
Computer Networks 190 (2021) 107952

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

An adaptive trust model based on recommendation filtering algorithm for the
Internet of Things systems
Guozhu Chen a, Fanping Zeng a,b,∗, Jian Zhang c,d, Tingting Lu a, Jingfei Shen a, Wenjuan Shu a

a School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
b Anhui Province Key Lab of Software in Computing and Communication, Hefei, Anhui, China
c State Key Laboratory of Computer Science, Institute of Software Chinese Academy of Sciences, Beijing, China
d University of Chinese Academy of Sciences, Beijing, China

A R T I C L E I N F O

Keywords:
Internet of Things
Trust model

A B S T R A C T

The Internet of Things (IoT) is growing rapidly and brings great convenience to humans. But it also causes
some security issues which may have negative impacts on humans. Trust management is an effective method
to solve these problems by establishing trust relationships among interconnected IoT objects. In this paper,
we propose an adaptive trust model based on recommendation filtering algorithm for the IoT systems. The
utilization of sliding window and time decay function when calculating direct trust can greatly accelerate the
convergence rate of trust evaluation.

We design a recommendation filtering algorithm to effectively filter out bad recommendations and
minimize the impact of malicious objects. An adaptive weight is developed to better combine direct trust
and recommendation trust into synthesis trust so as to adapt to the dynamically hostile environment. In the
simulation experiments, we compare our adaptive trust model with three related models: TBSM, NRB and NTM.
The experimental results indicate that our trust model converges fast and the mean absolute error is always
less than 0.05 when the proportion of malicious nodes is from 10% to 70%. The comparative experiments
further verify the effectiveness of our trust model in terms of accuracy, convergence rate and resistance to
trust related attacks.
1. Introduction

The concept of Internet of Things (IoT) is to connect a large number
of objects in the real physical world to the Internet based on standard
communication protocols and unique addressing schemes [1]. These
interconnected objects can be service providers offering services and
sharing resources and information with each other. For the past few
years, IoT has grown rapidly and a series of relevant services and ap-
plications including smart home, smart city and smart community [2]
emerged. These services and applications bring great convenience to
humans, but they also cause some security issues that may do harm to
our lives. For example, a misbehaved object can perform various types
of malicious attacks to destroy the integrity and availability of data
and network resources. Trust management is an effective method to
solve the above security issues by establishing trust relationships among
objects and then excluding malicious objects. It allows multiple objects
to share their opinions about the trust value of their companions [3].

Although trust management can effectively solve some of the secu-
rity problems, there are still some challenges in building trust man-
agement systems. First, there are a large number of heterogeneous

∗ Corresponding author at: School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.

objects which have different functions and provide diverse services and
applications. Consequently, an IoT trust model should be universal and
capable of running on various types of objects. Second, most objects
have limited capacities so that the existing trust models in P2P and
social networks are no longer applicable. Third, many of the objects will
be malicious for their own benefits and then carry out various malicious
attacks in order to reduce the trust value of others or improve their
own trustworthiness. As a result, IoT trust models should be resistant
to those malicious attacks.

To meet the challenges discussed above, we propose an adaptive
trust model to establish trust relationships among objects. Our trust
model based on the recommendation filtering algorithm can effectively
resist malicious attacks carried out by misbehaved objects and evaluate
the trust value of target objects accurately. The major contributions of
our paper are as follows:

• We propose a system architecture based on trust third parties
(TTPs) which provides a secure and reliable trust computing
vailable online 22 February 2021
389-1286/© 2021 Elsevier B.V. All rights reserved.

E-mail addresses: chengz18@mail.ustc.edu.cn (G. Chen), billzeng@ustc.edu.cn

https://doi.org/10.1016/j.comnet.2021.107952
Received 7 September 2020; Received in revised form 27 January 2021; Accepted
(F. Zeng).

