
A Novel Hybrid Model for Task Dependent
Scheduling in Container-based Edge Computing

Tingting Lu∗, Fanping Zeng∗†, Guozhu Chen∗, Wenjuan Shu∗, Jingfei Shen∗ and Weikang Zhang∗
∗School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China

†Anhui Province Key Lab of Software in Computing and Communication, Hefei, Anhui, PR China
{tingtlu, chengz18, shuwj, ericjeff, buttman}@mail.ustc.edu.cn, billzeng@ustc.edu.cn

Abstract—In traditional edge computing, the task from the
Internet of Things (IoT) is usually offloaded to edge server. It
will be uploaded to the remote cloud if the edge server cannot
process it. A task can be processed on the server, only if the server
has configured the corresponding function program. However,
each edge server can only configure a small number of functions
due to the limited computing, storage, and bandwidth resources.
Moreover, modern tasks from IoT devices become more and more
diverse, which are also accompanied by complex dependencies.
It increases the processing time overhead to the task processed
in remote cloud due to huge transmission delay. In this paper, we
design a container-based edge computing system, where a task
can be executed on a server only if the server has configured the
corresponding container, if not the server can fetch it from other
edge servers or remote cloud. Based on the system, we propose a
novel hybrid model, called CBASGA, with the aim to minimize
the job complete time, which combines Chaos-based Beetle
Antennae Search and Genetic Algorithm. Our experimental
results show that the designed system reduces the average job
completion time by 4.2% compared with the comparison system,
and CBASGA reduces the average job completion time by at
least 21.7% compared with baselines.

Index Terms—Task scheduling, Container configuration, Edge
computing

I. INTRODUCTION

Edge computing (EC) provides resource services (e.g., com-
puting, storage, bandwidth, etc) to nearby users by deploying
small servers (called edge server) in the edge of the network
[1]. Nearby users can offload their tasks or jobs to edge
server for processing, so that the data transmission time can
be greatly reduced.

Due to that the application pre-configured by the developer
in edge server is limited, the edge server can only process a
few tasks. It can not take full advantage of edge computing.
So some scholars have proposed containerizing the applica-
tions required for IoT devices, which can be automatically
obtained from the cloud when there is no corresponding
containerized application for processing task [2]. Furthermore,
Martin Fowler and James Lewis jointly propose the concept
of microservices and define a microservice as a small service
composed of a single application, which can be deployed,
scaled, and tested independently [3]. Many works have applied
the idea of microservices to edge computing [4, 5]. But there
are still many challenges in applying microservices to EC.

First, the storage and computing resources of edge services
are limited. Only a few containers (i.e., microservices) can be

configured in the edge server. That is to say, if a task is planned
on an edge server that has no corresponding container, the
server can configure the container which is downloaded from
the remote cloud. After the container has been configured, their
server can process the task. Therefore, it is a key challenge to
design a task scheduling algorithm that considers the container
configuration in EC.

Second, the application (also called a job) from IoT de-
vice consists of some tasks that have complex dependencies,
each of which needs a suitable container. Specifically, the
communication among servers will occur between dependent
tasks when they are allocated on different servers respectively.
Furthermore, because of the dependency relationship, the start
time of task will be limited by its direct predecessors. In other
words, a task can only be executed after all of its direct prede-
cessors have been completed. So how to deal with the complex
inter-task dependency is another challenge in EC. There have
been many researches on task scheduling and related server
configuration (e.g., [6, 7]). But they consider either scheduling
the whole job individually [7, 8] or configuring the related
servers independently [9].

In this paper, we first propose a container-based edge system
in which containers can be transferred between edge servers.
The edge servers have limited resources and each server
has a different performance. We then propose an efficient
approximation algorithm, named CBASGA. The algorithm
combines Chaos-based Beetle Antennae Search (CBAS) and
Genetic Algorithm (GA) in addition to heuristic initialization
to optimize the tradeoff between task dependency and con-
tainer configuration. Finally, we adopt a cluster trace from
Alibaba to evaluate CBASGA. The simulation results show
that the designed system is efficient to process dependent tasks
and CBASGA has excellent performance.

