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Abstract

RDMA has been widely adopted as a promising solution

for high performance networks, but is still unavailable for

a large number of socket-based applications running in

public clouds due to the following reasons. There is no

available virtualization technique of RDMA that can meet

the cloud’s requirements. Moreover, it is cost prohibitive

to rewrite the socket-based applications with the Verbs

API. To address the above problems, we present vSocket, a

software-based RDMA virtualization framework for socket-

based applications in public clouds. vSocket takes into

account the demands of clouds such as security rules and

network isolation, so it can be deployed in the current

public clouds. Furthermore, vSocket provides native socket

API so that socket-based applications can use it without

any modi�cations. Finally, to validate the performance

gains, we implemented a prototype and compared it with

current virtual network solutions against 1) basic network

benchmarks and 2) the Redis, a typical I/O intensive

application. Experimental results show that the latency

of basic benchmarks can be reduced by 88% and the

throughput of Redis is improved by 4 times.
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1 Introduction

With the emergence of data-intensive applications, such

as the in-memory database and large-scale AI (Arti�cial

Intelligence) systems, the e�ciency of the network commu-

nication has become a major factor a�ecting overall system

performance. Meanwhile, RDMA (Remote Direct Memory

Access) o�ers higher throughput, lower latency and lower

CPU overhead than the standard TCP/IP networking. Based

on these observations, a lot of literature proposed to exploit

RDMA to speed up their systems. For example, FaRM [13]

and HERD [25] exploit RDMA to improve the performance

of main memory distributed computing by an order of

magnitude in both latency and throughput, and [38] tries to

improve the performance of TensorFlow [11] by replacing

the gRPC-based transport with a new proposed solution

based on RDMA.

On the other hand, more and more applications are being

migrated to clouds. Among them, socket-based applications

account for the majority of the proportion. Meanwhile,

cloud providers are constantly looking for higher perfor-

mance network solutions. Unfortunately, although RDMA

has been proved to be e�ective for abundant data-center

applications, it is still challenging to apply RDMA for the
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socket applications in the cloud, due to the following two

reasons:

1) RDMA’s virtualization solution does not meet the

needs of the cloud environment: In the scenario of public

clouds, there are requirements such as security rules

(e.g. ACL [4]) and network isolation (e.g. VXLAN [27]).

However, RDMA’s current virtualization methods such as

SR-IOV [10], HyV [30] do not meet these requirements.

For example, when using SR-IOV, tra�c from the VM is

passed directly to the NIC (Network Interface Card) but

the NIC hardware does not support VXLAN tunneling.

AccelNet [16] uses an extra piece of hardware to solve

the problems of SR-IOV such as VXLAN tunneling (by

o�oading the needs to the new hardware). However, it

needs additional hardware.

2) Huge di�erence between Socket API and the Verbs

API: It is cost prohibitive to rewrite socket applications

with the Verbs API. To send and receive data through

the RDMA network we need to use the Verbs [7] API,

but most existing applications utilize the BSD socket API.

The main di�erence between them is that they assume

di�erent programming semantics. For example, for the

socket interfaces, applications could reuse the memory

bu�ers as soon as the data is sent to the network. But

for the Verbs API, applications can not reuse the bu�ers

until the success noti�cations ofWork Requests are explicitly

received. Therefore, rewriting the applications with the

Verbs API is not a straightforward job. Furthermore,

there are many applications that are no longer actively

maintained. Thus, a method to exploit RDMA to improve

the performance of socket applications without modifying

the source code is highly expected. To this end, VMA

(Mellanox Messaging Accelerator) [28] has been proposed

recently. It dynamically intercepts related calls to the socket

API and translates them into Verbs operations. One major

advantage of VMA is that the socket-based applications

could use the RDMA network without any modi�cations

to the source code. However, in order to ensure there is

no packet loss, VMA embeds a TCP stack. This will result

in high CPU processing overhead and low throughput.

(Sec. 6.2.2, 6.2.3)

Therefore, the goal of vSocket is to provide an RDMA-

based high-performance networking system that meets the

public clouds’ requirements for socket applications.

Particularly, to apply security rules to vSocket, we

propose to reuse the kernel TCP connection instead of

totally removing it. To this end, vSocket �rst establishes a

TCP connection through the kernel stack as normal, after

that a vSocket connection is created and mapped to an

RDMA connection for the above TCP connection. Therefore,

we could exploit this vSocket connection (actually the

RDMA connection) to accelerate the data transmission in

normal cases. Because the establishment process of kernel

TCP connection obeys all existing security rules of public

clouds, the vSocket connection can be created without

violating any security rules. Furthermore, to provide the

network isolation, vSocket connections are implemented

based on the para-virtualized I/O scheme. Thus each packet

can be tunneled in the backend. Other demands such as QoS

are also easy to implement based on the para-virtualization

I/O framework.

To provide an RDMA-based para-virtualized I/O frame-

work for vSocket connections, a virtualized RDMA device

should be realized. However, providing such a device

will introduce extra maintenance work. Because upgrading

physical RDMA devices or driver will inevitably lead

to upgrades of the driver for the virtual RDMA device.

Therefore, we recommend virtualizing RDMA connections

instead of providing a virtualized RDMA device. Thus we

only need a simple para-virtualized I/O device to exchange

data between the frontend and the backend. In vSocket, an

RDMA connection can be virtualized to multiple vSocket

connections to avoid scalability issues in RDMA. Moreover,

the RDMA device is driven through the standard Verbs

API, so the upgrade of physical RDMA devices or driver is

transparent to vSocket.

Finally, to provide a high performance vSocket connec-

tion. We eliminate the complicated TCP processing and

the data copy between the frontend and the backend

which is introduced by the para-virtualized I/O solution.

Besides, other overheads such as system calls, VM exits and

interrupts are also eliminated by adopting the user space

driver and polling scheme.

