shows that a two-stage interpreting based packet
classification can be efficiently implemented on the two
distinct yet representative multi-cores. Experiments show
that it can reduce space by 97%, its speedup is almost
linear, and it can run even faster than 10Gbps on both
types of multi-cores.

• It studies and analyzes the performance issues in TIC
algorithm design and implementation. We apply the
systematical approach to address these issues by
incorporating architecture awareness into parallel
algorithm design.

• It promotes compression as an effective means to address
the speed gap between CPU and memory and between on-
chip and off-chip memories in multi-cores. The
experimental results indicate that the interpreting based
decompression technology is not a performance
bottleneck if fetching a cache-line size of data can be
efficiently supported in the architecture.

• To the best of our knowledge, TIC is the first across-
platform multi-core solution for packet classification that
achieves 10Gbps speed. It significantly reduces the space
complexity and pre-processing time of the previous fastest
RFC algorithm. Our experiences may be applicable to
parallelizing other networking applications on the similar
multi-cores.

The rest of this paper is organized as follows. Section 2
introduces related work on algorithmic classification schemes.
Section 3 formulates the packet classification problem. Section 4
briefly introduces the basic ideas of the RFC algorithm, and
presents the TIC algorithm and its design space. Section 5
discusses design decisions made related to the multi-core
implementation. Section 6 gives simulation results and
performance analysis of TIC. Section 7 presents guidance on

34

effective network application programming on multi-cores.
Finally, section 8 concludes and discusses our future work.

2. Related Work
Prior work on classification algorithms have been reported in
[6][7][12][13][14][16][17]. Below we mainly compare
algorithmic classification schemes.

Bit vector linear search algorithms [7][16] treat the classification
problem as an n-dimensional matching problem and search each
dimension separately. When a match is found in one dimension, a
bit vector is returned identifying the match and the logical AND
of the bit vectors returned from all dimensions identifies the
matching rules. However, fetching the bit vectors requires wide
memory and wide buses, and thus are memory intensive. This
technique is more profitable for ASIC than for NPU because the
NPU normally has limited memory and bus width.

Hierarchical Intelligent Cuttings (HiCuts) [12] recursively
chooses and cuts one searching dimension into smaller spaces,
and then calculates the rules that intersect with each smaller space
to build a decision tree that guides the classifying process.
HyperCuts [14] improves upon HiCuts, in which each node
represents a decision point in the multi-dimensional hypercube.
HyperCuts attempts to minimize the depth of the decision tree by
extending the single-dimensional search into a multi-dimensional
one. On average HiCuts and HyperCuts achieve good balance
between speed and space, however they require more memory
accesses than RFC in the worst case.

Trie-based algorithms, such as grid-of-tries [17], build
hierarchical radix tree structures. If a match is found in one
dimension another search is started on a separate tree pointing to
another trie. In general, trie-based schemes work well for one- or
two-dimensional searches, however, their search time and
memory requirements increase significantly with the number of
search dimensions. For a d-dimensional classifier, the worst-case
search time is Wd-1 and the storage requirement is O(dWN), where
N is the number of rules in the classifier and W is the length of IP
address. The Extended Grid-of-Tries with Path Compression
(EGT-PC) algorithm proposed in [6] describes a two-stage
approach: first determine the matched source-destination prefix
pair via Grid-of-Tries with Path Compression, and then linearly
search a list of candidate rules that match the prefix pair. If k-bit
expansion is used, the worst-case search time is (H + 2)*W/k + L,
where H is the maximum length of the tries, and L is the number
of candidate rules.

RFC algorithm [13], which is a generalization of cross-producting
[17], is so far the fastest classification algorithm in terms of the
worst-case performance. Bitmap is a compress technique widely
used in networking. Bitmap has been used in IPv4 forwarding
[10][18], IPv6 forwarding [19], and packet classification [5]. We
designed the bitmap-RFC [5] classification algorithm that reduces
memory space significantly by compressing the cross-product
tables. However, the bitmap-RFC relies on an NPU bit-
manipulation instruction (POP-COUNT) to achieve high-
performance. The TIC algorithm performs compression by using
the CISC instruction encoding to save memory space. This
interpreting scheme can be efficiently implemented on any multi-
core processor while achieving better space reduction than
bitmap-RFC.

3. Problem Statement
Packet classification is the process of assigning a packet to a flow
by matching certain fields in the packet header with a classifier.
The following IP header fields (5-tuple) are generally used: the
source and destination addresses, source and destination ports,
and protocol type. A classifier is a database of N rules, each of
which, Rj, j=1, 2, …, N, has d fields and an associated action that
must be taken once the rule is matched. The ith field of rule Rj,
referred to as Rj[i], is a regular expression pertaining to the ith
field of the packet header. The expression could be an exact value,
a prefix, or a range. A packet P is said to match a rule Rj if each
of the d fields in P matches its corresponding field in Rj. Since a
packet may match more than one rule, a priority must be used to
break the ties. Therefore, packet classification is to find a
matching rule with the highest priority for each incoming packet.

Since the speed of a packet classification algorithm is dominated
by memory accesses in a single-core, previous studies focus on
using the number of memory access to measure the classification
speed. For the multi-core architectures, the memory hierarchy
such as two levels of cache memories and on-chip and off-chip
SRAM memories make such measurement inaccurate. In addition,
other optimizations can be used to address the latency issue. Data
locality can be exploited to reduce the memory latency, and
thread-level parallelism (TLP) to hide memory latency. Therefore,
the throughput should be used as a performance metric to measure
the classification speed. In this paper, we investigate a way of
trading the CPU idle cycles for reducing the memory accesses.
We exploit both locality and TLP to reduce and tolerate the
memory latency. The goal is to design a scalable classification
algorithm that can run on a wide range of multi-cores at 10Gbps
speed or higher.

