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Abstract

Target numeration is of great importance for activ-
ity monitoring applications in wireless sensor networks
(WSNs); however it is also a challenging problem in a
WSN only equipped with simple amplitude sensors. Only
a few algorithms have been proposed to solve the problem
of target counting, and their accuracy and computational
complexity is not satisfactory. This paper provides a two-
step energy-based target numeration (EBTN) algorithm that
firstly groups the sensor nodes that detect a target into sep-
arate clusters, and then calculates the number of targets
covered by each cluster based on the total signal energy
collected over the cluster. A polynomial regression function
is used to approximate the signal strength over a cluster,
and the total energy is estimated by taking the integral of the
function over the area. By combining with preliminary clus-
tering step, energy-based target counting greatly improves
the counting accuracy. Experiments also show that EBTN
requires lower node density and computational complexity
compared with other algorithms.

1. Introduction

Wireless sensor networks (WSNs) are emerging as a
promising technology that could efficiently observe, mon-
itor and manipulate the physical world via large number of
small, inexpensive sensor nodes. WSN has close link to
physical world, outstanding robustness and ability to work
unattended, hence it can be employed for a wide range of
applications.

In various applications of WSN, activity intensity esti-
mation is of great importance to have a general view of the
monitored field. Most of the existing researches on activity
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monitoring focus on dealing with single target, where tar-
get numeration is not needed. Sensor nodes sense the signal
emitted by a target, such as sound, vibration, etc., to detect
the appearance of a target, and then cooperate to localize
and track it. The appearance of multiple targets complicates
the target monitoring problem if we need to differentiate
and count them. Without deployment of video sensors that
require heavy communication traffic in the WSN, target nu-
meration is a challenging problem for nodes only equipped
with amplitude sensors. Since when multiple targets are
close to each other, the signal strength sensed by a sensor
node will depend on the number of targets in its sense range
and its distance to each target.

Among all the existing target numeration researches, [4]
is a representative one. In [4], three protocols and algo-
rithms for the target numeration problem are presented,
namely, DAM, EBAM, and EMLAM. DAM simplifies the
target numeration issue to a cluster counting problem by di-
viding sensors into clusters according to their measurement,
ensuring that there is only one peak in one cluster, that is,
take the number of clusters as the number of targets. How-
ever, only when the distance between two targets is large
enough can it be ensured that there is only one target in
one cluster, and DAM always results in under-counting. To
address this problem,in EBAM, a Voronoi partition is in-
troduced, and each cell area is used as the weight of each
sensor measurement. By multiplying the area of each cell
with the sensor measurement, the total energy in the clus-
ter can be obtained, and by dividing the energy volume of a
single target, the target number in each cluster can be got.
However, a distributed Voronoi partition imposes too much
a communication cost on wireless sensor network. Further-
more, to ensure numeration precision, DAM and EBAM re-
quire high node density or a uniform distribution.

In this paper, we propose a two step energy-based tar-
get numeration(EBTN) algorithm, which distinguishes with
light computation, high precision and low node density re-
quirement. EBTN first partitions the network into clusters
with one or more targets in them, and then carries out a



polynomial regression technique to fit the collected data of
each cluster into a poly-variable function. Basing on this
function the total energy of the area covered by the clus-
ter can be computed; by converting the energy level to the
targets density, the number of targets in it can be obtained.
Through transforming discrete measurement into continu-
ous one, the counting precision can be largely improved.
Simulation shows that EBTN also has a reasonable level of
fault tolerance and pretty good precision in target numera-
tion; compared with [4], EBTN has lower requirement on
sensor density and sensor distribution.

The rest of the paper is organized as follows: Section
2 lists related work; in section 3 we present the problem
model of our algorithm; section 4 gives the detailed descrip-
tion of the algorithm and introduces the polynomial regres-
sion method; simulation is done in section 5 and section 6
concludes the paper.

2. Related Work

We have borrowed the design idea from [4], where tar-
get enumeration is discussed and three algorithms are pro-
posed: DAM, EBAM, and EMLAM. DAM is a clustering
method, dividing sensors into clusters according to their
measurement to ensure there is only one peak in one clus-
ter, and use the number of clusters to represent the number
of targets. In DAM, a downhill only method is utilized, en-
forcing the packet flow direction is largely from high to low.
Thus packets from different clusters will be dropped before
forwarded into another cluster. Since one peak represent-
ing one target only when targets are well separated, DAM
always results in under-counting. To address this problem,
the second protocol EBAM introduces a ”ceiling” value and
a Voronoi cell to compute the total energy in the clusters
formed in DAM, and dividing it with the energy volume of
a single target thus to get the target number in each cluster.
Ceiling value is the maximum value any sensor can con-
tribute in the total energy computation, and the area of each
Voronoi cell is used as the weight of the sensor in it. The
third protocol EMLAM removes the restrictions in the for-
mer two algorithms such as constant and equal target energy
level, and uses an expectation-maximization like technique
to estimate and predict target position. It assumes that tar-
gets should be well separated at the beginning.