17 February 2021

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:chengz18@mail.ustc.edu.cn
mailto:billzeng@ustc.edu.cn
https://doi.org/10.1016/j.comnet.2021.107952
https://doi.org/10.1016/j.comnet.2021.107952
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.107952&domain=pdf

Computer Networks 190 (2021) 107952G. Chen et al.

i
s
t
w
r
p

2

m
l
s
w
t
r

2

b
p
p
o

a
t

e
p
H
t
o
g

t
t
s
t
s
r
t
r

2

s
t
a

t
t
c
T
e
e

2

o
m
m

environment and hence saves storage and computing resources
of IoT objects. Although in some previous work [4–7] and [8],
the authors proposed hybrid architectures which are similar to
ours, they did not specify what components are included in their
proposed architecture and they did not explain how to apply their
trust models to the architectures they proposed. Instead, we clar-
ify the components included in our architecture and the functions
of these components. Meanwhile, we explain the process of trust
evaluation and the interaction process of these components in the
architecture we proposed.

• Considering that the impact of past feedback will decrease over
time, we introduce a sliding window to store feedback and use
a time decay function to reduce the weight of the previous
feedback. The differences from [5] and [6] are that we not only
use the decay function to reduce the impact of previous feedback,
we also propose a sliding window to save the feedback of the most
recent period of time. The use of the sliding window can reflect
the changes in the trust value of the IoT objects more quickly
because of the fact that recent behaviors can better reflect the
current trust status of IoT objects.

• We design a recommendation filtering algorithm based on 𝑘-
means to filter out bad recommendations provided by malicious
recommenders. Although a similar filtering algorithm was pro-
posed in [5], we also introduce three important factors on the
basis of our filtering algorithm. Even if the filtering algorithm
cannot completely filter out the bad recommendations, the use
of these three important factors can reduce the negative impact
of the bad recommendations on the calculation of the recommen-
dation trust as much as possible.

• We introduce an adaptive weight that can adjust automatically ac-
cording to the dynamic environment to combine direct trust and
recommendation trust. The experimental results indicate that our
adaptive trust model enables fast and accurate trust evaluation
and resists malicious attacks in the dynamically hostile environ-
ment. Compared with the fixed weight used in [9] and [10], our
adaptive weight enables fast and accurate trust evaluation and
resists malicious attacks in the dynamically hostile environment.

The remainder of this paper is organized as follows. In Section 2, we
ntroduce the concept of trust and attack model in IoT. In Section 3, we
urvey the related work of IoT trust models. In Section 4, we propose
he system architecture and the process of trust evaluation. In Section 5,
e elaborate on our adaptive trust model and we give the experimental

esults and relevant analysis in Section 6. Finally, we summarize the
aper and outline the future work in Section 7.

. Background

In this section, we first introduce the concept of trust in IoT, the
ain participants in the trust model and the types of trust. Then, we

ist some trust related attacks that can break the trust management
ystem. Finally, we introduce some common outlier detection methods
hich can be used to detect bad recommendations caused by those

rust related attacks and filter out them from all the recommendations
eceived by the trustor.

.1. Trust in internet of things

In human society, trust usually indicates the degree of subjective
elief between people. People are more likely to communicate with
eople they trust. Similarly, IoT objects are more willing to use services
rovided by trusted objects. Objects can evaluate the trust value of
thers through trust models before using their service.

There are three main participants in a trust model: trustor, trustee
nd recommender. A trustor is an object who wants to evaluate the
2

rust value of others. Correspondingly, a trustee is an object who is d
valuated by the trustor. If the trustor is satisfied with the service
rovided by the trustee, it will give the trustee a high trust rating.
owever, the trustor cannot interact with all trustees directly all the

ime. In this situation, the trustor needs recommendations from other
bjects that have interaction histories with trustees. Those objects who
ive recommendations to the trustor are called recommenders.

According to the above descriptions, we know that there are two
ypes of trust relationships including direct trust and recommendation
rust between a trustor and a trustee. The type of a given trust relation-
hip depends on the way the trustor communicates with the trustee. If
he trustor communicates with the trustee directly, this trust relation-
hip is considered direct trust. Otherwise, we call the trust relationship
ecommendation trust. In our trust model, the trustor evaluates the
rustee’s trust value by synthesis trust that combines direct trust and
ecommendation trust by adaptive weight.

.2. Attack model

A malicious object is dishonest and can perform malicious attacks
uch as providing bad service or recommending adverse trust informa-
ion about trustees to the trustor. We call these attacks trust related
ttacks. The trust related attacks are summarized as follows:

• On–off attacks: A malicious object behaves well for a period of
time and badly at other times. For example, a trustee can provide
a trustor with good service that does not need many resources and
prefers not to serve the trustor when the trustor needs too many
resources.