The remainder of the paper is organized as follows. Section
II expounds our edge system model. The task scheduling
and correlation allocation algorithms are shown in section III.
Section IV presents the performance evaluation for CBASGA.
We conclude this paper in section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Edge System Model

The edge system consists of K heterogeneous edge servers
and one remote cloud, denoted as S = {s0, s1, ..., sK}, where
s0 depicts the remote cloud. We use rk,k′ as the data transfer

978-1-7281-9441-7/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

ns
 W

or
ks

ho
ps

 (I
C

C
 W

or
ks

ho
ps

) |
 9

78
-1

-7
28

1-
94

41
-7

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
C

W
or

ks
ho

ps
50

38
8.

20
21

.9
47

38
77

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 14,2021 at 02:23:40 UTC from IEEE Xplore. Restrictions apply.

rate between server sk and sk′ , and assume rk,k′ = rk′,k.
Therefore, the transmission time of ω unit data from sk to sk′

(k �= k′) is ω
rk,k′

. If k = k′, the transmission time is set to 0,
that is, rk,k = +∞, as the communication time between tasks
within the server is usually very small.

Each server has a different maximum number of
container configurations simultaneously, which is called
the server capacity, denoted as C = {c0, c1, ..., cK}, where
c0 depicts the maximum number of containers owned by
the remote cloud simultaneously, other ci (i = 1, 2, ...,K)
represents the maximum number of containers owned by the
i-th edge server simultaneously. In particular, when the number
of containers configured by a server reaches its maximum, the
server can use a policy to free up some of the resources occu-
pied by the existing containers to configure the new containers.
The policy is the least recently used (LRU) algorithm in our
paper.

To better illustrate our system model, we present the de-
signed edge system in Fig. 1. The system consists of three
edge servers, each of which is responsible for job requests
in its own domain, and one cloud. The capacity of each edge
server is set to two, whereas the cloud has all containers. A job
request consists of two hidden tasks (virtual task created for
scheduling convenience) and five ordinary tasks (actual task
to be processed) are sent to server s2 for execution. After
scheduling, two hidden tasks (task 0 and task 6) and two
ordinary tasks (task 2 and task 5) are place on s2, task 1
and 3 are on s3, and task 4 are on s1. Specifically, s2 is not
configured the container that can process task 5, so it fetches
the corresponding container from edge server s1 which holds
the container. Since hidden task 0 and task 2 are on the same
server which has the container needed for task 2, so task 2 can
be executed immediately. As the initial data is sent from s2 to
s3, s3 can process task 1 after configuring the corresponding
container from the cloud. As there is no precedence constraint
between task 1 and 2, they can be processed in parallel. After
receiving the outputs of task 2, task 3 and 4 can be executed on
s1 and s2 respectively. After obtaining the processing results
for task 1, 3 and 4, s2 can execute task 5 and generate the final
result to the hidden exit task 6. It is worth noting that the two
tasks with dependencies (such as task 2 and task 3) are not
processed on the same server because the scheduler estimates
that the two tasks can be completed earlier if performed
separately.

B. Request and Job

The job request from the device is first submitted to the
nearest edge server, called the local server, and then sent
to the edge system. The job consists of a set of dependent
tasks, denoted as {v1, v2, ..., vJ}. Specifically, the entry task
is a task without any predecessor task and the exit task is a
task without any successor tasks. In order to facilitate unified
scheduling, we add a hidden entry task (v0) and a hidden
exit task (vJ+1). Let the hidden entry task connect to each
actual entry task and the hidden exit task connect to each
actual exit task. It’s important to note that the completion of

Internet

Job Request

0

21

3 4

5

6

2

5

1
4

3

Various
Containers

0

6

1 2 3

4 5

Tasks in a Job

Links to Access
the Internet

Data Transfer
between Tasks

Demand Container
Configure from EC

0 6

Hidden
Tasks

Link between
Edge Servers

Demand Container
Configure from

Cloud
Cloud

Edge Servers Containers
configured by
Edge/Cloud

server
s1

s2

s3

Fig. 1: System Model

the hidden exit task implies the completion of a job. We model
them as directed acyclic graph (DAG), denoted as G(V,E,W).
Here, V = {v0, v1, ..., vJ+1}, each node represents a task. An
directed link e = <vi, vj> indicates that there is a dependency
between vi and vj , that is, the task vj cannot be processed
until task vi has completed. E is the set of all directed links.
The link weight wij are determined by the amount of data
transferred from vi to vj . W is the set of all link weight. The
processing time of a task vj on server sk is denoted as pj,k.
Considering that redeploying a task can be consuming a lot
of time, we don’t allow a task to preempt the server to avoid
additional processing costs.