Papers of Banerjee [1] [2] [3], propose a polynomial
regression based method for data compression and subse-
quent regeneration. The basic idea is to fully utilize the
spatial and temporal continuity and the gradual change in
both time and space that many physical phenomena exhibit.
Therefore, function based on multi-variable polynomial re-
gression can approximate the energy distribution in the area
of interest. Our algorithm EBTN also employs this method
in sensor data processing.

3. Problem Model

Target numeration is to count the number of targets in a
2D field, where sensor nodes are randomly deployed. Each
target is considered to be a point source of signal, e.g., heat,
sound, vibration, magnetic, etc., whose strength (or ampli-
tude) attenuates with distance. Each node samples the sig-
nal strength that is described as in (1),

v(p) =
∑n

i=1((K ∗ dist(i, p) + 1)−α) ∗ M(i); (1)
where p is the sensor node and i is one of the n targets

that located in p’s sensing range, dist(i,p) is the distance
between i and p, α is the attenuation factor commonly in
the range of 2˜5, M(i) is the initial signal strength emitted
by target i, and K is a target character related constant.

We assume that different type of targets are distinguished
by other features, such as different frequency of sound or vi-
bration, and is not considered in this paper. In our problem
model, we assume that each target belongs to the same type
and the initial signal strength (i.e., M ) emitted by each tar-
get is the same. We also make following assumptions in this
paper:

1. Sensors are synchronized to a global clock.

2. Enumeration process is repeated periodically at the be-
ginning of each interval, independent of information
from the previous period.

3. We ignore the asymmetric problem in sensor networks;
free space propagation model is assumed. As long as
a sensor lies in the communication range of another
sensor, they can directly communicate with each other.

Due to exponentially attenuation of signal strength, the
influencing area of each target is limited. Therefore, if tar-
gets are well separated from each other, their influencing
areas do not overlap, and sensor nodes that sense the same
target can cooperate to form a single cluster in the network.
In this case, counting the number of targets is converted to
counting the number of clusters in the network. However,
when two targets move close to each other, their influencing
areas overlap, and the sensor nodes that sense one or both
of the two targets may form a single cluster rather than two
separate clusters. Figure 1 shows the signal amplitude pro-
file over a monitored field caused by two close-by targets
(on the right side) and a far-away target (on the left side);
in this case, two clusters will be formed rather than three
clusters. Then the most difficult problem is to find out how
many targets are sensed in a single cluster, which is what
this paper concerns.

According to the assumption of equal signal energy per
target, the intuitive approach to count the targets in a clus-
ter is to estimate the total energy spread over the area where
the cluster occupies, and then divide it by one target’s signal
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Figure 1. Target signal amplitude profile over
the sensor field.

energy to get the number of targets. Due to the high irreg-
ularity of node distribution, the method of simply summing
up all the measurements in the cluster to estimate the total
energy is far from accurate. Based on the observation that
most physical phenomena (e.g., signal energy distribution)
exhibit a gradual and continuous variation that is likely to
be described by a parametric function, we choose to use a
polynomial regression function to approximate the energy
distribution, and then take the integral of this function as
the total energy.

4. Algorithm and Protocol

Energy-based target numeration algorithm consists of
two parts: (1) all sensor nodes cooperate to form several
separate clusters, with each cluster cover one or more tar-
gets; (2) each cluster leader fits a polynomial regression
function to describe the signal energy distribution in its area,
and then takes an integral and calculates the number of tar-
gets.

4.1. Leader Selection and Clustering

The procedure of clustering is comprised of two steps:
leader election and cluster formation. Firstly, each sensor
whose measurement exceeding a certain threshold δ1 will
take part in leader election and broadcast its location and
measurement. Each leader candidate only receives the in-
formation of its one-hop neighbor, and there is no further
packet forwarding during this step,thus to realize a enforced
locality of the cluster. Each candidate will compare its mea-
surement with those of other candidates from whom it has
received a packet. If there is no sensor whose measurement
is bigger than itself in a circle with radius d, then the sensor
will declare itself as a leader. Since the nearer a sensor is

from a target, the bigger its measurement would be, a sen-
sor with biggest measurement means that it is nearest to the
target(s). This step also guarantees that targets lying outside
d will be partitioned into different clusters.