4. Developing TIC Algorithm

4.1 RFC Reduction Tree
Reduction tree is the most important data structure in RFC and it
enables RFC to be the fastest classification algorithm. Let us use a
simple example to illustrate the building process of a reduction
tree. Figure 1 is a two-phase RFC reduction tree constructed from
the classifier defined in Table 1, in which each rule has three
fields and each field is 3 bits long. The reduction tree is formed
by two phases.

Table 1. Example of a simple classifier

Rule# F1 F2 F3 Action
R1 001 010 011 Permit
R2 001 100 011 Deny
R3 01* 100 *** Permit
R4 *** *** *** Permit

In the first phase (Phase 0), each field (F1-F3) is expanded into a
separate preprocessed table (Chunk 0-2). Each chunk has an
accompanying equivalence class ID (eqID) array, and each chunk
entry is an index to its eqID array (table). Each entry of eqIDi is a
bit vector (Class Bitmap, CBM) recording all the rules matched as
if the corresponding index to the Chunk array is used as input. For
example, the value of the first entry of Chunk 0 is 0, which points

35

to the first element of array eqID0 whose bitmap is ‘0001’. Each
bit in a bitmap corresponds to a rule, with the most significant bit
corresponding to R1, and the least significant bit to R4. Each bit
records whether the corresponding rule matches or not for a given
input. Thus, bitmap ‘0001’ means only rule R4 matches when
index 0 of Chunk 0 is used as F1 input. Similarly, the first entry of
Chunk 2 has value 0, and it points to the first entry of eqID2
whose bitmap is ‘0011’, indicating only rules R3 and R4 match if
index 0 of Chunk 2 is used as input for field F3.

In the second phase (Phase 1), a cross-producting table (CPT) and
its accompanying eqID table are constructed from the eqID tables
built in Phase 0. Each CPT entry is also an index, pointing to the
final eqID table whose entry records all the rules matched when
the corresponding index is concatenated from “eqID0eqID1eqID2”.
For instance, the index of the first entry of CPT is 0, calculated
from concatenating three bit strings ‘00’+‘00’+‘00’. The rules
matched can be computed as the intersection of eqID0[0] (‘0001’),
eqID1[0] (‘0001’), and eqID2[0] (‘0011’). The result is ‘0001’,
indicating rule R4 matches when ‘000-000-000’ is used as input
for the three fields F1, F2, and F3.

The lookup process for the sample packet P(010,100,100) in
Figure 1 is as follows:

1) use each field, P1, P2 and P3 (i.e., 010,100,100) to look
up Chunk 0-2 to compute the index of cross-producting
table A by Chunk0[2]*3*2+Chunk1[4]*2+Chunk2[4],
which is 16;

2) the value of CPT[16] is 3 and it is used as an index to
eqID3. The result of ‘0011’ indicates that rules R3 and R4
match the input packet P. Finally, R3 is returned as it has
higher priority than R4 according to the longest match
principle.

P2
(100)

OIndex

0
1

P1
(010) …

…

0
0
1
0

0

eqID CBM
0
1

0

0
1
0
2
0

0

0

8
9

10
11
12

0

3

0

3

Chunk 0

Phase 0 eqID0

eqID1

Phase 1

2
2
0

0

1
2

4

7

1
2

7

2 0011

0
0

…

0

3
0
1
0

0

1
2

4

7

Chunk 1

Chunk 2

…

Sample packet：P = (010, 100, 100)
OIndex = eqID0 * 6 + eqID1 * 2 + eqID2

1101
0001

2
0

4
5

3
3

…

15
16
17

P3
(100)

Cross-producting
Table A

eqID2

eqID CBM
0
1
2 0111

1001
0001

eqID CBM
0
1 1111

0011

eqID CBM
0
1
2 0101

1001
0001

3 0011

eqID3

Figure 1. A two-phase RFC reduction tree

Figure 2. 4-phase RFC reduction tree

A 4-phase RFC reduction tree for 5-tuple IP packet classification
is composed in Figure 2. There are seven chunks (corresponding
to 16 bits lower/higher src/des IP address, 16 bits src/des port
number, 8 bits protocol type respectively) in phase 0, three CPTs
in phase 1, two CPTs in phase 2, and one CPT in phase 3. It
achieves the fastest classification speed by using 13 memory
accesses per packet. Astute readers may notice that the size of
CPTs increases non-linearly in later reduction phases. The fast
speed of RFC is thus obtained at the cost of memory explosion.

4.2 TIC Algorithm Description
Since the space will explode in RFC when the number of rules
becomes large, two-stage classification algorithms [6][11] were
proposed to balance classification speed and memory space. In a
two-stage classification algorithm, the IP address fields and TCP
port numbers are searched separately. The advantages of such
separation are as follows:

Firstly, the IP address fields are normally represented in prefix
and the TCP port fields in range. Because range-to-prefix
transformation increases the number of actual rules, it will
increase memory space accordingly. Furthermore, matching a
prefix is memory-intensive operation and matching a range is
ALU-intensive operation. It will be more efficient to handle them
separately, especially on a multi-core where there are idle CPU
cycles when more CPU cores are available.