C. Container Configuration

In this paper, we assume that each type of task has one
and only one container that can execute it. We define a task
container map function, map(·), to represent the container
needed for the task. In other words, if the task vj is processed
on a server sk, it must have configured the corresponding
container τj = map(vj) . If not, the server has to suffer
configuration time ∆τj ,k,x, which depends largely on the
container transfer time over the network to fetch the container
from surrounding edge server or the cloud sx.

III. ALGORITHM

Before introducing the algorithm, let’s explain the encoding
method of the scheduling solution. Our encoding solution
indicates each task of a job is allocated to which servers. For
example, Fig. 2 shows the encoded solution of the tasks of the
job. We take the encoded solution in the upper left corner of
the figure as an example, the value of t0 and t6 is 1 presents
the hidden tasks are allocated to local server s1. The value of
t2 and t4 is 2 indicates task 2 and 4 are assigned to server s2
and so on.

The proposed algorithm includes three important parts. The
first part is a heuristic algorithm for initialization. The second
part is the automatic gene combination realized by CBAS.
The third part is CBASGA algorithm which improve GA with
results from the first and second parts.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 14,2021 at 02:23:40 UTC from IEEE Xplore. Restrictions apply.

A. Initial Task Allocation

During the initialization phase, we greedily select the server
for each task, which allows the earliest completion of a task
among all servers. Specifically, the assigned sever of the
hidden exit (entry) task is the local server in our system. The
details of the initial task allocation are shown in Algorithm 1.

Specifically, a job G is released to local server sl. The two
hidden tasks (v0 and vJ+1) will be placed and executed on
sl. Before the initialization starts, we need to prioritize the
tasks. So we first find the longest directed path from the task
concerned to the exit task, and calculate the sum of the task
processing time and the communication time between tasks on
the longest path [10]. Then, according to the decreasing order
of the calculation result, we can prioritize these tasks (Line 1).
The earliest finish time of task vj on server sk is denoted as
Fj,k, which is set to +∞ initially (Line 2). The value of F0,l

is 0 because task v0 is virtual (Line 3). With corresponding
container configuration, for each direct predecessor task vi of
task vj , the value of Fj,k is equal or greater than the sum
of the finish time of vi, the communication time between
vi and vj and the processing time of vj on sk, where we
make Fj,k equal to the aforementioned maximum sum (Line
8). Without corresponding container configuration, we need
to add additional container configuration time from the server
with the corresponding container to sk (Line 11). We place
task vj on the server with minimum Fj,· after one iteration
(Line 14-15). With the acquisition of the earliest completion
time of each task, we end up with FJ+1,l, which also is the
earliest completion time of the job. From this process, we can
know where each task is assigned, and then encode it to get
the initial solution.

B. Chaos-based Beetle Antennae Search Algorithm

The original Beetle Antennae Search Algorithm (BAS) [11]
algorithm has good optimization performance and convergence
in continuous space, but it’s not suitable for discrete space. To
solve this problem, we discretize the model and then propose
the Chaos-based Beetle Antennae Search Algorithm. For a job,
we first generate a random direction vector (i.e., a scheduling
solution) in the given system as follows:

�b = rndi(K, J) (1)

where rndi(K,J) represents a function. The function can ran-
domly generate an J-dimensional vector, each dimension of
which is an integer value not exceeding K. After obtaining
the scheduling solution �b, the position of the left-tentacles and
right-tentacles are defined as below:

xl = xt − dt�b (2)

xr = xt + dt�b (3)

where xt is the position after the t-th fly of beetle. dt is the
sensing length of antennae. Then, we further generate iterative
model which determines the direction and distance of the
beetle at the next time, as follows:

xt = xt−1 + δt�b · sign(f(xr)− f(xl)) (4)