• Self promoting attacks: A malicious object can promote its
reputation by offering good recommendations about itself so
that it can be selected as a service provider and then provides
poor service. A service requester can hardly select good service
providers under these attacks if the trust model does not ignore
bad recommendations about the malicious object itself.

• Bad mouthing attacks: A malicious recommender can slander
the reputation of a well-behaved trustee by providing the trustor
with bad recommendations about that trustee. As a result, the
trustee that is evaluated by the trustor with a low trust rating
cannot be selected as a service provider.

• Ballot stuffing attacks: These attacks are similar to bad
mouthing attacks. A badly-behaved trustee that cannot offer
satisfying service will be highly rated by malicious recommenders
that give opposite recommendations to the trustor. When multi-
ple recommenders collaborate with each other to perform these
attacks at the same time, they can boost the reputation of a bad
trustee quickly.

• Selective misbehavior attacks: A malicious recommender pro-
vides the trustor with bad recommendations about some trustees
and gives correct recommendations about others. In such a case,
the trustor can hardly judge if the recommender is malicious
because of its intermittent malicious behavior.

From the above description of trust related attacks, we know that
rust models are under many security threats that can break the func-
ionality of trust management systems. Therefore, trust models should
onsider multiple trust factors in order to evaluate trustees accurately.
hey should also take more defensive measures to avoid the negative
ffect of bad recommendations so as to improve the stability of trust
valuation in the dynamically hostile environment.

.3. Outlier detection methods

In Section 2.2, we have already introduced that malicious rec-
mmenders which perform some trust related attacks such as bad
outhing attacks and ballot stuffing attacks will provide bad recom-
endations to the trustor. If the trustor uses these bad recommen-

ations, the accuracy of the recommendation trust evaluation will be

Computer Networks 190 (2021) 107952G. Chen et al.
reduced. In order to effectively avoid the negative impact of these trust
related attacks, these bad recommendations can be regarded as outliers
and detected by outlier detection methods. Therefore, the trustor can
use a recommendation filtering algorithm based on outlier detection
methods to eliminate these bad recommendations when evaluating the
recommendation trust of trustees. In this subsection, we introduce some
common outlier detection methods and then we will compare and
analyze these methods in Section 5.2.1 so as to explain why we choose
𝑘-means to filter out bad recommendations.

• Grubbs’ test: Grubbs’ test which was proposed by Grubbs et al.
[11] is a statistically based outlier detection method. It is used to
detect outliers in one-dimensional data under the assumption that
the data is generated by a Gaussian distribution. It calculates the
𝑧 score of each data instance and compares the 𝑧 score with the
threshold. The 𝑧 score is calculated by dividing the absolute value
of the difference between the data instance and the average value
of the data by the standard deviation of the data. A data instance
whose 𝑧 score greater than the threshold will be regarded as an
outlier.

• Box plot: Box plot [12] is a simple statistical technique to detect
outliers in one-dimensional and multi-dimensional data. It first
calculates the Inter Quartile Range(𝐼𝑄𝑅) which is the difference
between the first quartile(𝑄1) and the third quartile(𝑄3). Then,
data instances greater than 𝑄3+1.5 ∗ 𝐼𝑄𝑅 or less than 𝑄1−1.5 ∗
𝐼𝑄𝑅 will be regarded as outliers.

• Isolation forest: Isolation forest was brought by Liu et al. [13]
and can be viewed as the unsupervised counterpart of decision
trees. An isolation tree is generated with a given sample set by
recursively choosing one random attribute and one random split
value of the data on every tree node until the height limit is
reached or the terminal leaf contains one distinct data instance.
The principle is that outliers have a higher chance of being
isolated on an earlier stage than normal data instances. Hence,
outliers are expected to have a shorter height in the isolation
trees.

• Local outlier factor(LOF): LOF [14] is a well-known approach
that first introduced the concept of local outliers. The LOF score
for a data instance is based on the average ratio of the instance’s
neighbors’ density to the instance’s density. For a normal instance
lying in a dense region, its local density will be similar to that of
its neighbors, while for an outlier, its local density will be lower
than that of its neighbors. Hence, LOF scores of normal instances
are close to 1 while outliers’ LOF scores are much greater than 1.

• DBSCAN: DBSCAN [15] is a density-based clustering algorithm
and can be used as an outlier detection method. It has two user-
specified parameters that determine the density of the data and
it autonomously determines the number of clusters. Users can
determine which clusters of data instances are outliers according
to the rules set in advance by themselves.

