2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS)

Capability Leakage Detection Between Android
Applications Based on Dynamic Feedback

Mingsong Zhou Fanping Zeng Zhao Chen
School of Computer Science and School of Computer Science and School of Computer Science and
Technology Technology Technology
University of Science and University of Science and University of Science and
Technology of China Technology of China Technology of China

Hefei, Anhui, China
mingsong@mail.ustc.edu.cn

Abstract— The capability leakage of Android applications is
one kind of serious vulnerabilities. It can cause other

applications to leverage its functions to achieve their illegal goals.

In this paper, we propose a tool which can automatically detect
and confirm capability leakages of Android applications with
dynamic-feedback testing. The tool utilizes context-sensitive,
flow-sensitive inter-procedural data flow analysis to find key
variables and instrumentation points, then it tests the
application continuously by test cases generated from test log.
‘We have made experiments on 607 most popular applications of
Wandoujia in 2017, and found a total of 6,070 in 16 kinds of
capability leakages. Compared with the famous IntentFuzzer,
our tool is 19.38% better on the average ability to detect
permission capability leakage.

Keywords—Android, capability leakage, inter-procedural,
data flow analysis, dynamic-feedback testing

1. INTRODUCTION

Capability leakage is also known as redistribution of
authority [1]. It occurs when privileged applications are
exploited by non-privileged malicious applications, which
enables malicious applications to perform privileged actions.
Communication between Android components is widely used,
and many Android application developers share the functions
of their applications by exposing components (components
that can be invoked by external APPs). However, many
Android developers do not fully understand the rules of
communication between Android components, resulting in
unintentionally exposing the components that should not be
exposed, or forgetting to check the permissions of calls
between components [2], thus resulting in the leakage of
application capabilities.

There are a lot of research work on vulnerabilities between
Android components, mainly divided into static analysis and
dynamic testing. The main drawbacks of static analysis work
(ComDroid [3], PCLeak [4], Yi He [5], AutoPatch Droid [6],
Mr-droid [7]) are that it is impossible to determine whether the
vulnerabilities exist. Developers need to confirm the
vulnerabilities manually, which greatly increases the
development cycle of APP. The existing dynamic testing
methods such as Intent Fuzzer [8] and AWiDe [9] also have

some shortcomings, which lead to a high rate of missed reports.

Intent Fuzzer will be described in detail later, which will be
selected for comparison with our method in this paper.
AWiDe works for the similar purposes as our paper, but it only
considers capability leakages related to input data from
external components. When constructing test cases, it only
uses the intent-filter information of exposed components in
Android Manifest file to construct test cases, but does not use
the information in code. For example, intent extra attribute

978-1-7281-2583-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICPADS.2019.00143

Hefei, Anhui, China
billzeng@ustc.edu.cn

943

Hefei, Anhui, China
chen95@mail.ustc.edu.cn

information will not appear in intent-filter, so there are
shortcomings. In this paper, a test case generation method
based on dynamic feedback mechanism is proposed, which
combines static analysis and dynamic testing technology.
Compared with the existing capability leakage dynamic
testing work, it has lower false positive rate.

We define the capability leakage vulnerability between
Android applications as follows.

Assuming that there is Android application A, the set of
privileges it owns is set to PSet, and the set of mapping
relations between privileges and the statements it protects
(briefly described as tgtAPI later) is set to PUMap (permission
—unitSet). The set of exposed components owned by A is
ECSet, and the set of root-method owned by exposed
components (the first method to be executed: root-method) is
set to ECMethodMap (export-component—methodSet). The
set of executable paths of the root method to the unit protected
by permission is RMUPathMap (root-method, unit—pathSet).

if PUMap + @, ECMethodMap + @ ,
3 intent # null, s.t. RMUPathMap # @

Note: intent object is the only input for inter-component
communication. It mainly contains five attributes: Component,
Action, Data, Category and Extras, which represent the name
of the component to be started (String), the type of operation
to be executed (String), the type of data to be executed (Uri),
a collection of component types that can handle this intent
object (Set<String>), and additional key-value pair
information set (Set < key—type value >). This paper calls
intent objects from other APP components external intent.