Secondly, previous studies on classifier database characteristics
[6] have revealed that 99.9% of the time the number of classifier
rules that match a given source-destination prefix pair is no more
than 5. Our analysis on the synthetic classifiers generated by
ClassBench [4] find that 95.8% of the time the number of
matching rules is no more than 10. Therefore, the number of
ranges to be matched after the first stage is limited.

Our Two-stage Interpreting based Classification (TIC) algorithm
consists of the following two stages:

The first stage is to search a RFC reduction tree composed from
the source and destination addresses. As shown the upper part of
Figure 2, there are three phases of search with 7 memory accesses.
In phase 0, it contains 4 chunks: chunk 0 and 1 searches the low
and high 16 bits of source IP address, and chunk 2 and 3 searches
the low and high 16 bits of destination IP address respectively. In

36

phase 1, it contains 2 CPTs made from the results of the 16-bit
address match. In phase 2, a list of range expressions is returned.

The second stage is to search a list of range expressions made
from the port numbers and protocol fields. Ranges in the list are
encoded as a sequence of ALU instructions to further reduce
memory space, and an interpreter is implemented to execute those
instructions to find a match. The Range Interpreter (RI) is a kind
of simple virtual machine. It fetches a block of code from external
memory to internal memory (cache), and then it decodes and
executes each instruction sequentially. The interpreter exploits
data locality by matching the block size to the cache-line size or
internal memory block size. By doing so, the external memory
accesses are dramatically reduced.

Our analysis on the experimental classifiers shows that 94.9% of
lists of candidate ranges can be encoded into one block, whose
size is 64 bytes, the same as the cache-line size of an X86 multi-
core. Therefore, 94.9% of the time the number of external
memory accesses in the second stage is one. On the other hand,
since the interpreter only accesses this cache line until all
instructions in a block finish execution, it enables highly efficient
ALU execution.

4.3 Instruction Encoding
In preprocessing, after the reduction tree of the first stage is
constructed, it presents lists of potential matching rules. For the
rule example in Table 1, four lists are available, which are (R4),
(R1, R4), (R2, R4) and (R3, R4). Then for each list there is a code
block that is formed by encoding the range information in the
candidate rules. If one block can not accommodate the whole list,
more blocks are needed.

ClassBench [4] gives five classes of port range: WC (wildcard),
HI ([1024 : 65535]), LO ([0 : 1023]), AR (arbitrary range), and
EM (exact match), and two classes of protocol range: WC and
EM. So we have about 50 (5*5*2) operators for the CISC
instructions.

There are three instruction formats, with one operand, three
operands, and five operands as shown in Figure 3. Since 8 bits are
used for encoding the operator and 16 bits for rule ID and the
protocol field is 8 bits, the minimum of bytes required for an
instruction is 4. For example, operator `EM-WC-WC` means that
the protocol field requires exact match, and the source and
destination port fields can match any port number since they are a
wild character. Therefore, instruction `EM-WC-WC` can be
encoded in 4 bytes in which only the protocol field is required in
matching. Because an arbitrary range requires two 16-bit numbers
to represent, the 8-byte and 12-byte instructions are for these
instructions having one or two AR operands. We use 16 bits to
store rule ID, which means that the maximum number of rules in
the classifiers is 64K.

When port number specification in classifiers is WC, LO or HI,
no operand is needed. At least one operand is needed for EM, and
two for AR. Table 2 and Table 3 show the distribution of port
number specifications in real classifier seeds of ClassBench. For
both source and destination port number the proportions of AR
are very limited, so instructions of 12-byte appear very
infrequently. In fact, the average length of instructions is less than
1.8 long-words.

operator operand0 Rule ID
0 7 15 31
Instruction of 4 Bytes

operator operand0 Rule ID
0 7 15 31
Instruction of 8 Bytes

operand1 operand2/reserved

operator operand0 Rule ID
0 7 15 31
Instruction of 12 Bytes

operand1 operand2/reserved

operand3 operand4/reserved
Figure 3. Three instruction formats with 4, 8, and 12 bytes

Table 2. Distribution of source port number
Classifier WC HI LO EM AR

seed1 100% - - - -
seed2 99.90% - - 0.10% -
seed3 99.94% - - 0.06% -
seed4 100% - - - -
seed5 82.85% 0.35% - 14.80% 2.00%

Table 3. Distribution of destination port number
Classifier WC HI LO EM AR

seed1 30.42% - - 57.98% 11.60%
seed2 9.25% 13.96% - 65.75% 11.04%
seed3 8.56% 12.15% - 68.08% 11.21%
seed4 30.00% 4.08% - 60.72% 5.20%
seed5 55.46% 6.52% - 35.48% 2.53%

In addition, the following instructions are supported:

NOP is to avoid handling a partial instruction in a block. An NOP
instruction is padded at the end of each instruction block to align
the block size to the cache-line size. It simplifies the interpreter
execution by eliminating these partial instructions.

HI is to handle well-known TCP port number comparison. TCP
port numbers that are less than 1024 are assigned by IETF directly.
These two ranges LO ([0 : 1023]), HI ([1024 : 65536]) are widely
used in classification rules. Two special instructions are added to
denote these two arranges. The size of the two instructions is
reduced from 3 to 1 since the two well-known ranges do not need
to store into the corresponding instructions.

As Table 2 and Table 3 show that the frequency of the wild
character appearance is very high. This suggests to encode this
information in the operator field rather than the operand field
since the potential number of operators can be as large as 256.