• 𝑘-Means: 𝑘-Means [16] is another clustering algorithm and can
also be used for outlier detection. 𝑘 is the number of clusters and
needs to be specified by users in advance. Similar to DBSCAN,
users can determine which clusters of data instances are outliers
according to their own rules.

3. Related work

In this section, we survey recently proposed trust models for en-
hancing the security of IoT systems. Guo et al. [17] published a survey
and presented a classification of trust models for IoT and this classi-
fication contains eight classes based on five trust design dimensions:
trust composition, trust propagation, trust aggregation, trust update
and trust formation. The trust model we propose also involves these
five dimensions. Furthermore, they presented trust related attacks that
3

can perturb the trust computation models: self promoting attacks, bad
mouthing attacks, ballot stuffing attacks, selective misbehavior attacks
and on–off attacks. We also explain these attacks in detail in Section 2.2
and our trust model can resist these trust related attacks effectively. In
the next paragraph, we introduce some specific trust models and their
advantages and limitations.

Chen et al. [18] clarified the concept of trust and reputation in
IoT and proposed an IoT trust management model based on fuzzy
theory. But in their model, a trustor cannot evaluate trustees without
direct interactions. To solve this problem, our trust model adopts the
recommendation trust evaluation to help the trustor calculate the trust
value of trustees indirectly. Nitti et al. [19] proposed two types of
trust models: subjective model and objective model. In the subjective
model, each trustor calculates and stores the trust value of trustees
itself. In the objective model, a distributed hash table is designed for
storing the information of each node. But these two trust models are
susceptible to malicious nodes in the network. Considering that the
trust evaluation is sensitive to context, Saied et al. [20] designed a
context-aware and multi-service approach to trust management. The
model selects a certain number of historical trust values to calculate
the current trust value. But it is difficult to quickly evaluate the
trustworthiness when there is not enough trust related information. To
solve this problem, Xia et al. [21] designed a kernel-based nonlinear
multivariate gray prediction model to predict the direct trust which
needs a small amount of historical information. Experimental results
indicate the accuracy and convergence rate of the trust model. But, the
proportion of malicious nodes is only 30% in their experiments. Our
trust model is still accurate when the proportion of malicious nodes is
as high as 70%.

Some work brings social attributes to the IoT. A comprehensive
model was proposed in [22] and used the social relations of users on
the real social platform to establish the social relationship among nodes
so as to make the experimental results more persuasive. Chen et al. [9]
divided trust into three types based on social attributes: honesty, coop-
eration and community-interest. The trust model separately calculates
the three types of trust and combines them according to the actual
scenario. However, it needs a large number of experiments to determine
the best weight. When the trustor and the trustee do not interact with
each other directly, recommendations are important to trust evaluation.
Xia et al. [23] proposed a trust model that divides recommendations
into direct recommendations and indirect recommendations and uses
direct trust and similarity value to calculate the weight of the two
types of recommendations. But their work lacked security analysis of
their model. To avoid the impact of bad recommendations, a trust
model with clustering technique was proposed in [5] to dynamically
filter out attacks related to bad recommendations. Similarly, Chen
et al. [6] developed a trust management system that adopts distributed
collaborative filtering to select feedback and uses social contacts as
filters. However, they did not illustrate how to establish social contacts
between nodes. Same as above related work, our model adopts a
recommendation filtering algorithm to filter out bad recommendations
provided by malicious recommenders. Besides, our model considers
three important factors: direct trust, similarity value and confidence
level to further reduce the impact of bad recommendations.

Machine learning based trust models have been proposed in re-
cent years. A trust model based on SVM and 𝑘-means was presented
in [24] to classify the extracted trust features and combine them to
produce a final trust value, whereas it is only valid in some situations.
Caminha et al. [25] proposed a smart trust management method that
can detect on–off attacks. However, this method cannot resist collusion
attacks such as bad mouthing attacks. A trust evaluation method based
on usage scenarios was presented in [26]. The authors believed that
the trustworthiness of the service provided by the target node varies
according to the scenario in which the service is used and they used
neural network training to obtain the trustworthiness of the service.
Alshehri et al. [7] proposed a clustering-driven intelligent method

that can filter out dishonest recommenders. In addition, Boudagdigue

Computer Networks 190 (2021) 107952G. Chen et al.
Fig. 1. Architecture of the trust model.
Fig. 2. Process of trust evaluation.