Algorithm 1 Initial Task Allocation Procedure

Input: G(V,E,W), S with configured containers, local
server sl

Output: initial solution
1: assume v0, v1, ..., vJ+1 are the task precedence of G.
2: Fj,k := +∞ for 0 ≤ j ≤ J + 1 and 0 ≤ k ≤ K.
3: let F0,l := 0.
4: for j = 1 to J do
5: for k = 0 to K do
6: find Pj , Pj = {(vi, sy)| vi is a direct predecessor

task of vj , sy is the server to which vi is assigned}
7: if server sk with container map(vj) then
8: Fj,k = max(vi,sy)∈Pj

{Fi,y +
ωi,j

ry,k
+ pj,k}

9: else
10: find S′

map(vj)
, S′

map(vj)
= {sz| sz is the server

with container map(vj) in edge server or cloud}.
11: Fj,k = max(vi,sy)∈Pj ,sz∈S′

map(vj)
{Fi,y +

ωi,j

ry,k
+

pj,k + ∆map(vj),k,z}
12: end if
13: end for
14: let u = argmin0≤k≤K

k

Fj,k

15: assign task vj to server su
16: end for
17: Fj+1,l = max(vi,sy)∈Pj+1

{Fi,y +
ωi,j

ry,l
}

18: construct the initial solution from FJ+1,l.
19: return initial solution

where δ is the size of the search step; sign(·) represents a
sign function; f(·) is a function to be optimized. Our goal is
to minimize job completion time (i.e., makespan), so we use
the reciprocal of the makespan as the function.

f(x) =
1

makespan(x)
(5)

With iteration, the step size gradually decreases for a more
refined search and the distance vector is adjusted with it, they
are shown as follows:

δt = hδt−1 (6)
dt = δt/c (7)

where h is coefficient of the step size, c is a constant preferably
between 2 to 10.

Note that some vectors are operated to be non-integer, such
as xl and xr, in order to make them operate in f, we deal with
them as follows:

x′ = |x′|mod K (8)

the formula is to convert the non-integer number x′ into an
integer number that can indicate server identification.

The details of the CBAS are shown in Algorithm 2. More
importantly, the performance of BAS after discretization is
poor, so we alleviate it by adding a logistic chaotic map in the
first iter/2 iterations (Line 8-12) [12]. Specially, the purpose
of generating the chaos value from a deterministic nonlinear

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 14,2021 at 02:23:40 UTC from IEEE Xplore. Restrictions apply.

system is to locally adjust xt regularly (Line 11-12). From
the experiment, we find that the algorithm is non-convergence.
Fortunately, it doesn’t affect the purpose of obtaining a better
solution. Finally, we update the current optimal scheduling.

Algorithm 2 CBAS

Input: G(V,E,W),K, J , the number of iteration iter, f
Output: Φ

1: generate integer solution x using (1)
2: Let φ be the the current maximum value of the function

f , and set ϕ = 0
3: for t in iter do
4: update �b using (1)
5: update the variable δ, dt via (6),(7)
6: compute xl, xr following (2)(3), and Convert them

using (8)
7: compute xt via (4)
8: if t < iter/2 then
9: generate integer solution x′ using (1)

10: x′ ← µx′(1− x′)
11: xt ← xt + δ ∗ (x′ − xt)/2
12: end if
13: convert xt using (8)
14: if f(xt) > φ then
15: Φ ← xt

16: φ ← f(xt)
17: end if
18: end for
19: return Φ

C. CBASGA Algorithm

In this part, the task allocation solutions are called chro-
mosomes. The details of the CBASGA is shown in Algo-
rithm 3. We get a better chromosome from the initialization
phase. But the basis of genetic operators is population, we
randomly generate N − 1 chromosomes. Then, we perform
T generations, each of which comprises five operations (i.e.,
selection, crossover, mutation, automated gene combination,
and evaluation).