4.4 The Range Interpreter
The pseudocode of the range interpreter is listed in Figure 4. All
instruction blocks are stored in external memory, and after the
first stage, we get the address of the first code block. In Lines 1-2
the blocki is fetched from external memory to internal memory
whose size is equal to the size of cache line. Then (lines 3-4) the
current instruction is decoded and executed. If true is returned,
the best matching rule is found. Thus, it returns the rule ID (lines
5-6); otherwise the search must be continued (lines 7-8). If all
instructions in the blocki are executed and still no matching rule is
found, then the next blocki+1 must be fetched (line 10). Please note
that the loop (lines 3-9) accesses the current data cache-line only.

37

Figure 4. Pseudocode for the range interpreter

5. Architecture-aware Design and Implementation
We investigate TIC performance in two representative multi-core
processors, Intel Core 2 Duo with two levels of cache and Intel
IXP2800 without cache. The interesting architectural features of
the Core 2 Duo are 4MB L2 cache size and 64B cache line size.
We implement TIC in the Pthread library on Linux.

Figure 5 draws the components of the Intel IXP2800, in which 16
Microengines (MEs), 4 SRAM controllers, 3 DRAM controllers,
and high-speed bus interfaces are shown. Each ME has eight
hardware-assisted threads of execution, and 640-word local
memory of single-cycle access. There is no cache on each ME.
Each ME uses the shared buses to access off-chip SRAM and
DRAM. The average access latency for SRAM is about 150
cycles, and that for DRAM is about 300 cycles. We implemented
TIC algorithm in MicroengineC, which is a subset of the ANSI C
plus parallel and synchronization extensions, and simulated it on a
cycle-accurate simulator.

In the following, we will discuss the crucial design issues that
have great impacts on algorithm performance.

Figure 5. IXP2800 component diagram without I/O interfaces

5.1 Space Reduction Input: Ei //address of the first encoded block
In addition to adopt a two-stage classification scheme to eliminate
range-to-prefix transformation to curb the number of rules’
growth, we choose the CISC style instruction encoding to further
compress the memory space for the list of ranges. It is a well-
known fact that CISC instruction encoding produces smaller
program size than the RISC encoding. Since space reduction is
the first priority, we adopt the CISC encoding to compress the
memory space maximally.

Output: ID //id of the best matching rule
--
1: entry = Ei ;
2: fetch (entry);//read the block
3: while(getInstruction()){

//get an instruction from the block
4: result = decode_execute();
5: if (result)
6: return ID;

Table 4 gives the distribution of instruction sizes for the 5
classifiers used in our experiments, which are generated using the
seeds listed in Table 2. On average one third of instructions is 4
bytes. Compared to an 8-byte RISC encoding, the variable-size
instruction encoding can save up to 15% of memory.

7: else
8: continue;
9: }
10: entry = Ei+1; //another block must be fetched
11: goto 2;

Table 4. Distribution of Instruction Sizes

Classifier 4 Bytes 8 Bytes 12 Bytes Average
(4 Bytes)

DB1 30.42% 69.58% - 1.70
DB2 23.13% 76.87% - 1.77
DB3 20.65% 79.35% - 1.79
DB4 34.08% 65.92% - 1.66
DB5 45.53% 54.40% 0.06% 1.55

5.2 Data Locality and Alignment
For a multi-core with two levels of cache memories, we
investigate the compression approach to enable data to be stored
in L2 cache as much as possible. When fetching a code block, its
size must be equal to the size of L2 cache line to help the
interpreter exploit the spatial locality. Furthermore, in order to
store each encoded block in a cache line, the starting address of
code blocks must be properly aligned to avoid cache line false
sharing and code block occupying two cache lines.

For the cache-less IXP2800, the single-cycle local memory can be
used to store each code block. The maximal size of internal local-
memory block is 64 bytes, and we can fetch at most 64 bytes per
SRAM read. However, unlike the cache memories which are
optimized for a block move, the SRAM operation is optimized for
32-bit operations. Choosing the right size of code block needs
careful evaluation. Our study suggests that 32-byte is the right
size for the IXP2800.

10 11 12

15 14 13

9

16

2 3 4

7 6 5

1

8

Multi-Threaded (x8) Micro-
engine (ME) Array

Per-Engine Local Memory,
CAM, Signal Interconnect

QDR SRAM Controller
 (4x64) MBytes

RDRAM Controller
(2GBytes)

32b

64b

5.3 Data Partitioning
There are four independent SRAM controllers on the IXP2800
that allow parallel access. To avoid a SRAM controller becoming
a bottleneck, we distribute the intermediate tables of the reduction
tree and the code blocks uniformly among the four available
SRAM memory channels.

5.4 Latency Hiding
On a multi-threaded architecture (such as IXP2800), we hide the
latency of memory access by (1) issuing outstanding memory
requests whenever possible; (2) overlapping the memory access
with the ALU execution [20][21][22]. For example, four memory
operations in phase 0 at the first stage can be simultaneously

38

issued; their memory address calculation can then be overlapped
with other memory operations.

On a multi-core architecture (such as Core 2 Duo X86), one CPU
core can be used as a helper thread to warm up L2 cache, and then
the other main thread can be executed faster if the same cache
lines are already fetched. The unified L2 cache on a Core 2 Duo
processor can be exploited to reduce the memory access latency.