The formula is that when the PUMap and ECMethodMap
of application A are not empty, there exists an intent that is not
empty, so that RMUPathMap of application A is not empty,
then application A has a capability leakage vulnerability. And
the capability leakage corresponds to authority of the unit in
RMUPathMap.

There are many APIs without parameters in Android
applications, and many APIs can cause great harm even
though they can't control their data inflow. Therefore, this
paper considers all TGT APIs in APP, even if they don't flow
into external intent data. It should be noted that there are many
normal interactions between applications that require user
operation. We shouldn’t think these leaking paths with Ul
interaction capabilities as illegal, because they are user-aware.
For example, to share the content of a news APP to a friend
by short message, this sharing operation involves the user to
click to confirm the sending of short messages, we shouldn’t
think that there is a leakage of the ability to send short

messages, because it is ultimately up to the user to decide
whether to send or not. However, it is illegal to disclose the
ability of sending short messages without Ul method, which
has serious harmfulness. So this paper considers that Ul
method will not cause a capability leakage.

II. SYSTEM OVERVIEW

As shown in Figure 1, the tool includes two parts: static
analysis and dynamic testing.

(1) Static analysis of the detected APP is carried out to find
the control statements related to the intent data flow in and out
of the detected APP, to find the set of variables (briefly
described as key variables) used in the control statements, to
generate Log instrumented statements that print key variables,
and to insert the Log instrumented statements before the
control statement blocks. At the same time, this paper finds
statements protected by Android privileges, insert the Log
statement before it, record the statement information protected
by Android privileges, and then repackage the signed APP to
get the instrumented APP (Figure 1 instrumented APP).

(2) The testing APP (Figure 1 testing APP, without any
privileges) will dynamically test the instrumented APP by
sending intent objects. According to the value of key variables
in Log, new intent test cases are generated, which can trigger
more code and improve the code coverage. If the statement
information protected by Android privileges appears in the
Log, it indicates that the privilege capability is leaked. Next,
we will elaborate on two parts.

Test Log Analysis and Automatic Test Case Generation

Dynamic Testing Testing APP

Lﬁam .
hod

Testing
r-———— -7 1
Application

to be Tested

Instrumentation

by o
o, Instrumentated | Test Report
Yy, %eq, Application |
Doy, ay
Sy Instrumentation I
statement |

Static Analysis |

n, ,

Figure 1 Flow chart

A. Static Analysis

Our tool builds method call diagram and control flow
diagram of each method based on Soot [10]. Soot is a Java
bytecode [11] analysis and optimization framework, which
supports the conversion of Java bytecode into multiple
intermediate languages. This paper uses Soot framework to
transform the application to be detected into Jimple [12]
intermediate code with three address codes for analysis.

There are many implicit calls in Android applications, as
shown in Figure 2. StartActivity (intent) is a calling method

between Android components. Its function is to start activityA.

First, StartActivity (intent) calls the Android system API, and
finally the Android system API calls the activityA.onCreate ()
method. But we can't get the call relationship between
startActivity (intent) and activityA.onCreate when we

944

statically analyze Android APP and build method call graph
by Soot alone. Therefore, in the process of constructing
method call graph, this paper identifies hidden callback
methods in Android APK and adds them to the Android
method call graph until the Android method call graph no
longer changes (that is, all callback callbacks in the current
method call graph have been added to the method call graph).
The proposed method is similar to FlowDroid [13] and IccTa
[14]. Let n be the number of nodes in the complete method
call graph and K() be the number of methods with callbacks.
The algorithm complexity of constructing a complete call
graph is O(k*n).

Android APP
intent.component=A
startActivity(intent) T == \bQ activityA.onCreate()

Android System
Figure 2 Example of implicit invocation for Android application

This paper uses API signature and privilege mapping
APIPermissionMap file [16] provided by Android malware
analysis tool androguard [15] to identify privileged statements
in Android applications, and save these statements in
tgtAPISet.