The selection operation is an important part from the
previous generation to the next generation. Before the t-
th generation, the population {Dt−1,n}Nn=1 are given fitness
values obtained in the previous generation or initialization,
which directly impact the probability that each chromosome
will survive the selection process. We perform a proportionate
roulette wheel selection to determine which chromosome sur-
vives. The selection probability function is defined as follows:

Pselect(Dt,n) =
fitness(Dt,n)∑N
n=1 fitness(Dt,n)

(9)

For the crossover operation, the two paternal chromosomes
are selected with probability pc, and then the crossover points
are randomly selected on them. It can produce two new
chromosomes when the two paternal chromosomes are crossed

Fig. 2: An example of two chromosomes crossing

at the crossover point. For example, there are two parent
chromosomes, which are two encoding solution of scheduling
of the job with five tasks on the left side of Fig. 2. They
are crossing at cross-point that is between t2 and t3, and the
right side of the figure is the result of crossing. The crossed
chromosomes are new allocation solutions, which have new
fitness value respectively. From the crossed chromosomes, the
mutant chromosomes are selected with a probability pm. Then
the mutation operation randomly changes the mutational site of
the chromosome from one to another, trying new possibilities
while keeping the good traits.

In automated gene combination, we call CBAS with related
parameters. Its steps have been detailed in the previous part.
After the operation, it only obtains one chromosome, but the
chromosome has a high fitness. Adding the chromosome with
relatively high fitness to each generation of the algorithm, it
can gradually improve the fitness of the whole population.

The evaluation operation is to evaluate the fitness value
of each chromosome by the fitness function to provide an
indicator for the selection operation. In the same way, we still
use the formula (5) as the fitness function. This means the
goal of the algorithm is to find the minimum job completion
time.

IV. PERFORMANCE EVALUATION

In this section, we use the job information data collected
by the Alibaba cluster trace program over 8 days from 4,000
heterogeneous machines as our data set source [13]. Without
loss of generality, we randomly choose 1000 jobs from it,
each of which has between 2 and 59 tasks. Then, we use it to
evaluate the designed system and CBASGA algorithm.

A. Experiment Settings

a) Edge and Cloud Clusters: Our simulations are carried
out in an edge-cloud cluster, where there are 4 edge servers
and a remote cloud. The number of containers of each server
can hold is limited, which is set to 3 by default. Similar to
[14], we generate values for data transmission time among
edge servers uniformly from the interval [5, 100] ms. Similarly,
the processing time of each task is drawn uniformly from the
interval [10, 200]. Considering that the data transmission to the
cloud can consume a lot of latency, we set it in the range of
[100, 2000] ms. The container configuration times from the
edge are set in [300, 700] ms. In view of that configuring

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 14,2021 at 02:23:40 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 CBASGA

Input: G(V,E,W), S with configured containers, local
server sl, the number of generations T , the number of
chromosomes in each generation N and the crossover and
mutation probabilities pc and pm

1: get D0,1 from Algorithm 1, and initialize population
{D0,n}Nn=2 by randomly assigning tasks to each server
according to the G task precedence

2: while t < T do
3: Selection: select a new generation {Dt,n}Nn=1 with a

proportionate roulette wheel
4: Crossover: for each pair {(Dt,2n−1, Dt,2n)}�N/2�

n=1 , per-
form crossover with probability pc at selected crossover
point

5: Mutation: for each crossover {Dt,n}Nn=1, make muta-
tion with probability pm at selected mutation point

6: Automated Gene Combination: product a chromosome
with high fitness from CBAS

7: Evaluation: evaluate the fitness of the population
{Dt,n}3N+1

n=1 by calculating the makespan of the sched-
ule

8: end while
9: return the schedule with the highest fitness

the container from the cloud suffers a long latency, so by
default we set it as 20 times of the configuration time between
two edge servers. The cloud has all containers and thus the
configuration time is 0 there. The processing time in the cloud
server is set 0.75 times (on average) of the processing time in
edge servers, as the cloud generally provides more computing
resources than edge servers. For the comparison system, we
restrict it to configuring the container only from the cloud.

b) Comparison Baselines: According to the previous
section, we can know CBASGA is a hybrid algorithm, which
contains three common policies (the earliest completion time,
CBAS and GA. To examine the performance of CBASGA, we
compare CBASGA with them respectively. Specially, for the
earliest completion time policy, we use OnDoc [15]. But it is
not suitable for containers to be configured from the edge, we
modify it to adapt our system.