et al. [27] proposed a distributed advanced analytical trust model
based on a Markov chain which can effectively resist bad mouthing
attacks and ballot stuffing attacks. But they do not explain how to
select suitable nodes as recommenders. Wang et al. [4] proposed a
novel trust mechanism based on a multilayer structure that solves
energy consumption problems. Trust models based on machine learning
may require large amounts of data to ensure the performance of trust
evaluation. On the contrary, our model uses adaptive weight to com-
bine direct trust and recommendation trust according to the current
environment and only requires some necessary information to rapidly
evaluate trustees. In addition, the introduction of TTPs can reduce the
energy consumption of IoT objects and extend their lifetime.

4. System overview

In this section, we first present the architecture of our trust model
and specify the role of each component in the architecture. Then, we
give the process of trust evaluation in our trust model so as to explain
how the components work together to establish trust relationships
among objects in a dynamically hostile IoT environment.

4.1. The proposed system architecture

Fig. 1 illustrates the system architecture of our trust model. There
are two main entities in it: nodes and trust third parties (TTPs). Trustor,
4

trustee and recommender are all nodes. Meanwhile, a node can play
different roles according to different requirements. Nodes are usually
IoT objects with limited capabilities and resources so that they can
hardly perform complex computing all the time. To solve such prob-
lems, TTPs that provide safe and reliable trust computing environment
are introduced into our trust model. We divide the nodes into multiple
groups and each group has a TTP responsible for assisting the node in
trust evaluation. Each node sends feedback about the services it has
received from service providers to its closest TTP in the process of
trust evaluation. Hence, our system architecture is a hybrid architecture
and TTPs in our architecture play supporting roles. The nodes in the
trustor roles really need to perform trust evaluation to evaluate the trust
value of trustees. With the help of TTPs to evaluate the trust value of
trustees, nodes can save energy as much as possible and thus extend
their lifetime.

There are three components in a node, which are feedback sender,
request sender and trust value receiver. The details of these three
components are as follows.

• Feedback sender: It sends feedback that is provided by nodes to
TTPs. If a node is satisfied with the service it has received from
the service provider, it will give positive feedback to its closest
TTP through the feedback sender.

• Request sender: If a node wants to learn about the trust value of
others, it will send a request for trust evaluation to its closest TTP
through the request sender.

• Trust value receiver: It receives the trust value of trustees that is
sent by TTPs.

There are five components in a TTP, which are feedback receiver,
feedback repository, request receiver, trust evaluation module and trust
value sender. The details of these five components are as follows.

• Feedback receiver: It is a component that receives feedback from
nodes and then sends the feedback to the feedback repository.

• Feedback repository: It is a place where stores feedback from
nodes. The feedback in the feedback repository will be used to
evaluate the trust value of trustees later.

• Request receiver: It receives the request for trust evaluation from
the trustor and then notifies trust evaluation module to evaluate
the specific trustee’s trust value.

• Trust evaluation module: This module computes the direct trust,
recommendation trust and synthesis trust of trustees through
feedback from feedback repository and the trust model we pro-
posed.

• Trust value sender: It sends trust value that is evaluated by trust
evaluation module to the trustor sending trust request before.

4.2. Process of trust evaluation

In this subsection, we elaborate on how the components mentioned
above cooperate with each other in the trust management system in

Computer Networks 190 (2021) 107952G. Chen et al.

𝐷

i
a
p
t
t
t
m
j

m
t
i
s
d
m
i
s
t
g

order to implement trust evaluation. Fig. 2 illustrates the process of
trust evaluation and the detailed description is as follows:

(1) Each node periodically sends feedback about the services it has
received from service providers to its closest TTP via its feedback
sender.

(2) Each feedback receiver of the TTP receives feedback from nodes
and uploads the feedback to its feedback repository.

(3) A trustor will use request sender to a send trust evaluation
request to its closest TTP when it wants to obtain the trust value
of the target trustee.

(4) When a TTP receives a trust evaluation request from the trustor,
it first searches whether there is feedback about the target
trustee in its feedback repository. If not, it will request feedback
about that trustee from other TTPs. The TTP which stores the
required feedback will send them back.