6. Simulation and Performance Analysis
To overcome the lack of publicly available classifiers,
ClassBench [4] was developed for classification benchmarking
purpose. The characteristics of the rules produced by ClassBench
are close to the real ones’, and it is a good benchmark to compare
the performance of classification algorithms. We construct the
synthetic classifiers from ClassBench. In section 6.1, we
introduce the experimental environment. In section 6.2, we show
the effectiveness of space reduction. In section 6.3 and 6.4, we
demonstrate the scalability of TIC algorithm on Core 2 Duo and
IXP processor respectively. In section 6.5, we show the impact of
block size on IXP2800.

6.1 Experimental Setup
We use Intel Xeon 5160 Dual-Core running at 3.00GHz with
32KB L1 data cache, 4MB L2 cache, and a 1333MHz system bus.
There are two dual cores on the same chip and totally there are
four CPU cores. We also use a cycle-accurate IXP2800 simulator
to run experiments, and each Microengine runs at 1.2GHz with 8
threads of execution. All 4 SRAM channels are populated with
64MB SRAM each.

We generate packet traces from ClassBench, and use the low
locality traces on Xeon 5160 to cancel the locality brought from
traces as much as possible.

We generate 10 synthetic classifiers, 5 classifiers having about 2K
rules and other 5 having about 4K. By varying the size of these
classifiers, we measure the effectiveness of space reduction. Since
the classification performance of RFC and TIC on IXP2800 are
independent to the size of classifiers and trace locality, we only
present the results for the 2K rules.

We use the minimal packets as the worst-case input [15]. For the
OC-192 core routers a minimal packet has 49 bytes (9-byte PPP
header + 20-byte IPv4 header + 20-byte TCP header). Thus, a
classifying rate of 25.5Mpps (Million Packets per Second) is
required to achieve the OC-192 line rate.

Table 5. Memory size (MBytes) for RFC and TIC
Size Classifier #Rules RFC TIC Imp.

DB1 1921 2.46 1.52 38%
DB2 2020 14.86 2.63 82%
DB3 2008 11.93 2.43 80%
DB4 1671 2.82 2.07 27%

2K

DB5 2012 47.31 2.88 94%
DB6 3461 2.66 1.53 42%
DB7 3989 39.17 4.76 88%
DB8 4009 36.81 5.12 86%
DB9 2925 2.93 2.04 30%

4K

DB10 3688 82.52 2.30 97%

6.2 Effective Space Reduction
Table 5 lists the total memory requirements for 4-phase RFC and
TIC. For all classifiers, the memory requirements of TIC are
smaller than those of RFC. For DB10, we have achieved up to
97% of memory size reduction. In addition, the memory size of
DB10 for RFC is larger than 64MB, which is too large to store
into any of IXP2800 SRAM channels. Furthermore, the
preprocessing time for TIC is under 10 minutes, which are two
orders of magnitude smaller than that for RFC. These two features
make TIC a good candidate of classification algorithm being put
into practical use.

Table 6 shows the memory sizes for two stages (reduction tree
and code block) in TIC. Most of the code blocks are within the
range of from a few tens of KB to hundreds of KB. With such
small memory footprint, the code blocks can be comfortably
stored in L2 cache. Furthermore, the combined memory footprint
is also less than 4MB when code block is small. This makes TIC
scalable when more cores are available.

However, in Table 6 all of the code block sizes are more than
32KB. This indicates that L1 data cache cannot hold these code
blocks, and it is difficult to optimize space for L1 cache.

A careful reader may ask: with such a small code block is it
worthwhile to do the CISC style encoding to reduce its size? The
large code blocks as shown in cases DB7 and DB8 justify the
necessity to reduce the code block size. In those two cases, the
code block sizes are more than 1MB. Without compression, it
might be hard to store all entries in the L2 cache. In addition, the
size of the code blocks is comparable to that of their counterparts.
This is because the classification rules in those two cases have
more overlapped source and destination prefixes. This produces
the longer lists of the candidate rules after the first stage search.
Therefore, the CISC style of encoding is definitely required to
tame such memory growth for the second stage of search.

Table 6. TIC memory size (MBytes) for two stages: reduction
tree and code block

Classifier RT Code Total
DB1 1.48 0.04 1.52
DB2 2.21 0.42 2.63
DB3 1.99 0.44 2.43
DB4 2.03 0.04 2.07
DB5 2.58 0.30 2.88
DB6 1.47 0.06 1.53
DB7 2.71 2.05 4.76
DB8 4.02 1.10 5.12
DB9 1.98 0.06 2.04

DB10 1.64 0.66 2.30

6.3 Relative Speedups for Core 2 Duo
Table 7 lists the classification speeds of Core 2 Duo for five 2K
classifiers in the average cases, and Table 8 for the worst cases.
The worst-case classification speed is calculated by the number of
packets divided by the longest thread’s execution time, and the
average case classification speed by the number of packets
divided by the mean of thread’s execution times.