B. Experiment Results

In this part, we first exhibit the simulated results of overall
performance based on the 1000 jobs. Then, we conduct
flexibility experiments using three specific DAGs [14], to study
the effect of container configuration time, the capacity of the
edge server, the communication computation ratio (CCR) and
the number of edge servers.

1) The Overall Performance: Fig. 3 shows the average
completion time in our system and the comparison system
during the execution of the four algorithms respectively.
Compared to the system which configures containers only
from the cloud, the job completion times of using four
algorithms are less in designed system, which reduces the
average job completion by 4.02%. In addition, we can also

Fig. 3: Comparison of completion time in different scenes

see that our CBASGA algorithm has excellent performance
in both our system and the comparison system. Table I
shows that CBASGA can reduce 47.3%, 21.7%, 54.8% of the
completion time on average compared to OnDoc, GA and BAS
respectively in designed system (46.9%, 22.4%, 55.3% in the
comparison system). Although GA and BAS are both bionic
algorithms, the discretized BAS which is not convergent has
lower performance. CBASGA’s percentage of completed job
is consistently above the three baselines.

TABLE I: Comparison of OnDoc, GA, BAS and CBASGA

Scheduler
Time (s) Min Max Mean

OnDoc 0.381 3.15 1.346
GA 0.204 5.663 0.906
BAS 0.222 6.927 1.568

CBASGA 0.164 1.763 0.709

2) Flexibility Analysis: Here, we analyze CBASGA’s flex-
ibility to the effect of multiple factors: the container config-
uration time, the capacity of the edge server, CCR, and the
number of the edge servers.

a) Effect of the Container Configuration Time: To ex-
plore the effect of the different scale of container configuration
time, we scale the configuration time from 0.2× to 4.0× of the
original value while keeping the other parameters unchanged.
The job completion times under different configuration time
are shown in Fig. 4. As the configuration time increases, so
does the completion time on the whole. The OnDoc has the
worst performance, because the simple greedy strategy only
considers the current optimal and loses sight of the other
possible better solutions. GA’s performance is generally better
than BAS, because the discretized BAS is equivalent to a
random selection algorithm. CBASGA is the least effected
algorithm compared to the other algorithms.

b) Effect of the Capacity of Edge Server: Fig. 5 presents
the completion time of the four algorithms at different edge
server capacity. Except for CBASGA, none of the other three
algorithms shows a significant decrease in the completion time

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 14,2021 at 02:23:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Completion time of different container configuration
time

Fig. 5: Completion time of different capacity of edge servers

Fig. 6: Completion time of different communication compu-
tation ratio

with the increase of capacity. Since the increased capacity
is matched with random containers in our experiment, the
increased capacity may not be used by the task (on account
of the task is executed by configuring the corresponding
container). Therefore, there is no significant reduction.

c) Effect of the Communication Computation Ratio:
Similar to study the effect of the container configuration
time, we scale the CCR from 0.2× to 4.0× of the original
value to explore the effect of CCR. As shown in Fig. 6,
while increasing the CCR, the completion times of using
three baselines are increasing gradually except CBASGA. This
is due to the increased proportion of communication time,
resulting in increased data transfer and container configuration
time. Compared to the three algorithms, CBASGA shows that
the job completion time increases little with the increase of the
communication computation ratio, so it is the most efficient.
That is because CBASGA tends to try to place tasks on
different servers to find a better scheduling.

d) Effect of the Number of Edge Servers: Fig. 7 shows
the completion time of the four algorithms as the number of
edge servers grows. In our experiment, the container configu-
ration of the new edge server is also random, which make it
unlikely that the new edge server could be used by the task.
In complex data analysis, we can see an overall downward
trend. As the large number of tasks in complex jobs partially

Fig. 7: Completion time of different number of edge servers

offsets this randomness. That is to say, the more tasks there
are, the more likely there are to match the container of a new
edge server. OnDoc fluctuates a lot because it only considers
the earliest completion of the current task, and the appearance
of a new edge server will affect it, resulting in changes in
the final job completion. GA and BAS fluctuate under the
influence of random initialization and parameters. Compared
to them, CBASGA presents the best performance among the
three DAGs.