Algorithml Inter-process Data Flow Analysis Algorithms-Arrival

Definition

Input: method,inData
Output:
flowInUnitDataMapunit—flowInDataSet
),returnData
1 Function inter-procedure-data-flow:
cfgNodes «—method.cfgNodes(),
for n in c¢fgNodes do
OUT[n]=0;
end
f—cfgNodes.getFirstNode();
IN[fl—IN[f]UinData;
changed «—cfgNodes;
whilechanged #® do
choose anodeninchanged;

2
3
4
5
6
7
8
9

10

changed =changed -n;

for all nodes p in predecessors(n) do

INn]<—IN[n]JUOUTI[p];

end

0ldOUT «<~0UTI[n];

OUT[nl—transfer function
(INn,flowInUnitDataMap),

ifOldOUT #0UT [n]then

for all nodes s in successors(n) do

17
18
19
20
21
22
23
24
25
26
27 End Function

changed «—changed U s;
end
end
end
l—cfgNodes.getReurnNode(),
if /.returnLocal in IN[I] then
returnData «—l.returnlLocal.data;

end

Starting from the starting point of external intent data flow
(the method of obtaining external intent objects, such as
activity.getlntent () method), this paper uses context-sensitive
and flow-sensitive inter-process data flow analysis to find all
statements related to external intent. The implementation of
inter-process data flow analysis algorithm is mainly composed
of algorithm 1 and algorithm 2, which mainly uses arrival
definition data flow analysis technology and DFS algorithm.

Algorithm 2 Inter-process Data Flow Analysis——Transfer Function

Input: IN,n,flowInUnitDataMap
Output: OUT [n]

1 Function transfer function:

2 KILL[n]« @

3 GEN[n]« 0;
4 uselocals «—n.getUsedLocals();
5 defLocal «—n.getDefLocal();
6 if useLocals N IN[n] # @ then
7 GEN[n]=GEN[n]UdefLocal;
8 flowInUnitDataMap.put
(nunit,intentData),
9 else
10 KILL[n]=KILL[n]UdefLocal
11 end
12 if defLocal # null then
13 if m=getMethodCall(n) # null then
14 if Pair(m,arg) not in
hasProcessedMethodSummarySet then
15 returnData
—inter-procedure-data-flow
(m,arg.data)returnData;
16 if returnData # null then
17 GEN[n]<—GEN[n]UdefLocal
18 end
19 hasProcessedMethodSummarySet
.add(Pair(m,arg)),;
20 end
21 end
22 else
23 if (m=getMethodCall(n)) # null then
24 if mnotin
hasProcessedMethodSummarySet then
25 returnData
—inter-procedure-data-flow
(m,arg.data)returnData;
26 hasProcessedMethodSummarySet
.add(Pair(m,arg)),
27 end
28 end
29 end

30 OUT[n]=GEN[n]U(N[n]-KILL[n));
31 End Function

Each method corresponds to a control flow graph (CFG),
and the statements in each method correspond to a node in the
CFG. Each node n has set of IN and OUT, which represent the
set of variables related to intent data before node n and the set
of variables related to intent data after node n executes. After
each node is actually executed, the set of variables associated
with intent data changes, which can be calculated by the
following formula: OUT[n] = GEN[n] U (IN[n] - KILL[n)).

945

Here GEN[n] is the set of variables associated with intent data
added after the node is executed, KILL[n] is the set of variables
that are reassigned after executing this node and are not related
to intent data. The formula is implemented by the
transfer function function (line 16 of algorithm 1, details of
implementation are shown in algorithm 2). IN[n] of each node
is the union of OUT[n] sets of all its predecessor nodes
(algorithm 12 to 14 rows). Simulate the execution of each
statement (that is, the transfer function function) until all
nodes of OUT[n] do not change, and eventually all statements
associated with external intent data will be obtained.

The transfer function mainly analyzes whether intent data
related variables are used in node n. If the intent data-related
variables are used, the assigned variables in the node are
considered intent-related (lines 6 to 7 of algorithm 2). If the
node contains a method call, it enters the method to call
algorithm 1 again for analysis (line 15, line 25 of algorithm 2).
For a method that has different data flows in different call
contexts, at the call point a copy of the original function is
created to consider different types of data flow input. Because
only intent-related data streams are considered in this paper,
the input types of parameters of the methods need to
determined and the input types of intent data flows are finite
(Intent, Action, Data, Category, Extras), the number of
replicates created by the methods is limited. Therefore, the
clone-based context-sensitive inter-process data flow analysis
can ensure the accuracy of data flow analysis without causing
significant performance overhead.