To sum up, this paper tries to bring the bene�ts of

RDMA networking to socket-based applications running in

the cloud VMs. The contributions can be summarized as

follows:

1. To the best of our knowledge, vSocket is the �rst

software-based solution that provides a fully compatible

interface over the RDMA network to socket-based applica-

tions in public clouds.

2. We propose to reuse kernel connections and virtualize

RDMA connections to enable RDMA in the virtual

environment, which is quite di�erent from the conventional

device virtualization.

3. We implemented the prototype and compared the

performance with the state-of-the-art approaches. Evalua-

tion results demonstrate that the connection virtualization

technique is a promising solution to RDMA virtualization,

especially for connection-oriented applications.

2 Overview

In this section, we will present the design principles of

vSocket and show how it achieves the following goals:

1) zero modi�cation to applications, 2) satisfying cloud

requirements, and 3) high performance.
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Figure 1. Architecture overview of vSocket.

The �rst goal of zero modi�cation to applications

indicates being compatible with the BSD Socket API.

As shown in Figure 1, vSocket provides a user-level

library running in the VM. The library is responsible for

intercepting the invocations on the socket API1. More

speci�cally, we leverage the LD_PRELOAD option to make

the application load the vSocket library. Through that,

socket related invocations are handled by the library, which

is similar to VMA [28]. Note that some invocations to

optimize performance, such as setting send bu�er size,

are ignored by vSocket since vSocket exploits a di�erent

transport protocol from TCP.

To obey the security rules (such as ACL [4], security

groups [9]) in the cloud, we propose a novel hybrid way

to boost the communication performance by reusing the

kernel protocol stack to establish connections and only

accelerating data transfer. As shown in Figure 1, after

taking over the execution by intercepting connect()/accept()

calls, vSocket will �rst establish a kernel connection,

then establish a new vSocket connection for it. Since

the establishment of the kernel connection obeys all

existing security rules, the new vSocket connection can

be established safely. Subsequently, data operations such

as send()/recv() from the application will be accelerated

through the vSocket connection.

Furthermore, in a cloud scenario, network isolation

mechanisms (such as VXLAN [27]) are required to isolate

tra�c between di�erent tenants. Since the RDMANIC does

not support VXLAN currently, the VXLAN encapsulation

& decapsulation must be done in the software (or modify

the hardware). Therefore, vSocket connections must be

implemented based on para-virtualized I/O framework so

that the encapsulation & decapsulation of data packets can

be done in the host.

1Some �le descriptor related operations such as write(), fcntl() and

epoll_wait() are also intercepted.

Now, the question is how to provide a para-virtualized

framework over RDMA. Traditional solutions, such as

vRDMA [31] and HyV [30], try to provide a virtual

RDMA device for VMs. But providing a fully-functional

virtual RDMA device will inevitably increase maintenance

costs. For example, HyV has to maintain a device/vendor

dependent driver in both the frontend and the backend,

making it di�cult for the cloud provider to upgrade physical

devices and driver. For vSocket, since the connection

establishment and data transfer are separated, there is no

need to provide a full-featured virtual device like HyV.

So we proposed connection virtualization to solve the

problem. As shown in Figure 1, vSocket maintains multiple

vSocket connections and maps them to the physical RDMA

connections. Meanwhile, since the vSocket backend drives

RDMA via the Verbs API which is independent of the

underlying devices and driver, the service provider could

transparently upgrade their infrastructures.

Finally, providing high-performance vSocket connections

is still a challenging job. To replace the kernel TCP connec-

tion, the basic functions of TCP should be maintained by

the vSocket connection. TCP mainly provides two kinds of

services, one is reliable transmission service and the other

is congestion control. Since we use RDMA to transfer data

and RDMA already provides congestion control [40], we no

longer need to provide it. Although the RDMA NIC also

provides reliable transmission, only transmissions over the

physical network are guaranteed to be reliable by the RDMA

NIC. A software virtual I/O device may also drop packets

when its queue is full. A solution is to use another userspace

TCP stack such as lwIP [14], but the stack processing

in software will consume a lot of CPU and degrade the

application’s performance. Besides, the para-virtualization

I/O will introduce extra overhead such as data copy, VM

exit/entry. How to avoid these overheads is still challenging.

We will address these challenges in Sec. 4.

3 Design

In this section, we will �rst introduce the de�nition of a

vSocket connection. Then we will explain how to establish

a vSocket connection. Finally, we will show how to transmit

data through a vSocket connection. In these processes, we

will see that the requirements of clouds are satis�ed in the

design of vSocket.

3.1 The vSocket Connection

As shown in Figure 1, there are three types of connections

in vSocket. The �rst one is the traditional socket connection

(TCP)which serves as a control path. The socket connection

is established completely through the kernel as if we never

intercept the invocations from the application. We call

this connection the kernel socket connection. A kernel

socket connection can be uniquely identi�ed by a four-
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tuple <source IP2, source port, destination IP, destination

port>. The second is the vSocket connection which is

a virtual connection that serves as the fast data path.

A vSocket connection consists of the frontend part (the

frontend connection) in the VM and the backend part (the

backend connection) in the host. The frontend connection

is uniquely represented by the same four-tuple <source

IP, source port, destination IP, destination port>, while the

backend connection is represented by a �ve-tuple <tenant

ID3, source IP, source port, destination IP, destination port>.

Because tenants may share the network address space, a

tenant ID is necessary to distinguish connections belonging

to di�erent tenants. Between the frontend connection and

the backend connection, data is exchanged through a para-

virtualized I/O device. The third is the physical RDMA

connection which is the real transmission path between

two physical machines. In vSocket, a physical RDMA

connection is built on a single RC (Reliable Connection)

mode QP (Queue Pair).