(5) The TTP utilizes the feedback and its trust evaluation module
to evaluate the direct trust, recommendation trust and synthesis
trust of the target trustee.

(6) After the work of the trust evaluation module, the TTP sends the
target trustee’s trust value to the trustor through the trust value
sender.

(7) Finally, the trustor receives the trust value of the trustee and
then decides whether to receive services provided by the trustee.

5. The proposed trust model

In this section, we propose the concrete methods used in the trust
model that can evaluate the trust value accurately and steadily in the
dynamically hostile environment.

5.1. Direct trust

We adopt a Bayesian inference model [28] based on beta probability
density function to evaluate the direct trust of the trustee. Eq. (1) shows
the direct trust of trustor 𝑖 about trustee 𝑗.

𝑇 (𝑡)
𝑖𝑗 =

𝛼(𝑡)𝑖𝑗 + 1

𝛼(𝑡)𝑖𝑗 + 𝛽(𝑡)𝑖𝑗 + 2
(1)

In Eq. (1), 𝐷𝑇 (𝑡)
𝑖𝑗 represents the direct trust of trustor 𝑖 about trustee

𝑗 at time 𝑡. It is a real number in the range of [0, 1] where 1 indicates
complete trust, 0.5 indicates uncertainty and 0 indicates complete
distrust. 𝛼(𝑡)𝑖𝑗 denotes the total number of positive feedback given by
trustor 𝑖 about trustee 𝑗 from the beginning of trust evaluation to
current time 𝑡. Similarly, 𝛽(𝑡)𝑖𝑗 is the total number of negative feedback.
If the services provided by the trustee can meet the requirements, the
trustor will give positive feedback to the trustee. On the contrary, the
trustor will give negative feedback.

We consider the influence of feedback is blunted over time because
feedback from past interactions cannot accurately reflect the current
status of the trustee. So the weight of previous feedback should be re-
duced. To achieve this, we introduce a time decay function whose value
will decrease constantly over time, and adopt a sliding window which
only stores and updates the feedback from recent interactions. The
sliding window has 𝑚 time slots in order from its left side to the right
side. Each time slot stores the amount of positive and negative feedback
during an interaction and the corresponding time when this interaction
happened. The rightmost time slot stores the latest feedback that has
the most important influence to the direct trust evaluation. Eq. (2)
shows the calculation of positive feedback and negative feedback.

𝛼(𝑡)𝑖𝑗 =
𝑚
∑

𝑖=1
𝑒−𝜆(𝑡−𝑡𝑖) ∗ 𝛼(𝑡𝑖)𝑖𝑗 + 𝑝𝑓

𝛽(𝑡)𝑖𝑗 =
𝑚
∑

𝑒−𝜆(𝑡−𝑡𝑖) ∗ 𝛽(𝑡𝑖)𝑖𝑗 + 𝑛𝑓

(2)
5

𝑖=1
In Eq. (2), 𝛼(𝑡𝑖)𝑖𝑗 denotes the amount of positive feedback provided
by trustor 𝑖 about trustee 𝑗 at time 𝑡𝑖 and 𝛽(𝑡𝑖)𝑖𝑗 denotes the amount of
negative feedback. 𝑒−𝜆(𝑡−𝑡𝑖) is a time decay function and 𝜆 is a decay
factor that affects the decay rate of the time decay function. 𝑚 is the
size of the sliding window. 𝑝𝑓 and 𝑛𝑓 are the amount of positive and
negative feedback at time 𝑡, respectively.

Another problem we need to solve in the direct trust evaluation is to
migrate the risk of on–off attacks. We use a penalty factor to amplify
the influence of negative feedback and the trust value of the trustee
will decrease faster if it provides the trustor with bad service. Trustor
will give negative feedback about the trustee and the weight of negative
feedback will be greater with the influence of the penalty factor. Eq. (3)
is the final formula to evaluate the direct trust.

𝐷𝑇 (𝑡)
𝑖𝑗 =

𝛼(𝑡)𝑖𝑗 + 1

𝛼(𝑡)𝑖𝑗 + 𝛽(𝑡)𝑖𝑗 ∗ 𝑃𝐹 + 2
(3)

In Eq. (3), 𝑃𝐹 is the penalty factor. The calculation of 𝛼(𝑡)𝑖𝑗 and 𝛽(𝑡)𝑖𝑗
can be found in Eq. (2).