If the return value of this method is related to intent data,
defLocal is added to GEN[n] (line 17 of algorithm 2). Each
node and intent data for each incoming node are put in
SflowInUnitDataMap (line 8 of algorithm 2). Intent data record
their data types, including intent objects, intent action
attributes, intent category attributes, intent extras attributes
and so on. Querying flowInUnitDataMap to find all control
statements if and intent data that flows into control statements,
and they are stored in ifControlDataMap (ifUnit—intentData).

Through the above-mentioned, the set of statements
protected by privileges tgtAPISet and the set of control
statements related to intent data ifControlDataMap can be
obtained. By iterating the set of tgtAPISet, the Log statements
which print the corresponding permissions of tgtAPI and
tgtAPI and the information of the APP where they are located
are generated, and Log statements are instrumented before the
tgtAPL Iterating ifControlDataMap, the Log statements are
inserted before “if” to print key variables and the attributes of
intentData data which flowing into “if”. If the data attribute is
Extra, a Log statement that prints the key variable is inserted
before the intentData source statement get*Extra (key). After
the instrumentation is completed, the signature APP is
repackaged and the instrumented APP is obtained. Therefore,
when the instrumented APP runs, we can get the running logs
related to intentData data.

It should be noted that the reinforcement technology [17]
and the anti-re-packaging technology are becoming more and
more popular, which results in the application of static
analysis can not get the real application code, and the
application of re-packaging can not run properly. However,
the tool in this paper is for developers, who can use it before
the application is released (before using consolidation and
repackaging technology). Therefore, our tool is still valid.

B. Dynamic Analysis
Algorithms 3 is the test case generation algorithm.

Algorithm 3 Test Case Generation Method Based on Dynamic Feedback

Input:detected-app

Output: capabilitylLeakSet

1 Function Main:

2 ECSet «getEC
(detected-app.AndroidManifestXml);

3 capabilitylLeakSet < @;

4 for exported-component in ECSet do

5 actionSet,dataSet,

categorySet,extraSet « @;

6 while 7rue do
7 ifisFirstTest then
8 initial-intent=newlntent

(exported-component),

9 logFile—testApp
(detected-app.nitial-intent),

10 else

11 selectCategorySet
.add(categorySet);

12 selectExtraSet «
combineWithDiffKey
AndType(extraSet)

13 for a in actionSet do

14 for d in dataSet do

15 for c in selectCategorySet do

16 for ¢ in selectExtraSet do

17 intent =newlntent

(a,d,c,e,exported-component);
18 if hasNotTested(intent) then
19 logFile «—testApp
(detected-app,ntent)

20 end

21 end

22 end

23 end

24 end

25 end

26 oneTestCLS et ,intent-test-info
=analyseLog(logFile);

27 capabilityLeakSet «

capabilitylLeakSet UoneTestCLSet;

28 if intent-test-info # @ then

29 actionSet,dataSet,categorySet,extraSet

30 .addAll(intent-test-info,
mutation(intent-test-info));

31 else

32 break;

33 end

34 end

35 end

36 End Function

We initially test APP with intent objects without any data
(7-9 lines of algorithm 3), and then analyze the generated test
log. If intent-test-info is empty, that is to say, the actionSet,
categorySet, dataSet and extraSet of intent-test-info are empty,
the test is stopped, and the next exposed component testing

946

continues. Otherwise, new information is added to the intent
attribute set (line 29 of algorithm 3). At the same time, for the
new extra attribute, we mutate it to generate the extra attribute
that may satisfy the control statement (line 30 of algorithm 3).

For example, the new obtained extra attribute information
is as follows.

key: "fromPush", type: int, value: 0.

Because we don't know the judgment condition of the
control statement, two other extra attributes which may satisfy
the condition of the control statement are generated.