39

Table 7. Classifying speeds (Mpps) for RFC and TIC on average
cases

 1 T 2 T 3 T 4 T
RFC 15.42 30.78 43.92 56.75
TIC 12.89 25.31 36.85 47.73 DB1
Imp. -16.4% -17.8% -16.1% -15.9%
RFC 10.89 21.02 31.27 40.68
TIC 11.43 22.37 32.37 40.24 DB2
Imp. 4.9% 6.4% 3.5% -1.1%
RFC 11.47 22.82 33.35 41.48
TIC 11.72 21.07 33.36 43.28 DB3
Imp. 2.2% -7.7% 0.0% 4.3%
RFC 14.84 23.53 42.05 54.78
TIC 13.06 25.95 37.41 44.86 DB4
Imp. -12.0% 10.3% -11.0% -18.1%
RFC 9.05 17.71 24.49 34.87
TIC 10.64 20.79 26.73 38.88 DB5
Imp. 17.6% 17.4% 9.1% 11.5%
RFC 12.33 23.17 35.02 45.71
TIC 11.94 23.09 33.34 42.99 Ave.
Imp. -3.1% -0.3% -4.8% -5.9%

Table 8. Classifying speeds (Mpps) for RFC and TIC on the
worst cases

 1 T 2 T 3 T 4 T
RFC 15.42 21.54 24.31 26.61
TIC 12.89 20.52 25.28 30.02 DB1
Imp. -16.4% -4.7% 3.9% 12.8%
RFC 10.89 14.59 17.09 20.49
TIC 11.43 16.08 18.57 21.13 DB2
Imp. 4.9% 10.2% 8.7% 3.1%
RFC 11.47 15.57 17.96 20.96
TIC 11.72 16.38 19.73 21.27 DB3
Imp. 2.2% 5.2% 9.9% 1.5%
RFC 14.84 19.08 22.52 24.43
TIC 13.06 19.43 22.95 24.87 DB4
Imp. -12.0% 1.8% 1.9% 1.8%
RFC 9.05 12.14 15.19 16.44
TIC 10.64 14.82 21.63 18.59 DB5
Imp. 17.6% 22.1% 42.4% 13.1%
RFC 12.33 16.58 19.42 21.78
TIC 11.94 17.44 21.63 23.18 Ave.
Imp. -3.1% 5.2% 11.4% 6.4%

Table 9. Interpreter characteristics in processing code block

Classifier Ave. Number of
Range Evaluated

Ave. Number of
Fetched

DB1 4.28 1.23
DB2 1.42 1.00
DB3 1.64 1.02
DB4 2.31 1.05
DB5 1.17 1.00

We observe the followings:

1. On average three CPU cores are required for TIC to achieve
the 10Gbps wire-speed or above. TIC and RFC are
comparable in speed since their speed differences are within
the single digit range.

2. The performance behavior of the worst-case and the
average-case is different. In most cases the TIC
performance is better than RFC in the worst-case. The
reason is that in the worst-case it mainly measures the
helper thread’s performance in which it has quite large
number of L2 cache misses. In this setting, the interpreter
overhead is insignificant. On the other hand, in the average-
case, the main thread has a very few L2 cache misses, the
interpreter overhead might be noticeable. For example, in
Table 8 it shows TIC’s worst-case classification speeds are
slower than RFC’s in 1-thread and 2-thread cases. However,
TIC’s speeds are faster than RFC in 3-thread and 4-thread
cases. Furthermore, when more threads available, TIC’s
performance is better than RFC’s as shown in Table 8 when
thread number is 2, 3, and 4. There is one regression of TIC
worst-case performance in DB5 when 4 CPU cores are used.
We are still investigating the causes of such regression.

3. For the average cases, if the memory space of RFC is
smaller than L2 cache size, RFC is better than TIC in terms
of classification speeds. For example, for the DB1 and DB4
classifiers TIC runs slower than RFC on average. This is
because the interpreter overhead becomes noticeable when
the memory is not a performance bottleneck. On the other
hand, if the memory space of RFC is bigger than L2 cache
size, TIC is faster than RFC in terms of classification speed.
For DB2, DB3 and DB5 classifiers, TIC runs faster than
RFC in terms of classification speeds. This is because TIC
has much less L2 cache misses than RFC which results
from that TIC’s data structures can be locked into L2 cache
after compression.

Table 9 lists the code block behavior in the second stage of
interpreting execution. Most of cases, fetching one code-block is
enough to find a match, and no more than 2 ranges are searched
for a match. For DB1, there are on average 4.28 ranges are
searched. This explains why the single-thread performance of
RFC is better than TIC in DB1. However, such advantage will be
diminished when more cores are used since the workload is
reduced accordingly on each core as shown in Table 8.

6.4 Relative Speedups for IXP2800
Table 10 lists the classification speeds of IXP2800 for five 2K
classifiers. On average the classification speed of TIC algorithm
reaches 10Gbps speed on 4 Microengines. Only for DB1, 10Gbps
is ultimately reached when 5 MEs (40 threads) are used.

Surprisingly, the RFC is faster than the TIC even though the TIC
has 5 fewer memory accesses than the RFC. Using the cycle-
accurate simulator, we found out two causes make TIC run slower.

First, SRAM controller in IXP2800 is optimized for 32-bit access.
Even though the total number of SRAM accesses in TIC is less
than that of SRAM accesses in RFC, the amount of data read in
TIC is larger than that in RFC since at the second stage 32B is
read in at once. As shown in Table 11, TIC has 5 fewer memory
accesses than RFC, but it accesses 2 more long-words at least. If
more than one code block is fetched, the difference of the total
words accessed between those two becomes even bigger.

Table 12 compares the SRAM FIFO size for DB1 in the average
and the worst cases. We can see the FIFO size of TIC is bigger
than that of RFC for both average and the worst cases. This

40

indicates that the time of a TIC SRAM operation stays in FIFO is
longer than that of a RFC SRAM operation. Thus, it will
eventually slow down the TIC’s classification speed.