It is notable that the physical RDMA connection is

transparent to the VM. In the perspective of a VM, there is

no RDMA connection at all, only one vSocket connection for

each kernel socket connection. In the perspective of the host,

multiple vSocket connections are mapped to one physical

RDMA connection. That is to say, An RDMA connection

is virtualized as vSocket connections. Therefore we can

consider a vSocket connection as a virtual connection of a

physical RDMA connection.

Usually, vSocket only maintains one RDMA connection

between two physical machines to alleviate the scalability

problem of RDMA. That means only the �rst vSocket

connection establishment request needs to initiate the

physical RDMA connection. For all subsequent connection

establishment requests between the two machines, the

job becomes to map the vSocket connection to the

corresponding RDMA connection.

3.2 Establish a vSocket Connection

We will show the vSocket connection establishment process

in this section. This process exhibits that the establishment

of vSocket connection highly respects the security rules of

clouds. We assume that the client and server are running

in separate VMs on two physical machines. Therefore,

to communicate with each other, the client should �rst

establish a connection with the server. As shown in Figure 2

(Since the process on the other host is similar, we only draw

one host to save space), the following steps are necessary to

establish a vSocket connection.

2The source and destination IPs are those of the VMs. The IP of the host

OS is transparent to VMs in clouds.
3A tenant ID can be the VXLAN VNI or some other identi�cations adopted

by the cloud provider.
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Step 1: The client calls connect() and the server calls

accept() both of which are intercepted by the vSocket

library4.

Step 2 and 2’: vSocket forwards the invocation to the

kernel to establish a kernel socket connection. After that,

the control returns to the vSocket library. (If the kernel

socket connection establishes successfully, it means that the

connection request obeys the security rules of the cloud

and we can establish a vSocket connection for it; otherwise

vSocket will return a failure to the application. After

connected, vSocket will keep the kernel socket connection

alive by sending heartbeat packets regularly.)

Step 3: vSocket registers the frontend connection.

(After that the underlying RDMA connection between

the corresponding two hosts should be established. In order

to establish the RDMA connection, vSocket needs to know

the peer host’s IP address. However, the VM is only aware

of the peer VM’s IP address. The following three steps will

show how the proposed vSocket solves this problem.)

Step 4: vSocket queries the IP address of the local host

from the backend. (Note that in order to hide the host IP

from the VM, the backend will encrypt the IP address.)

Step 5: vSocket exchanges the encrypted host IP

address with the remote library through the kernel socket

connection established in step 2.

Step 6: The following three types of information are

forwarded to the backend, including 1) the four-tuple of

the frontend connection, which is <source IP, source port,

destination IP, destination port>, 2) the encrypted IP address

of the remote host and 3) the role, which is either client or

server.

4We assume that the client and server have �nished the preparation phase

such as socket() and bind() through the kernel.
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Step 7: The backend decrypts the peer host’s IP

address. In the client side, the backend will initialize an

RDMA connection with the peer’s backend if the RDMA

connection is not established yet. After that, the backend

connection identi�ed by the �ve-tuple (i.e., <tenant ID,

source IP, source port, destination IP, destination port>) is

mapped to the physical RDMA connection.

Step 8 and 9: Return to the application.

3.3 Data Transfer Through the vSocket Connection

The vSocket connection is used as the fast data path of the

inter-VM communication. In this section, we will discuss

how to transmit packets through the vSocket connection

without breaking the network isolation.

As shown in Figure 3, there are three kinds of

threads that collaborate to transfer packets: the application

(Client/Server) thread, the vSocket frontend polling thread

and the vSocket backend polling thread. The details of the

threading model will be discussed in Sec. 4.3 while this

section focuses on how they work together to send and

receive data. For all the queues in vSocket which store the

descriptors of the data packets, we suggest lock-free FIFOs.

Assuming that a client need to send a message to the server,

the following steps are required.5

Step 1A, 1’A: The vSocket library takes over the

execution by intercepting send() in the client and recv() in

the server.

Step 2A, 2’A: The data is copied from the application

bu�er to the vSocket bu�er, if there is available space in the

sending window. The discussion of the sending window is

in Sec. 4.2. On the other side, the server checks if there is

data arrived.

Step 3A, 3’A: A vSocket header de�ned in Figure 4

is composed and prepended the payload in the vSocket

bu�er. After that, the vSocket library constructs and pushes

a descriptor into the socket FIFO, where the descriptor

contains the address of the packet. Note that vSocket

maintains a socket FIFO for each vSocket connection. On

the other side, the server �nds that no data arrives and

then blocks on the corresponding eventfd, waiting for data

to arrive. (For the kernel socket, recv() will return success

immediately if there is data in the receive bu�er; else it will

block waiting for data (blockingmode) or return failed with

errno=EAGAIN (nonblocking mode). We assume the recv()

is in blocking mode here.)

Step 4A and 5A: A send-command is issued to the CMD

queue. The command contains the information about the

descriptor to be send. Then the execution returns to the

application. (Note that the send() will return immediately

once the data is copied to send bu�er in the kernel socket,

5Note that the uppercase alphabetsA, F, and B behind the sequence number

respectively denote the execution contexts of the application thread (A), the

frontend polling thread (F) and the backend polling thread (B).

no matter the send() is blocked or not. So vSocket’s send()

operation should also return at this point).

Step 6F and 7F: Once the send-command is polled

out from the CMD FIFO, the frontend polling thread will

fetch the descriptor from the socket FIFO indicated by the

send-command, then convert the virtual address in the

descriptor into corresponding guest physical address and

�nally forward it to the virtio FIFO.

(Step 8-14 will show how vSocket forwards packets in the

backend.Meanwhile, the network isolation is guaranteed by

adding a tenant ID to each packet.)