After each elected leader has broadcasted its location,
sensors whose measurement exceeding a threshold δ2 (less
than δ1) will choose the nearest leader and join the clus-
ter. It will drop other received packets and only transmit
its leader’s packet further. This mechanism ensure a fast
convergence in the broadcast step, minimizing the commu-
nication cost.

The choice of δ1 and δ2 also relies on specific targets and
sensor densities. To give an example, in a sensor network
with sensor density 0.01/m2, the closest node to a target
may be 10 meters away, therefore, the rule of thumb is that
δ1 should be about the sensor measurement 10 meters away
from the target. And δ2 should guarantee that enough sen-
sors can take part in the polynomial regression to ensure the
precision, and at the same time restrain unnecessary energy
waste.

Following are pseudo source codes carried out in each
protocol period:

1) At the beginning of leader selection:

if(myMeasure>threshold1){
leadercandidate=1;
p=createPacket();
p.x=myXcoordinate;
p.y=myYcoordinate;
p.value=myMeasure;
p.ID=myID;
broadcast(p);
}

On Receiving packet p from all neighbors whose mea-
surement exceeding δ11:

if (myMeasure is biggest among all
neighbors || distances from all
neighbors are bigger than d ){

leader=1;
leaderID=myID;
q=creatpacket();
q.x=myXcoordinate;
q.y=myYcoordinate;
q.ID=myID;
broadcast(q);
}

2) Cluster Formation, on receiving a group of packets q
for sensors whose measurement is bigger than δ2:

if(myMeasure>threshold2){



participant=1;
nq=neareastleader;
leaderID=nq.ID;
broadcast(nq);
drop other q;
w=creatpacket();
w.value=myMeasure;
w.x=myXcoordinate;
w.y=myYcoordinate;
using GPSR to send w to leader;
}

In EBTN, there is no explicit discussion on the query
processing or routing issues in clustering, rather, it focuses
on cluster forming and polynomial regression, since unlike
the former issues, there are not ready choices for them. Ge-
ographic routing [5][6][7] is a routing principle that relies
on geographic position information, and routes data to a ge-
ographic region instead of a destination node. The advan-
tage of such algorithms is that data can be routed to the des-
tination without either knowledge of the network topology
or a prior route discovery. In EBTN, cluster members use
GPSR to send their location and measurement to the cluster
leader.

4.2. Polynomial Regression

The aggregation method employed in our algorithm is
introduced in this section, which uses a function to describe
an energy surface in the impacted area. Basing on the func-
tion, the total energy in the area can be computed. Assum-
ing that all targets emit approximately equal amount of en-
ergy, by dividing the total volume of energy in the clus-
ter, the approximated target number in that area can be ob-
tained.

After cluster formation, each leader has the node location
information as well as the power amplitude at that sensor.
To recover the real energy state in the area, there should
be an interpolation mechanism to use those discrete mea-
surement to construct a continuous energy surface as shown
in Figure 1. For this purpose, a parametric polynomial re-
gression technique is employed. Each elected leader will
fit received data into a surface described by the following
function: p(x, y) = β0 + β1y + β2y

2 + β3x + β4xy +
β5xy2 + β6x

2 + β7x
2y + β8x

2y2, where p(x, y) is the in-
terpolated value of any given point in the area of interest,
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This regression applies least-square criterion, and mini-

mizes the square error F (~β) = (X~β − ~y)T (X~β − ~y). The
surface it fits is of minimum square error in all possible sur-
faces basing on the gathered measurements in the leader.

After the application of this regression, a function which
describes the energy distribution in the cluster-covered area
can be produced. To get the total energy, an integration is
done in a rectangle area defined by the minimum and max-
imum x and y of all the sensors located in the cluster. In-
tegrating in a rectangle area will greatly simplify the com-
putation, and through integration, the discrete measurement
is transformed into a continuous energy surface, which is
much helpful in improving the computation precision, as
demonstrated in the simulation part.

The total energy in the cluster is to be divided by the
energy level of a single target to obtain the target number in
each cluster. Taking into account of energy leakage, under-
sampling and other influencing factors, the rule of thumb
is to multiply a coefficient which is less than 1 to the total
energy of a target. The simulation suggests that 0.7 is a
good choice.

5 Simulation

In this section, we will present our simulation results on
Matlab7.0, which is a powerful interactive tool for algo-
rithm development and data analysis. We consider a wire-
less sensor network with N sensors randomly deployed in
a 200m*200m area. Each sensor node is static and with
transmission range 40 m. Each sensor is aware of its own
location (x,y) , as well as its one-hop neighbor’s loca-
tion information. Each sensor node only detects the signal
strength, which is determined by its distance from the tar-
get(s).