Second, some of 32B read are wasteful and we will analyze its
impacts in the following section.

Table 10. Classifying speeds (Mpps) of IXP2800 for RFC & TIC
 1 T 2 T 4 T 8T 16 T 32 T

RFC 1.81 3.59 6.91 11.01 21.06 35.29
TIC 1.38 2.38 4.76 6.72 12.22 20.49 DB1

Imp.(%) -23.8 -33.7 -31.1 -38.9 -41.9 -41.9
RFC 1.78 3.59 6.89 10.98 20.61 34.98
TIC 1.70 3.24 6.25 9.39 18.23 29.98 DB2

Imp.(%) -4.5 -9.7 -9.3 -14.5 -11.5 -14.3
RFC 1.77 3.57 6.86 10.89 20.43 35.01
TIC 1.67 3.20 6.19 9.02 17.99 30.07 DB3

Imp.(%) -5.7 -10.4 -9.8 -17.2 -11.9 -14.1
RFC 1.78 3.58 6.86 10.73 20.75 35.11
TIC 1.59 3.01 5.79 9.08 17.28 26.90 DB4

Imp.(%) -10.7 -15.9 -15.6 -15.4 -16.7 -23.4
RFC 1.75 3.51 6.84 10.90 20.59 35.03
TIC 1.71 3.23 6.24 9.41 18.16 29.58 DB5

Imp.(%) -2.3 -7.9 -8.8 -13.7 -11.8 -15.6

Table 11. Memory access behavior of RFC vs. TIC
 # Memory Access # Long-words Accessed

RFC 13 13 LW
TIC 7 + 1 = 8 7 + 8 = 15 LW

Table 12. The SRAM read FIFO average and maximum size for
DB1

 Cha.
#0

Cha.
#1

Cha.
#2

Cha.
#3 Ave.

Max 8 8 8 8 8 TIC Ave 0.71 1.17 2.70 3.55 2.03
Max 8 7 7 7 7.25RFC Ave 2.76 1.34 1.29 1.29 1.67

Figure 6. Classifying speeds (Mpps) and speedups for 32B and

64B block size for DB5

6.5 Block Size Impact on IXP2800
Figure 6 shows the classifying speeds and speedups of TIC on
IXP2800 when the block size is chosen as 32B and 64B
respectively for DB5. We can see that when the block size is 32B,
the classification speed and the speedup is all higher.

There are two reasons: (1) Fetching 64B of code block is wasteful
because on average the number of range evaluated is 1.17 (as
shown in Table 9); (2) Fetching 64 bytes from SRAM makes the
utilization of SRAM channel higher and the size of SRAM read
FIFO larger, which causes the latency of SRAM access increasing
badly.

As shown in Table 12, on average the average size and the
maximal size of SRAM read FIFO is larger in TIC than in RFC.
This suggests that a SRAM operation will stay in FIFO longer for
TIC than for RFC. Therefore, it takes more time for TIC to access
SRAM data than that for RFC. Therefore, choosing the right size
of the code block will influence the classification performance.

7. Programming Guidance on Multi-core
Architectures
We have presented the implementation and performance analysis
of TIC in two representative multi-core processors: Intel Core 2
Duo and Intel IXP2800. Based on our experiences, we provide the
following guidelines for creating an efficient network application
on a multi-core architecture.

1) Both application and multi-core architectural features
must be exploited to design and implement a high
efficient networking algorithm.

2) Compress data structures and store them in as high
memory hierarchy as possible (e.g., SRAM, cache, on-
chip memory) to fill the speed gap between CPU and
memory.

3) Proper compression scheme must be chosen to balance
the decompression complexity and space reduction, so
that decompression will not become a new performance
bottleneck.

4) In general, multi-core architecture has many different
shared resources. Pay attention to how those shared
resources are used because they might become a
bottleneck in algorithm implementation.

5) Exploit as many latency hiding techniques as possible to
hide memory access latency or reduce memory
references.

8. Conclusions and Future Work
This paper proposed a scalable packet classification algorithm
TIC that can be efficiently implemented on a multi-core
architecture with or without cache. We implemented this
algorithm on both Intel IXP2800 network processor and Core 2
Duo X86 architecture. We studied the interaction between the
parallel algorithm design and architecture mapping to facilitate
efficient algorithm implementation on multi-core architectures.
We experimented with an architecture-aware design principle to
guarantee the scalability and high-performance of the resulting
algorithm. Furthermore, we investigated the main software design
issues that have most significant performance impacts on

41

networking applications. We effectively exploited data structure
compression and thread-level parallelism on multi-core
architectures to enable an efficient algorithm mapping.

Our performance analysis indicates that we need spend more
effort on eliminating various hardware performance bottlenecks,
such as the SRAM buses. In addition, how to select an appropriate
size of loading block in IXP2800 to make TIC run faster requires
more study. We will do more research along these two directions.

Acknowledgements
We would like to thank the anonymous reviewers for their
valuable comments, and Julian Horn (Intel) for proofreading our
paper. This work was supported by The Fund for Foreign
Scholars in University Research and Teaching Programs under
Grant NO. B07033.

References
[1] A. Alameldeen and D. A. Wood. Adaptive Cache

Compression for High-performance Processors. ACM
ISCA-31, Munich, Germany, June 19-23, 2004.

[2] A. Mendelson and J. Mandelblat et. al. CMP
Implementation in Systems Based on the Intel Core Duo
Processor. Intel Technology Journal, Vol. 10(2), 2006.