Step 8B, 9B, 10B, and 11B: The backend polling thread

polls out the descriptor from the virtio FIFO and exploits

cuckoo hash [15] to look up the backend connection

where the hash key consists of the four-tuple carried in

the vSocket header and the tenant ID of the VM. After

that, the corresponding physical RDMA connection can be

determined by the backend connection. Then the packet, its

descriptor and tenant ID are sent out through the RDMA

connection using standard RDMA verbs API. (vSocket uses

RDMAWRITE to transfer data. The address in the descriptor

is already replaced by the remote host virtual address, the

details on how to determine the remote memory address

will be discussed in Sec. 4.1.)

Step 12B, 13B, and 14B: The newly arrived descriptor

is polled out and forwarded to the backend connection

determined by the vSocket header and tenant ID. Then the

address in the descriptor is converted to the corresponding

guest physical address. Finally, the descriptor of the packet

is forwarded to the corresponding virtio FIFO.

Step 15F, 16F, and 17F: The descriptor is polled out from

the virtio FIFO by the frontend polling thread, and the guest

physical address is converted to guest virtual address. Then

the descriptor is switched to the corresponding socket FIFO

based on the 4-tuple in the packet header. After that, the

corresponding eventfd is written to notify the application

thread.

Step 18A, 19A, and 20A:Oncewaking up by the eventfd,

the application thread will get the descriptor from its socket

FIFO and copy the data from the vSocket bu�er to the

application bu�er.

Step 21A, 22A, and 23A: A CREDIT is created and

pushed into the socket FIFO, then a CREDIT-command

is issued to the CMD FIFO. Finally, recv() returns to the

application. Note that the CREDIT is used to manage the

receive memories and the sending window which will be

discussed in Sec. 4.

Step 24 and later:The procedure of sending the CREDIT

is similar to sending a packet as discussed above, therefore

we omit the detailed discussions here.

To sum up, vSocket has two distinct advantages. On the

one hand, the TCP-related processing is removed from the

critical path. On the other hand, in both send and receive

path, vSocket avoids all unnecessary data copies except the
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Figure 4. vSocket header structure.

one between the application bu�er and the vSocket bu�er to

keep compatible with the BSD Socket API.

4 Performance Challenges

There are a few challenges to maximize the performance of

the data path. In the section, we will identify three major

challenges and discuss how to manage them.

4.1 One Copy

One major cost for transferring data is the data copy.

Generally, zero-copy is expected to minimize the overhead.

However, the socket programming model allows applica-

tions to reuse their bu�ers as soon as the data is successfully

sent to the socket bu�er. Therefore, data copies between the

application and vSocket bu�ers are hard to avoid. Thus, the

�rst challenge is reduced to achieving zero-copy between

the local and remote vSocket bu�ers.

Since both the local and remote vSocket bu�ers reside

in VMs, a strawman solution to transfer data requires

three phases: copy data from the local vSocket bu�er to a

backend bu�er, forward the data from the local backend

bu�er to the remote backend bu�er through RDMA, and

�nally copy data from the remote backend bu�er to the

remote vSocket bu�er. As a result, two copies are required

between the vSocket bu�er and backend bu�er which may

signi�cantly degrade the performance of latency-sensitive

applications especially for transmitting large messages [17,

34, 35]. Therefore, we are going to remove the above two

copies.

In fact, the �rst copy in the sender side is easy to

eliminate. We just need to ensure that the backend can

access the vSocket bu�er within the VM. It means that

vSocket needs to provide a mapping between GVA (Guest

Virtual Address), GPA (Guest Physical address) and HVA

(host virtual address). To this end, we exploit huge pages

to accommodate the vSocket bu�er and map them into the

address space of the backend process. The RDMA driver

just needs the HVA to DMA data (there are page tables in

the RDMA NIC), thus maintaining the mapping between

HVA and HPA (host physical address) is no longer needed.

However, providing such a mapping is not su�cient to

eliminate the copy in the receiver side. Because the RDMA

NIC does not parse the self-de�ned vSocket header and thus

does not know which vSocket connections the incoming

packets belong to. Therefore, a backend bu�er is needed to

temporarily store the packets. To address this problem, we

ask the backend of the sender side to manage the receiver’s

vSocket bu�ers. Speci�cally, the memory for receiving

packets are �rst created in the receiver side during the

connection establishment phase. Then the receiver sends

all the necessary information about the receiving memories

to the sender side, including the base addresses and the

sizes. The receiving memory can only be written ( RDMA
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WRITE) by the sender and read by the receiver. Therefore,

the sender side could determine where toWRITE packets by

itself. Furthermore, after a packet in the receiving memory

is copied to the receiver’s application bu�er, a CREDIT will

be created and sent back to notify the sender that the packet

has been received and the corresponding receiving memory

can be reused.

4.2 No Loss and HoL Blocking

To replace TCP, providing reliable transport service is

necessary for vSocket. As shown in Figure 3, the RDMA

data path between the local and remote vSocket bu�ers

is reliable because vSocket exploits the reliable connection

(RC) transport model. However, the vSocket descriptor

path, i.e., the end-to-end path between the local and

remote socket FIFOs, is not naturally reliable. Although

RC transport model is adopted to guarantee the reliability

between the local and remote physical FIFOs, the path

between a socket FIFO and a physical FIFO is not reliable.

For example, if a virtio FIFO is full, descriptors sent from

socket FIFOs will be dropped. Similarly, if a physical FIFO is

full, descriptors sent from virtio FIFOs will be dropped too.

Traditionally, a lightweight TCP-like protocol is utilized

to provide end-to-end reliable services. For example, to this

end, VMA embeds the lwIP [14] protocol stack. However,

introducing an additional protocol stack will degrade

the performance as discussed in 6. Since the physical

connection is reliable, another strawman solution is to

exploit lossless �ow control in the software. For example,

once a downstream FIFO is full, it will stop the transmission

of all upstream senders. However, since a downstream

FIFO is shared by multiple upstream FIFOs, the lossless

�ow control technique will lead to signi�cant Head-of-Line

(HoL) blocking problem [33].