V. CONCLUSION

In this work, we propose a container-based edge system,
which can reduce significantly container configuration time by
obtaining containers from nearby servers. Then, we propose
a novel hybrid model to schedule tasks within independent
task constraint and server capacity constraints. By purpose-
ful initialization and automated gene combination, CBASGA
can evolve directionally in a highly adaptable initialization
population. Based on the real cluster trace from Alibaba, the
experimental results show that the proposed algorithm can
efficiently reduce the job completion time in a variety of
scenarios compared with baselines. Although we used CBAS
with low time complexity to construct a genetic combination,
the overall time complexity of CBASGA is still relatively
high. A feasible solution is to separate the calculation process
of CBAS from CBASGA and make CBASGA and CBAS
execute concurrently. Furthermore, the task dependencies in
the experiment come from Alibaba’s data-trace and how to
decompose and extract the dependencies from the actual job
is a new challenge in the future.

ACKNOWLEDGMENT

This work is supported partly by the National Key R&D
Program of China 2018YFB2100303, 2018YFB0803400 and
National Natural Science Foundation of China (NSFC) under
grant 61772487.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge
computing: Vision and challenges,” IEEE internet of
things journal, vol. 3, no. 5, pp. 637–646, 2016.

[2] A. Mseddi, W. Jaafar, H. Elbiaze, and W. Ajib, “Joint
container placement and task provisioning in dynamic
fog computing,” IEEE Internet of Things Journal, vol. 6,
no. 6, pp. 10 028–10 040, 2019.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 14,2021 at 02:23:40 UTC from IEEE Xplore. Restrictions apply.

[3] J. Thönes, “Microservices,” IEEE software, vol. 32, no. 1,
pp. 116–116, 2015.

[4] A. Samanta and J. Tang, “Dyme: Dynamic microservice
scheduling in edge computing enabled iot,” IEEE Internet
of Things Journal, 2020.

[5] “Edgex foundry,” https://www.edgexfoundry.org/.
[6] M. Chen and Y. Hao, “Task offloading for mobile edge

computing in software defined ultra-dense network,”
IEEE Journal on Selected Areas in Communications,
vol. 36, no. 3, pp. 587–597, 2018.

[7] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job
dispatching and scheduling in edge-clouds,” in IEEE
INFOCOM 2017-IEEE Conference on Computer Com-
munications. IEEE, 2017, pp. 1–9.

[8] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li,
“Dedas: Online task dispatching and scheduling with
bandwidth constraint in edge computing,” in IEEE IN-
FOCOM 2019-IEEE Conference on Computer Commu-
nications. IEEE, 2019, pp. 2287–2295.

[9] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and
K. K. Leung, “Dynamic service migration and workload
scheduling in edge-clouds,” Performance Evaluation,
vol. 91, pp. 205–228, 2015.

[10] K. Shin, M. Cha, M. Jang, J. Jung, W. Yoon, and S. Choi,
“Task scheduling algorithm using minimized duplications
in homogeneous systems,” Journal of Parallel and Dis-
tributed Computing, vol. 68, no. 8, pp. 1146–1156, 2008.

[11] X. Jiang and S. Li, “Bas: beetle antennae search
algorithm for optimization problems,” arXiv preprint
arXiv:1710.10724, 2017.

[12] B. Alatas, E. Akin, and A. B. Ozer, “Chaos embedded
particle swarm optimization algorithms,” Chaos, Solitons
& Fractals, vol. 40, no. 4, pp. 1715–1734, 2009.

[13] “Alibaba trace,” https://github.com/alibaba/clusterdata,
2018.

[14] L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and
H. Huang, “Dependent task placement and scheduling
with function configuration in edge computing,” in Pro-
ceedings of the International Symposium on Quality of
Service. Association for Computing Machinery, 2019.

[15] L. Liu, H. Huang, H. Tan, W. Cao, P. Yang, and X.-Y. Li,
“Online dag scheduling with on-demand function con-
figuration in edge computing,” in International Confer-
ence on Wireless Algorithms, Systems, and Applications.
Springer, 2019, pp. 213–224.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 14,2021 at 02:23:40 UTC from IEEE Xplore. Restrictions apply.

		2021-07-07T03:00:38-0400
	Preflight Ticket Signature