5.1 Leader Selection and Clustering

Leader selection is closely related with sensor density
in the network. In the first round of simulation, we use
only 400 (N=400) sensors in a network where 20 targets
are randomly scattered. Taking into account of the realis-
tic situation in wireless sensor networks, we add random
perturbations to the x and y coordinates, and a noise to z.
These added location errors and noise have a zero mean and
a small square error Gaussian distribution. In our simula-
tion, the peak energy is 10, sensors with measurements big-
ger than 1.5 are taken as leader candidate, and δ2 is set to
0.6.



In Figure 2, we use triangles standing for targets and
stars for elected leaders. And to better demonstrate the cov-
ering area of each cluster, we add a Voronoi frame to the
figure. As Figure 2 shows, the 20 targets are partitioned into
9 clusters. Nearly all those isolated targets are partitioned
in a single cluster, and targets crowding together belong to
one cluster. The leader selection process is robust against
small sensor localization error as long as there are sensors
close to targets. As for small network noise, the threshold
δ1 and δ2 can filter it away.
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Figure 2. Targets and Selected Leaders

5.2 Study for the Influence of Sensor Den-
sity

Authors of [4] show that for EBAM to work well, they
need 100 sensors uniformly arranged, or 250 randomly dis-
tributed sensors in a 100m*100m field. The performance of
our algorithm also relies on sensor density in the network.
Especially sensor close to targets are essential for the per-
formance of leader election. However, since the polynomial
regression technique is employed in data aggregation part,
which transforms the discrete sensor measurement into con-
tinuous energy surface, there is less reliance on the sensor
density of our algorithm than EBAM.

Figure 3 shows the targets numeration results under
three different sensor densities, 500,600 and 800 sensors in
200m*200m field. To reduce the variations caused by un-
certainties in target and sensor distribution, the final result
is the average of the 50 times processing.

Our target is to count the 5˜20 targets which are ran-
domly distributed in the 200 m*200m area. It is intuitive
that the target count is pretty precise at the early period,
when only a few targets exist, and this intuition is proved
by the overlapped part of the four lines. Increasing number
of targets result in the interfered influencing area and the
blurred boundary among different targets, and reduce the
count precision. With more sensors in the neighborhood of

each target, it is likely to find the more precise location for a
leader. However, it is still unavoidable that under the influ-
ence of the more than one target, the total computed energy
will be over-computed, and the number of targets will be
over-counted. Even the increase of sensor nodes won’t re-
duce this effect. Nonetheless, even in the worst case, the
algorithm controls the numeration error within an accept-
able range.
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Figure 3. Numeration result with different
sensor densities (x: the real target number;
y: the counted target number)

5.3 Study of Algorithm Robustness: sys-
tem noise and sensor location error

Sensor location error in WSN is unavoidable due to the
various uncertainties and resource limitations. In this set of
simulation, we also add random perturbations to the x and
y coordinates, and a random noise to z. These added loca-
tion errors and noise have a Gaussian distribution with zero
mean and σ square error. In the three round of simulations,
σ is 0(no error), 10 (small error) and 20 (larger error) re-
spectively. System noise has a Gaussian distribution with
zero mean and 0.05 square error.

The worst case is that noise causes fake peaks in the net-
work and split one cluster into two, incurring over-count.
Nonetheless, the robustness against noise and perturbation
is inherent in polynomial regression since the mechanism of
minimum mean square error is to balance among all data.

Figure 4 shows the target counting result under different
location error and system noise. The performance degrades
with the increase of location error and noise. However, the
degradation is graceful and tolerantly acceptable.

6. Conclusions and Future Work

In this paper, we introduce a distributed and efficient tar-
get numeration algorithm in wireless sensor networks. Bas-
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Figure 4. Target count with sensor location
error (done with 600 sensors; x: the real tar-
get number; y: the counted target numbe))

ing on the clustering and polynomial regression techniques,
the number of targets can be quickly computed. The al-
gorithm is tolerant of slight localization error and system
noise, and is general in various applications. Experiments
also show that EBTN requires lower node density and com-
putational complexity compared with other algorithms.

The future work will try to improve the numeration pre-
cision through the refinement of total energy and single tar-
get energy computation, and by filtering the compromised
data to strengthen the robustness against measurement error.
We will also concern how to take full usage of the spatial-
temporal continuity of targets’ movement and the history
information, and further develop target tracking algorithms
basing on target numeration.
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