5.2. Recommendation trust

When the trustor does not interact with the trustee directly, it
lacks essential information to evaluate the trustee’s direct trust. At
this time, the trustor needs to request recommendations from recom-
menders who have interacted with the trustee before and then uses
these recommendations to calculate the recommendation trust of the
trustee. Under the trust related attacks, the trustor may receive some
bad recommendations. To avoid the influence of these attacks, we
propose a recommendation filtering algorithm based on 𝑘-means to
filter out malicious recommenders. For the recommendations provided
by remaining recommenders after filtering, some important factors are
applied to ensure the accuracy of the recommendation trust.

5.2.1. The choice of 𝑘-means
We have already discussed why we need a recommendation filtering

algorithm based on outlier detection methods in Section 2.3. Now we
analyze the applicability of these outlier detection methods according
to the characteristics of bad recommendations and explain why we
finally propose a recommendation filtering algorithm based on 𝑘-means
nstead of other outlier detection methods. The bad recommendations
bout the trustee provided by malicious recommenders are often op-
osite to the ground truth of the trustee. For example, if the ground
ruth of a well-behaved trustee is 1, malicious recommenders are likely
o give recommendations less than 0.5 to reduce the recommendation
rust of the trustee. These behaviors performed by malicious recom-
enders are called bad mouthing attacks. Ballot stuffing attacks are

ust the opposite of these behaviors.
When the proportion of malicious recommenders is relatively small,

ost of the recommendations received by the trustor are close to
he ground truth of the trustee. The six outlier detection methods
ntroduced above can all effectively detect bad recommendations in
uch a case. Then, the trustor can filter out these outliers based on the
etection results. However, when the proportion of malicious recom-
enders increases, the proportion of bad recommendations will also

ncrease. Not all of these outlier detection methods are effective in this
ituation. The average value of all recommendations is no longer close
o the average value of good recommendations, but a value between
ood recommendations and bad recommendations. The 𝑧 scores of

all recommendations will be less than the fixed threshold and thus
grubbs’ test cannot detect bad recommendations as outliers. Similarly,
the first quartile will fall among bad recommendations instead of good
recommendations, resulting in all recommendations being within the
specified range of the box plot. Therefore, box plot cannot detect
bad recommendations either. Both isolation forest and LOF treat data
instances in the sparse area as outliers. The difference is that isolation

Computer Networks 190 (2021) 107952G. Chen et al.

m
b
n
d
t
t
u
t
r
T
t
t
g
t
i
o
b
r
d
s
i

1
1
1
1
1
1
1
1

forest is based on the global distribution of data instances while LOF
is based on the local density of data instances. When the proportion of
malicious recommenders increases, a bad recommendation will also be
in a dense area with other bad recommendations surrounding it. Hence,
it is difficult to judge whether the bad recommendation is an outlier or
not based on its height in the isolation tree. Similarly, the LOF score
of a bad recommendation will be close to 1 because its local density is
almost the same as its neighbors’. Obviously, neither isolation forest nor
LOF can effectively detect bad recommendations when the proportion
of malicious recommenders increases.

DBSCAN and 𝑘-means are both clustering-based outlier detection
ethods. The former autonomously determines the number of clusters

ased on the density of data instances. The latter determines the
umber of clusters according to the user-specified parameter 𝑘 and
ivides data instances into clusters based on the distance between
hem and the centroids. The same is that both of them need to de-
ermine which clusters of data instances are outliers according to the
ser-specified rules. In the recommendation trust evaluation, we can
ake the direct trust of the trustor about the recommenders and the
ecommendations provided by the recommenders as data instances.
he reason behind that is the average value of the direct trust of the
rustor about good recommenders is larger. The recommendations in
he cluster which centroid’s first value is the largest can be regarded as
ood recommendations and others will be deemed to be bad. Then, the
rustor can filter out bad recommendations from all recommendations
t received based on the clustering results. Whether it is DBSCAN
r 𝑘-means, good recommendations and bad recommendations will
e divided into different clusters even if the proportion of malicious
ecommenders increases. Therefore, both of them are effective for
etecting bad recommendations according to the rules we set. The
pace complexity of DBSCAN is 𝑂(𝑚) where 𝑚 is the number of data
nstances. The space complexity of 𝑘-means is 𝑂(𝑚 + 𝑘) where 𝑘 is