1) key: "fromPush", type: int, value: 1
2) key: "fromPush", type: int, value: -1

Then the test cases are regrouped (11 to 24 lines of
algorithm 3). The Category attribute in intent object is Set <
String>. In this paper, all possible category values are taken as
the Category attribute of intent object (line 11 of algorithm 3).
The intent extra attribute is Set < key, type—value>. This
paper divides the set extraSet attributes of all possible extra
values into different sets according to key and type, and
combines one value from these different sets into an intent
extra attribute at a time (line 12 of algorithm 3). From line 13
to line 24, arithmetic 3 generates a test case to test APP, and
records the test cases that have been tested to ensure that the
test cases are not repeated. Arithmetic 3 continuously
generates new test case tests based on intent-test-info of the
test log until intent-test-info is empty.

111

We selected the most popular applications of Wandoujia
in 2017. There are 810 selected applications, including 18
categories and of the 45 most popular applications in each
category. We removed the application of reinforcement and
Soot analysis failure [18], and finally 607 applications were
selected.

EXPERIMENTAL ANALYSIS AND EVALUATION

This paper chooses IntentFuzzer as the contrast of the
dynamic test of capability leakage. Because the author could
not be contacted, IntentFuzzer is implemented according to its
paper. The four attributes of IntentFuzzer intent test case are
constructed as follows.

(1) IntentFuzzer's intent action construction includes three
aspects: one is to expose the action value in intent-filter of
components, the next is to find strings prefixed by the
application package name from all strings of APP, and the
other is the standard action defined by all Android systems.
IntentFuzzer uses the above action set as a candidate set of
action attributes for test cases.

(2) IntentFuzzer predefines some URIs of common data
types. When testing APP, if the predefined URI matches the
intent-filter of exposed components, the URI is used to
construct the data attributes of intent test cases.

(3) IntentFuzzer achieves key and type of extra attribute in
dynamic testing by modifying the source code of Android
system, and generates value randomly. In this way, the extra
attribute of intent test case is constructed.

(4) IntentFuzzer does not consider the category attribute,
and the Category attribute of intent test case is always empty.

A. Experimental Results

As shown in Table 1, a total of 6,070 in 16 kinds of
capability leakages were found. The first column of Table 1
is the type of capability leakage, the second column is the
number of APPs with this type of capability leakage, and the
third column is the number of capability leakage points
(location of capability leakage, i.e. tgtAPI location) in all
APPs. There are serious capability leakages, such as
DISABLE KEYGUARD privilege ability leakage which is
the main privilege to achieve the lock screen function, and
KILL_BACKGROUND_PROCESSES privilege ability
leakage which is the privilege to achieve the killing of
background processes. There are also vulnerabilities with less
harmful capability leakages, such as BROADCAST STICKY
capability leakage which will lead to application broadcasting
not working properly, ACCESS FINE LOCATION
capability leakage which may lead to application power
consumption problems, and BLUETOOTH capability leakage
which will lead to arbitrary turn on and off mobile Bluetooth.

Table I Experimental results

Permission AppUseCount | AllCount
DISABLE_KEYGUARD 6 7
CHANGE_WIFI MULTICAST_STATE 2 2
RECEIVE_BOOT_COMPLETED 1 2
SET WALLPAPER _HINTS 3 3
BROADCAST STICKY 169 261
ACCESS_FINE_LOCATION 140 454
KILL_BACKGROUND_PROCESSES 4 5
ACCESS_COARSE_LOCATION 126 303
CHANGE_WIFI_STATE 3 4
GET_TASKS 261 626
ACCESS_NETWORK_STATE 405 3201
WAKE_LOCK 99 187
ACCESS_WIFI_STATE 294 928
MODIFY_AUDIO_SETTINGS 4 4
BLUETOOTH 7 10
READ PHONE STATE 48 73

The following formulas are used as indicators of false
negative rate of evaluation tools. Let the test APP set be
AppSet and the size be n. For APP A;, we assume that its
cability leakage set is CLSet; and the size is s;. We utilize
tool t to test APP A;. The set of capability leakage points for
detecting P; is PSLF]- o For the ability leakage P; of APP A4;,
the detection advantage ratio of tool t1 to tool t2 is:

((PS} — PS} N PS?2) — (PS2 — PSi: N PS:2))
PS{1+ PS — PSI N PS

thtz(Au Fg) =

It is the proportion of G to H, here G is the difference
between the P; permission leakage results detected by tool t1
and tool t2, H is the total result of the two tools detecting APP
A; P; permission leakage results. Therefore, the average
detection advantage ratio of tool t1 to tool t2 is:

z:t:(] Zji:() thtz(Ai‘ P;)
Ghtz =

n*s;

947

The results of 607 APPs detected by this tool and
IntentFuzzer are calculated according to the above formulas to
get Table 2.