To address the above problem, we design a �ow control

strategy to prevent the FIFOs from over�owing. For each

vSocket connection, we add a sending window. The initial

window sizeW is not in bytes, but in packets (since it is only

used to avoid FIFO over�ow). Whenever a packet is sent

out, the window size of the connection will be decremented

by one. When the window size is reduced to zero, sending

process will be paused. In other words, the send operation

on the socket will be blocked (in blocking mode) or failed

with errno=EAGAIN (in non-blocking mode). When the

receiver gets a packet, it will create and send back a

CREDIT to the sender (TheCREDIT is also used for memory

management as described in Sec. 4.1). The CREDIT contains

the connection information and the memory information

of the packet just received. Upon receiving the CREDIT,

the sender will increase the connection’s window size by

one. This leads to a simpler �ow control design. Unlike TCP

we do not need timers, retransmissions, etc.. According to

the design, the total amount of in-�ight packets/CREIDTs

of each connection never exceeds the initial window size

W. As a result, as long as the virtio FIFO and the physical

FIFO is large enough (W ∗C , where C is the total number of

connections linked to the FIFO), no packet/CREDIT will be

lost in vSocket.

Unfortunately, the setting can consume a lot of memory.

Supposing there are 1 million connections between two

hosts and the maximum window size of each connection

is set to 32, then the virtio/physical FIFO size should

be 32M. However, considering the realistic bandwidth (B)

and delay (D), the size of FIFO can be set smaller. To

ful�ll the bandwidth, we need B ∗ D memory in the host

according to Bandwidth-Delay Product [23]. Let us denote

theminimum packet size asminPS (RDMAheader + vSocket

Header), so the physical FIFO size should be B ∗ D/minPS .

If B = 100Gb/s , D = 10µs and minPS = 100Bytes ,

then the size of virtio FIFO and physical FIFO should be

B ∗ D/minPS = 1.25K , which is much less than 32 M.

Furthermore, considering the CPU frequency limit, 100Gb/s

cannot be reached when small packets are transmitted.

According to our test, when transmitting small packets

through RDMA, the packet rate R is about 6 Mpps. So

the FIFO size should be B ∗ D/PktSize = R ∗ PktSize ∗

D/PktSize = 60. That is, when the delay is less than 10us,

the FIFO size 60 can guarantee no packet loss. To be on

the safe side, we set the size of virtio FIFO and physical

FIFO to be 32768, which can tolerate about 5ms delay in the

network.We believe that state-of-the-art congestion control

algorithms [12, 19, 40] can easily control the network delay

within this budget. Furthermore, to prevent packet loss due

to high tail latency, we also added a backup system. The

backup region will not over�ow due to the existence of �ow

control. Since it has a maximum size ofC ∗W .

4.3 Threading Model

In order to eliminate overheads such as interrupts, VM

exits/entries, and system calls, we use polling threads for

transmitting packet descriptors between the frontend and

the backend as discussed in Sec. 3.3. In the host, the backend

continues polling virtio FIFOs and physical FIFOs for new

packet descriptors. Each VM usually has a virtio device,

which contains multiple virtio FIFOs. A process in the

VM usually requests one virtio FIFO, and a polling thread

is created by the vSocket library to serve the application

threads. Thus avoids polling from each application thread.

The polling thread continues polling descriptors from the

virtio FIFO and the CMD FIFOs. Because there may be

a lot of socket FIFOs and many of them may be idle,

polling empty socket FIFOs will waste CPU. To address this

problem, we add a command FIFO between each application

thread and the frontend polling thread. The command FIFOs

and application threads are one-to-one mapped to avoid

locks.

Basically, there are two types of commands in the

command FIFO, send descriptor and send CREDIT. When a
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application thread sends or receives a packet, it generates

a descriptor/CREDIT and pushes it into the socket FIFO,

then pushes a send descriptor/CREDIT command into the

command FIFO. For each connection, we create an eventfd

which is a �le descriptor that can be used to wait for

events. When the sending window size is decreased to

zero (full) or increased to the maximum size (empty),

the send()/recv() operation over this connection will be

blocked on the corresponding eventfd (for blocking fd) or

failed with errno=EAGAIN (for non-blocking fd). When

the polling thread receives packet descriptors or CREDITs

from the virtio FIFO, it will forward them to the socket

FIFO. If the fd is blocked or the fd is waiting by an epoll

instance, it will simply write() to the eventfd to wake up

the blocked application thread. For the I/O multiplexing

interfaces like epoll_wait(), they are also intercepted by

vSocket and the kernel epoll_wait() is called to wait on the

corresponding eventfd instead of the socket fd. After the

kernel’s epoll_wait() returns, vSocket library will convert the

return value from eventfd to socket fd and then return it to

the application. So the Socket API remains unchanged and

the application can exploit vSocket without modi�cation.

5 Discussions

Live migration: To support live migration, we propose a

solution called connection switching, which means vSocket

will switch to kernel connection for data transmission when

migration happens. In AccelNet [16], Azure uses a similar

approach to migrate RDMA connections. However, it

requires applications to actively switch RDMA connections

to kernel TCP connections. The main di�erence with

AccelNet is that our connection switching is done by the

vSocket library, which is transparent to the application. The

design idea behind migration is simple. When migration

occurs, vSocket will close the vSocket connection and fall

back to the kernel connection to transfer data. After the

migration completes, vSocket will create a new vSocket

connection.

Communication between co-located VMs: For two

VMs running on the samemachine, the best communication

performance can be achieved by shared memory. For

example, The NetVM [21] facilitates data sharing among

VMs by providing an emulated PCI device of huge pages

to them. However, sharing memory by multiple VMs may

cause security issues because a VM can access packets that

do not belong to it. Thus vSocket does not adopt shared

memory solution for co-located VMs. To exchange data, the

vSocket backend directly copies the packets to the vSocket

bu�er and forwards the packet descriptors to the virtio FIFO

of the destination VM.