[3] A.S, Leon and K.W, Tam, et. al. A Power-Efficient High-
Throughput 32-Thread SPARC Processor. IEEE Journal of
Solid-State Circuits, Vol. 42 No. 1, Jan., 2007.

[4] D. E. Taylor and J. S. Turner. ClassBench: A Packet
Classification Benchmark. Technical Report, WUCSE-
2004-28, Department of Computer Science & Engineering,
Washington University in Saint Louis, May 2004.

[5] Duo Liu and Bei Hua and Xianghui Hu and Xinan Tang.
High-performance packet classification algorithm for
many-core and multithreaded network processor. In
Proceedings of ACM CASES’2006, Seoul, Korea, pp. 334-
344.

[6] F. Baboescu, S. Singh, and G. Varghese. Packet
Classification for Core Routers: Is there an alternative to
CAMs. Technical Report, University of California, San
Diego, 2003.

[7] F. Baboescu and G. Varghese. Scalable Packet
Classification. In Proceedings of ACM SIGCOMM, 2001,
pp.199-210.

[8] J. A. Kahle and M. N. Day, et. al. Introduction to the Cell
Multiprocessor. IBM Journal of RES. & DEV. VOL. 49 NO.
4/5, 2005.

[9] M. Adiletta and Mark Rosenbluth, et. al. The Next
Generation of Intel IXP Network Processors. Intel
Technology Journal, Vol. 6 (3), August 2002.

[10] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small
Forwarding Tables for Fast Routing Lookups. In
Proceedings of ACM SIGCOMM ’97, Cannes, France, 1997,
pp.3-14.

[11] M. Kounavis et al. Directions in Packet Classification for
Network Processors. In Proceedings of Second Workshop
on Network Processors (NP2), Feb. 2003.

[12] P. Gupta and N. McKeown. Packet Classification Using
Hierarchical Intelligent Cuttings. IEEE Micro, Vol. 20, No.
1, Jan.-Feb. 2000, pp.34-41.

[13] P. Gupta and N. McKeown. Packet Classification on
Multiple Fields. In Proceedings of ACM SIGCOMM,
Computation Communication Review, Vol. 29, Sep. 1999,
pp.147-160.

[14] S. Singh, F. Baboescu, G. Varghese, and Jia Wang. Packet
Classification Using Multidimensional Cutting. In
Proceedings of ACM SIGCOMM’03, ACM Press, 2003,
pp.213-224.

[15] T. Sherwood, G. Varghese and B. Calder. A Pipelined
Memory Architecture for High Throughput Network
Processors. In Proceedings of ACM ISCA’03, 2003.

[16] T. V. Lakshman and D. Stiliadis. High-speed Policy-based
Packet Forwarding Using Efficient Multi-dimensional
Range Matching. In Proceedings of ACM SIGCOMM98,
Sep. 1998, pp. 191-202.

[17] V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel.
Fast and Scalable Layer Four Switching. In Proceedings of
ACM SIGCOMM’98, Sep. 1998, pp. 203-14.

[18] W. Eatherton, G Varghese, and Z Dittia. Tree Bitmap:
Hardware/Software IP Lookups with Incremental Updates.
In Proceedings of ACM SIGCOMM on Computer
Communication Review, Vol. 34, Issue 2, Apr. 2004, pp.97-
122.

[19] Xianghui Hu, Xinan Tang, and Bei Hua. A High-
performance IPv6 Forwarding Algorithm for a Multi-core
and Multithreaded Network Processor. In Proceedings of
ACM PPoPP’06, Mar. 2006, pp.168-177.

[20] Xinan Tang and Guang R. Gao. Automatically Partitioning
Threads for Multithreaded Architectures. In Journal of
Parallel Distributed Computing, 1999, 58(2) pp.159-189.

[21] Xinan Tang and Guang R. Gao. How hard is thread
partitioning and how bad is a list scheduling based
partitioning algorithm. In Proceedings of the tenth annual
ACM symposium on Parallel Algorithms and Architectures,
pp. 159-189, 1998.

[22] Xinan Tang, J. Wang, K. Theobald, and Guang R. Gao.
Thread partitioning and scheduling based on cost model. In
Proceedings of the ninth annual ACM symposium on
Parallel Algorithms and Architectures, pp. 272-281, 1997.

42

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Hua:Bei.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Hu:Xianghui.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/t/Tang:Xinan.html
http://www.informatik.uni-trier.de/~ley/db/conf/cases/cases2006.html#LiuHHT06
http://www.sigmod.org/dblp/db/journals/jpdc/jpdc58.html#TangG99
http://www.sigmod.org/dblp/db/journals/jpdc/jpdc58.html#TangG99

	1. Introduction
	2. Related Work
	3. Problem Statement
	4. Developing TIC Algorithm
	4.1 RFC Reduction Tree
	4.2 TIC Algorithm Description
	4.3 Instruction Encoding
	4.4 The Range Interpreter
	5. Architecture-aware Design and Implementation
	5.1 Space Reduction
	5.2 Data Locality and Alignment
	5.3 Data Partitioning
	5.4 Latency Hiding

	6. Simulation and Performance Analysis
	6.1 Experimental Setup
	6.2 Effective Space Reduction
	6.3 Relative Speedups for Core 2 Duo
	6.4 Relative Speedups for IXP2800
	6.5 Block Size Impact on IXP2800

	7. Programming Guidance on Multi-core Architectures
	8. Conclusions and Future Work
	Acknowledgements
	References