Table II Comparing with IntentFuzzer results

Min(G, ¢, (Ai, P}))
0%

Max(Ge, e, (Ai P))
100%

Gee,
19.38%

Among them, tl is the tool of this paper and t2 is
IntentFuzzer. According to Table 2, the average test results of
this tool are 19.38% better than those of IntentFuzzer. For a
single APP, the ability to detect permission capability leakage
is up to 100%. That is to say, the tool can detects that the
permission has the capability leakage, while IntentFuzzer does
not detect it. Or the results of IntentFuzzer are included in the
results of this tool. The worst case of this tool is the same result
as that of IntentFuzzer. Therefore, it can be seen that the
Android inter-application capability leakage detection tool
proposed in this paper is completely superior to IntentFuzzer.

B. Time Efficiency

Table 3 is the time consumption of data flow analysis,
instrumentation and dynamic testing during the analysis of
607 APPs.

Table III Running time
Min Max Average
data flow 161.70s
0.06s 25.40s
analysis (2.70min)
92.32s
instrumentation | 0.15s . 20.21s
(1.54min)
dynamic 2567.09s 507.94s
7.46s
testing (42.78min) | (8.47min)

Among them, the shortest time of data flow analysis is
0.06s, the longest time is 2.70 min, and the average time of
data flow analysis is 25.40 s per APP. The shortest time of
instrumentation is 0.15s, the longest time is 1.54min, and the
average time of pile insertion is 20.21s. The shortest dynamic
testing time was 7.46 seconds, the longest time was 42.78
minutes, and the average dynamic testing time per APP was
8.47 minutes. Therefore, the average detection time per APP
is about 9 minutes, which meets the actual time efficiency
requirements. For some individual APP dynamic testing time
is very large, reaching 42.78 minutes. But this time is still
acceptable. Different exposed components of APP deal with
external intent differently, which leads to different
information obtained by dynamic testing of each APP.
Therefore, the number of test cases generated by dynamic
testing is different, and the number of exposed components of
different APPs is different, so the time of dynamic testing of
different APPs may vary greatly.

C. Examples of Exploiting Capability leakage
Vulnerabilities

Application A is a very popular lock screen application,
which has been downloaded more than 10 million times. The
tool in this paper detects that it has DISABLE KEYGUARD
capability leakage, so we guess that it has illegal access
vulnerabilities. We use the test cases generated by this tool to
trigger the DISABLE KEYGUARD privilege leak and find
that keyboard locks can be crossed without passwords. Attack
Demo Video can be found on Youku [19].

Application B is a cleanup software, which has
KILL BACKGROUND PROCESSES capability leakage. It
can be used to kill background applications. The attack
demonstration video can be found on Youku [20].

IV. CONCLUSION AND PROSPECT

This paper presents an automatic detection tool based on
dynamic feedback for capability leakage vulnerabilities
between Android applications. Through context-sensitive and
flow-sensitive inter-process data flow analysis, the location
and key variables of pile insertion can be found, and the
instrumented APP can be automatically generated.

The tool continuously uses the results of dynamic testing
of instrumented APP, adjusts the test case to test APP, and can
greatly improve the code coverage of the test. Compared with
the existing capability leak vulnerability detection work, the
tool in this paper has a lower missing rate, and the test results
are better than 19.38%. At the same time, this tool has detected
16 kinds of 6070 capability leakage vulnerabilities of 607
APPs in Wandoujia, including some serious capability
leakage vulnerabilities.

The capability leakage vulnerability evaluation is helpful
for developers to quickly repair serious capability leakage
vulnerabilities. Therefore, we may take the evaluation of
capability leakage vulnerability as one of our future research
work.

ACKNOWLEDGMENT

This work is supported partly by the National Key R&D
Program of China 2018 YFB0803400, 2018 YFB2100300 and
National Natural Science Foundation of China (NSFC) under
grant 61772487.