Scalability: Since FIFOs are lockless and not shared by

processes or VMs, the possible scalability problem, if exists,

resides in shared polling threads. 1) When the number of

physical machines is large, the number of physical FIFOs

will increase, indicating more time is needed to poll all

of the physical FIFOs. To prevent this problem, we can

use WRITE-IMM instead of WRITE to write the descriptor

through RDMA NIC. By using WRITE-IMM, the backend

will be noti�ed if new packets arrive. Moreover, destination

physical FIFO can be directly determined by the immediate

number takenwith the RDMA request. 2)When the number

of VMs inside a physical machine is large, the number of

the virtio FIFOs will increase, indicating the backend poling

thread needs to poll more virtio FIFOs. We can ease the

bottleneck by adopting more polling threads in the backend.

3) When the number of processes inside in a VM is large,

the number of polling threads in the VM will increase,

indicating more CPU cores are occupied to poll the socket

FIFOs. In fact, we set up a per-process polling thread with

the purpose of obtaining the best performance, which is also

widely adopted inDPDK [22] related projects. If we prefer to

avoid the potential wastes of the CPU cycles in the scenario

of abundant processes, a polling process instead of the per-

process polling thread can be adopted. Similar to the polling

thread, the interaction between the application process and

the polling process can be achieved through eventfd and the

CMD FIFO can be implemented with shared memory.

CPU polling: When the workload is low, it is wasteful

to use a polling core, we are considering to use interrupt

instead of polling in this scenario.

Other requirements in public clouds: There are many

other requirements such as tra�c shaping [37] and tra�c

statistics in public clouds. Since vSocket connection uses

para-virtualization I/O, these requirements are easy to

implement in the vSocket backend. For example, tra�c

shaping can be implemented by adding a token bucket [36]

to each VM in the backend.

6 Evaluation

As shown in Figure 5, there are four typical approaches that

are mostly adopted for inter-VM communication by socket-

based applications: a) split device driver with vhost-net and

kernel-OVS in host(VM/Kernel-OVS); b) split device driver

with DPDK vhost-user and DPDK OVS in host(VM/DPDK-

OVS); c) passthrough of RDMA NIC with RDMA libraries

and VMA library(SRIOV-VMA); and d) passthrough of

non-RDMA ethernet with TCP/IP software stacks(SRIOV-

Kernel) 6 7.

In this section, we answer the following questions by

comparing vSocket with the above four approaches:

1. Latency: Does vSocket provide lower latency for socket

connections? Sec. 6.1.1 shows that vSocket outperforms all

6Note that the SRIOV based approaches are not currently applied in public

clouds.
7We only select approaches that support the BSD Socket API.
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Figure 5. The software layout of vSocket and four other approaches in terms of inter-VM communication.

non-RDMA based approaches, VM/Kernel-OVS, VM/DPDK-

OVS, and SRIOV-Kernel.

2. Bandwidth: Does vSocket provide higher bandwidth

for socket connections? Sec. 6.1.2 shows that vSocket has

the highest bandwidth. Even compared to SRIOV-VMA, the

single �ow bandwidth increases by nearly 2X.

3. Connection establishment overhead: How long does it

take to establish a vSocket connection? Sec. 6.1.3 shows that

the establishment time of a vSocket connection is only 488

µs longer than that of a BSD socket connection when the

backend RDMA connections are already created. However,

the extra overhead merely a�ects the overall application

performance, especially for long-term connections.

4. Application performance: Does vSocket bene�t real

applications under di�erent workloads? Sec. 6.2 shows that

using vSocket, the average latency of Redis can be reduced

by 85% and the throughput can be increased by nearly 4X.

Experiment setup: We deploy two VMs respectively

on two homogeneous machines. Each machine is with

one Mellanox ConnectX-4 adaptor with Virtual Protocol

Interconnect (VPI), supporting 100 Gb/s In�niBand and 100

Gb/s Ethernet connectivity [2], and two NUMA nodes each

of which consists of one processor (Intel®Xeon®E5-2690 v4

@ 2.60 GHz) and 32 GB of DRAM (DDR4@ 2400MHz). The

two RDMA NICs are directly connected by a single cable.

We disabled Intel®Hyper-Threading and Intel®Turbo Boost

to keep the experiment environments simpli�ed and easy to

analyze. For the two VMs, each machine is with 4 virtual

CPU and 8 GB of memory. The virtual CPUs are pinned to

the physical CPUs within a single NUMA node where the

allocated memory resides and the RDMA NICs connects.

For the software, we deploy the modules and libraries

according to Figure 5. The host OS and guest OS are using

the same Linux, Ubuntu 14.04.5 with 4.4.35 kernel. We use

the native KVMmodule and QEMU 2.10.0 for virtualization.

The Mellanox NIC driver is MLNX_OFED_LINUX-4.1-

1.0.2.0 and runs in RoCEv2 mode. For the benchmarks, we

run clients and servers respectively on two VMs. We use

VMA 8.4.3 in the SRIOV-VMA approach. OpenvSwitch 2.8.4

and DPDK 17.05 are deployed for the OVS approaches.
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6.1 Micro Benchmarks

In this section, we demonstrate the bene�ts of RDMA in

terms of latency and bandwidth. We compare vSocket with

the others using netperf [3], a popular micro-benchmark

that can be used to measure the end-to-end latency and

throughput of networking. Furthermore, we exploit a

micro-benchmark to evaluate the overhead of connection

establishment of di�erent approaches. All the tests are

repeated for �ve times and we show the average numbers

in the �gures.

6.1.1 Latency

To measure the best performance of the end-to-end latency,

we set the message size to be only one byte and run netperf

in the TCP_RR mode for 10 seconds. Figure 6 shows the

RTT (round trip time) of all candidates. From the numbers,

we can observe that it only takes 7 µs for vSocket to

�nish a round trip. And it is 61 µs for the VM/Kernel-

OVS approach. That is to say, the RDMA based vSocket

reduces the latency by more than 88% in this scenario.

As discussed before, the time of VM/Kernel-OVS mainly

spent on the processing of system calls, TCP processing,

interrupts handling, VM exit/entry, etc. All these operations

in the vSocket are eliminated. However, the VM/DPDK-OVS

approach takes much more time than our expectation, we

did some experiments around it and guessed that this was

caused by the batching delay in the DPDK driver for the

Mellanox ConnectX-4 VPI device. So we repeated the test

with some background tra�c to eliminate the delay. The
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Figure 8. The establishment overhead of the connections

between the client and the server which respectively resides

in two VMs. The process includes the establishment of the

backend RDMA connection if necessary.

experimental results show that the real RTT of VM/DPDK-

OVS is 43 µs, which is smaller than that of VM/Kernel-

OVS. This is mainly because the backend interrupts are

eliminated in the VM/DPDK-OVS. The SRIOV-VMA has

lower RTT than vSocket. This is mainly because it uses the

SRIOV virtualization framework while vSocket uses a para-

virtualized framework to satisfy the requirements of public

clouds. The SRIOV-Kernel’s RTT is 20 µs, mainly bene�ts

from passthrough of the NIC.

6.1.2 Bandwidth

For the bandwidth, we run netperf for 1 minute in

TCP_STREAM mode over one connection. Figure 7 shows

the bandwidth of the �ve approaches. vSocket can achieve

more than 40 Gb/s of bandwidth, which is respectively

1.6X, 1.8X, 2.6X, and 11.9X of SRIOV-VMA, SRIOV-Kernel,

VM/Kernel-OVS, and VM/DPDK-OVS. We guess that it is still

the batching delay within the DPDK driver that cause the

worse performance of VM/DPDK-OVS.

6.1.3 Connection Establishment Overhead

Sec. 3.2 shows the process of establishing a full-�edged

vSocket connection is longer than that of a conventional

socket connection. For vSocket, a virtual connection needs

to be created for every conventional socket connection.

An intuitive question is how much extra overhead will be

introduced. To answer this question, we wrote a micro-

benchmark of which the server side keeps accepting

external connections from the client side. The server and the

client run in two di�erent VMs. The client-side iteratively

initiates 100 connections without any disturbance.

Note that to establish the �rst virtual connection, the

backend connections have to be initialized �rst. Once the

backend connections are created, the establishment of the

subsequent vSocket connections can reuse these backend

connections. Figure 8(a) and Figure 8(b) respectively shows

the establishment overheads of the �rst and subsequent

connections. First, we can observe that the establishment

overhead of the �rst vSocket connection is 15.33 ms,

while the establishment of the subsequent connections
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Figure 9. The CDF of response time over one connection

using the native benchmark of Redis.

takes only 595 µs. Second, both vSocket and VMA

need more time than vSocket to establish a full-�edged

connection. The main reason is that VMA has to initialize

resources such as route table for the �rst time. Both

for vSocket and VMA, the overheads are unnecessary for

the establishment of subsequent connections. Therefore

the extra overhead merely a�ects the overall application

performance, especially for long-term connections. Third,

since the establishment of a vSocket connection consists of

the establishment of a virtual connection and a kernel-based

TCP connection which costs 107 µs, establishing the virtual

connection of a subsequent vSocket connection takes about

488 µs.

6.2 Application Performance

In this section, we choose a real-world application, Redis [8],

to measure the performance gains brought by vSocket. Redis

is a widely used in-memory key-value store, commonly

used as a database, cache, and message broker. In such sce-

narios, the response latency of individual requests is critical

to the overall performance. We use the o�cial benchmark

redis-benchmark which simulates running commands done

by N clients simultaneously sending M total queries [5].

The performance results reported include the response time

of each request and the system throughput. We modi�ed

the redis-benchmark to increase the accuracy of the test

response time to 1 µs.

6.2.1 Latency

We evaluate the performance in both scenarios of low

and high workloads. In the case of low workload, we run

100 thousands of SET requests within a single connection.

For the high workload, the requests are issued through

ten concurrent connections. According to our experiments,

10 concurrent connections are large enough to stress the

application. Besides, the payload size is set to 4 bytes.

Figure 9 and Figure 10 respectively show the CDFs

(Cumulative Distribution Function) of the response time in

the cases of one and ten connections. Figure 9 shows that

the response time is slightly higher than the RTT reported
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Figure 11.The throughput of Redis over eighty connections

using the native benchmark.

in Sec. 6.1.1. The margin mainly comes from request

handling in Redis server. Similarly, vSocket performs a little

worse than SRIOV-VMA in the case of a single connection.

However, when using multiple concurrent connections,

vSocket becomes as fast as VMA as shown in Figure 10.

This is because that the overall response time is not only

determined by the delay on the network path, but also

in�uenced by the processing speed of the application when

the load is high.

6.2.2 Throughput

Generally, a single-threaded Redis server instance is not

expected to be able to take advantage of multiple CPU cores.

Therefore, in most situations, the bottleneck is the CPU

core other than the network since a single Redis instance

usually can not saturate a 100 Gb/s NIC according to our

experimental results. Similarly, a single redis-benchmark

instance may not saturate the Redis server too. Therefore,

to obtain the maximum throughput, we simultaneously

run four redis-benchmark instances each of which runs 20

concurrent connections.

Figure 11 shows the throughput of Redis against

di�erent sizes of payload. We can see that vSocket’s

throughput is 3.6, 3.5, 4.8, 1.6 times of the throughput

of the VM/Kernel-OVS, VM/DPDK-OVS, SRIOV-Kernel, and
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Figure 12. The breakdown of the server-side CPU

usage when running the native benchmark with eighty

connections.