REFERENCES

FELT A P, WANG H J, MOSHCHUK A, et al. Permission re-
delegation: Attacks and defenses[C/OL]/20th USENIX Security
Symposium, San Francisco, CA, USA, August 8-12,
2011,Proceedings.2011.

YAN J, DENG X, WANG P, et al. Characterizing and identifying
misexposed activities in android applications[C/OL]//Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7,
2018.2018:691-701

CHIN E, FELT A P, GREENWOOD K, et al. Analyzing inter-
application communication in android[C/OL]//Proceedings of the 9th
International Conference on Mobile Systems, Applications, and
Services (MobiSys 2011), Bethesda, MD, USA, June 28 - July 01, 201 1.
2011:239-252.

LIL, BARTEL A, KLEIN J, et al. Automatically exploiting potential
component leaks in android applications[C/OL]/13th IEEE
International Conference on Trust, Security and Privacy in Computing

(1]

[3]

948

[6]

(7]

(8]

(9]

S

[2

[13]

(14

[15

[16

=
=

=
28

[20

and Communications, TrustCom 2014, Beijing, China, September 24-
26,2014.2014: 388-397.

HE Y, LI Q. Detecting and defending against inter-app permission
leaks in android apps[C/OL]//35th IEEE International Performance
Computing and Communications Conference,IPCCC 2016, Las Vegas,
NV, USA, December 9-11, 2016. 2016: 1-7.

XIE J, FU X, DU X, et al. Autopatchdroid: A framework for patching
inter-app vulnerabilities in android application[C/OL]/IEEE
International Conference on Communications, ICC 2017,Paris, France,
May 21-25,2017. 2017: 1-6.

LIU F, CAI H, WANG G, et al. Mr-droid: A scalable and prioritized
analysis of inter-app communication risks[C/OL]//2017 IEEE Security
and Privacy Workshops, SP Workshops 2017,San Jose, CA, USA, May
25,2017.2017: 189-198.

YANG K, ZHUGE J, WANG Y, et al. Intentfuzzer: detecting
capability leaks of android applications[C/OL]//9th ACM Symposium
on Information, Computer and Communications Security, ASIA
CCS 14, Kyoto, Japan - June 03 - 06, 2014. 2014:531-536.
DEMISSIE B F, GHIO D, CECCATO M, et al. Identifying android
inter app communication vulnerabilities using static and dynamic
analysis[C/OL]//Proceedings of the International Conference on
Mobile Software Engineering and Systems, MOBILESoft *16, Austin,
Texas,USA, May 14-22,2016. 2016: 255-266.

Soot[EB/OL]. https://sable.github.io/soot/.

WIKI. Java bytecode[EB/OL].
https://en.wikipedia.org/wiki/Java_bytecode.

VALLEE-RAI R, HENDREN L J. Jimple: Simplifying java bytecode
for analyses and transformations[Z]. 1998.

ARZT S, RASTHOFER S, FRITZ C, et al. Flowdroid: precise context,
flow, field, objectsensitive and lifecycle-aware taint analysis for
android apps[C/OL]//ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014. 2014: 259-269.

LI L, BARTEL A, BISSYANDE T F, et al. Iccta: Detecting inter-
component privacy leaks in android apps[C/OL]//37th IEEE/ACM
International Conference on Software Engineering,ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 1. 2015: 280-291.

DESNOS A, et al. Androguard: Reverse engineering, malware and
goodware analysis of android applications[J]. URL code. google.
com/p/androguard, 2013:153.

ANDROGUARD. Android permission api mappings[EB/OL]. 2019-
03-20.
https://github.com/androguard/androguard/blob/master/androguard/co
re/api_specific_resources/api_permission_mappings/permissions_25.j
son.

Dexguard[EB/OL].
https://www.guardsquare.com/en/products/dexguard

BARTEL A, KLEIN J, TRAON Y L, et al. Dexpler: converting android
dalvik bytecode to jimple for static analysis with
s0ot[C/OL]//Proceedings of the ACM SIGPLAN International
Workshop on State of the Art in Java Program analysis, SOAP 2012,
Beijing, China, June 14,2012. 2012: 27-38.
https://v.youku.com/v_show/id XNDExOTglODA3Mg
https://v.youku.com/v_show/id XNDExOTg2MDAxMg

2019-03-20.