SRIOV-VMA, respectively. Sec. 6.2.3 will explain the high

throughput of vSocket.

6.2.3 CPU Breakdown

The throughput of Redis is determined by many factors.

When the number of connection is small, Redis will mainly

wait for I/O, thus the throughput in this case is mainly

determined by the latency. The lower latency, the higher

throughput. However, when the number of connection is

large, Redis will rarely wait for I/O. Requests are almost

always ready to be processed. So the throughput is mainly

determined by the CPU cycles occupied by Redis.

In this section, we pro�le the CPU utilization of the

CPU core running Redis-server by using Perf [6] tool.

Two main components, Redis-server binary, vSocket library

or VMA library or the kernel (including TCP/IP stack,

Packet I/O, etc.) are analyzed. The Redis-server runs with

80 concurrent connections issued by four redis-benchmark

instances. Figure 12 shows their proportions of CPU time.

The CPU utilization breakdown shows that vSocket only

consumed 21% of CPU cycles and 59% of CPU cycles are

left to Redis-server binary. That means vSocket library

introduces lower CPU overhead than VMA library or the

kernel stack. Therefore, more CPU cycles are left for the

application itself to process requests. However, it is worth

noting that only 14% to 18% of CPU cycles are consumed by

the Redis binary for VM/DPDK-OVS, VM/Kernel-OVS, and

SRIOV-Kernel and the kernel consumes about 80% of the

CPU time. This is consistent with the results in mtcp [24].

Moreover, the VMA library consumes 47% of the CPU time

while it is only 21% for the vSocket library. We should owe

the less overhead in vSocket to the elimination of the TCP/IP

stack.

However, vSocket use another polling thread for packet

processing. Fortunately, the polling thread can serve

multiple application threads. So we conduct another

experiment to pro�le the polling core. The results show that

the polling thread only spends 20% of the CPU time on

handling the packets and 80% of the CPU time on polling
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Figure 13. The throughput of Redis with the increasing

number of connections.

empty queues. That is to say, the polling thread can serve

�ve application threads concurrently. Thus, the polling

core’s overhead can be amortized by multiple application

threads.

6.2.4 Scalability

Scalability of a library is important for today’s large-scale

applications. To demonstrate the good scalability of vSocket,

we evaluate the throughput of Redis with di�erent num-

bers of concurrent connections. The connection number

increases from 1 to 1300 and the request is SET operation

with 64 bytes of payload. Figure 13 shows that as the

number of connections increases, vSocket can maintain

high throughput. In Figure 13, it is notable that vSocket

achieves lower throughput than VMA when the number

of connections is small (less than 7 connections) but the

result is reversed when the number of connection is large.

The main reason is that when the number of connection is

small, the throughput is mainly determined by the latency;

however, when the number of connection is large, the

throughput is mainly determined by the library overhead.

7 Related Work

We classify the related work into three categories: RDMA

for socket applications, virtualization of RDMA and current

solutions of public clouds.

The socket-based applications can use RDMA by using

libraries to convert socket APIs to Verbs APIs. VMA [28]

and Rsocket [20] provide the ability of converting Verbs

API to Socket API. VMA exploits RDMA’s RAW_PACKET

mode to transmit packets, which is not reliable. So it embeds

a TCP protocol stack in it to provide reliability. However,

the protocol stack introduces processing overheads. As for

Rsocket, it does not handle compatibility issues very well.

For example, it does not support epoll. Moreover, they are

not initially designed for virtual environments.

Some other works enable RDMA for virtual machines.

With the SR-IOV [10], a VM can achieve close to the bare-

metal performance by directly accessing the hardware. But
in public clouds, it still needs to tackle problems such as

security, network isolation and �exibility. HyV [30] presents

a hybrid virtualization architecture which separates the

RDMA control path and the RDMA data path. Thereby

it provides greater �exibility in resource management

compared to SR-IOV without sacri�cing the performance

of the data path. But problems like security, network

isolation are still di�cult to solve. vRDMA [31] uses

the para-virtualized framework to virtualize RDMA for

VMWare’s hypervisor, but it provides the Verbs API which

is not friendly to socket-based applications. AccelNet [16]

proposes to solve the problems of SR-IOV by o�oading

the security rules, network tunneling to a new piece of

hardware. But it needs to modify hardware and provides the

Verbs API. FreeFlow [39] enables RDMA for the container-

based cloud. But the method of FreeFlow only works for the

container.

In public clouds, the para-virtualization technology is

the default solution. In the host, a virtual switch such

as OpenvSwitch [29] is required to switch packets, and

a virtual I/O driver such as virtio [32] and vhost [18]

are needed to transfer packets between the guest and the

host. To process all types of tra�c, the virtual switch

needs to be designed very complex, which will result in

additional delays. In the VM, a TCP/IP stack needs to be

provided for socket-based applications. The kernel stack is

the default solution but has poor performance. A number

of researches adopt the user space approach, such as,

seastar [1], mtcp [24], and libuinet [26]. Nevertheless, their

APIs are not fully compatible with the BSD Socket API.

Porting existing applications is also cost prohibitive for

most tenants. Moreover, the TCP stack is still processed by

CPU, which will result in high library overheads.

8 Conclusion

In this paper, we propose a new inter-VM communication

technique vSocket, which not only provides high perfor-

mance but also meets the requirements of public clouds

such as security rules and network isolation. Moreover,

vSocket is compatible with BSD socket so that socket-based

applications can use it without any modi�cation. vSocket

proposes to reuse the kernel stack and virtualize RDMA

connections to enable RDMA networking in public clouds.

Evaluations with Redis and microbenchmarks show that

vSocket can achieve much better performance than current

solutions for public clouds.
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