the number of clusters specified by users. In the recommendation trust
evaluation, we set 𝑘 to 2. As a result, the space complexity of 𝑘-
means is approximately equal to the space complexity of DBSCAN. The
time complexity of DBSCAN is 𝑂(𝑚𝑙𝑜𝑔𝑚). The time complexity of 𝑘-
means is 𝑂(𝐼𝑘𝑚) where 𝐼 is the number of iterations specified by users.
Because 𝐼 and 𝑘 are much smaller than 𝑚, the time complexity of 𝑘-
means can be regarded as 𝑂(𝑚). We can conclude that 𝑘-means is more
efficient than DBSCAN in terms of time complexity. Based on the above
comparative analysis, we can conclude from both effectiveness and
efficiency that the choice of 𝑘-means to detect bad recommendations is
better than other outlier detection methods. Consequently, we propose
a recommendation filtering algorithm based on 𝑘-means.

5.2.2. Recommendation filtering algorithm based on 𝑘-means
We take the direct trust of the trustor about the recommenders and

the recommendations provided by the recommenders as vectors which
will be taken by the recommendation filtering algorithm as inputs.
Through the filtering algorithm, the vectors will be divided into two
clusters. The cluster whose centroid is larger will be selected and the
corresponding recommenders will be regarded as recommenders after
filtering.

Algorithm 1 illustrates the recommendation filtering algorithm in
detail. The inputs are a list of recommenders 𝑅 = {𝑟1, 𝑟2,… , 𝑟𝑚}
and the max number of interactions 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑚𝑎𝑥. The outputs are a
list of recommenders 𝑅′ = {𝑟′1, 𝑟

′
2,… , 𝑟′𝑛} that remain after filtering.

For each recommender 𝑟𝑘, the algorithm constructs a vector of two
values: the direct trust of the trustor about the recommender and
the recommendation of the recommender about the trustee. At the
beginning of filtering, the algorithm randomly selects two vectors as
initial centroids of clusters. The core part of the filtering algorithm is
based on the 𝑘-means clustering algorithm (Lines 7–29). It separately
calculates the Euclidean distance of each vector and the centroid of
two clusters. Then, each vector will be added to the cluster closer to it
6

(Lines 10–18). The centroid of each cluster will be recalculated after all
Algorithm 1 Recommendation Filtering Algorithm

Input: 𝑅 = {𝑟1, 𝑟2,… , 𝑟𝑚}, 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑚𝑎𝑥

Output: 𝑅′ = {𝑟′1, 𝑟
′
2,… , 𝑟′𝑛}

1: for each 𝑟𝑘 ∈ 𝑅 do
2: 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 (𝐷𝑇𝑖𝑟𝑘 ;𝐷𝑇𝑟𝑘𝑗)
3: end for
4: Initialize:
5: 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡 𝑡𝑤𝑜 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝐷𝑇𝑖𝑟𝑥 ;𝐷𝑇𝑟𝑥𝑗), (𝐷𝑇𝑖𝑟𝑦 ;𝐷𝑇𝑟𝑦𝑗)
6: 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 1, 𝑅′ = Ø
7: repeat
8: 𝐶1 = Ø, 𝐶2 = Ø
9: 𝐹 𝑙𝑎𝑔 = 𝑓𝑎𝑙𝑠𝑒

10: for each (𝐷𝑇𝑖𝑟𝑘 ;𝐷𝑇𝑟𝑘𝑗) do

11: 𝑑𝑖𝑠𝑡1 =
√

(𝐷𝑇𝑖𝑟𝑘 −𝐷𝑇𝑖𝑟𝑥)
2 + (𝐷𝑇𝑟𝑘𝑗 −𝐷𝑇𝑟𝑥𝑗)

2

2: 𝑑𝑖𝑠𝑡2 =
√

(𝐷𝑇𝑖𝑟𝑘 −𝐷𝑇𝑖𝑟𝑦)
2 + (𝐷𝑇𝑟𝑘𝑗 −𝐷𝑇𝑟𝑦𝑗)

2

3: if 𝑑𝑖𝑠𝑡1 <= 𝑑𝑖𝑠𝑡2 then
4: 𝐶1 = 𝐶1 ∪ (𝐷𝑇𝑖𝑟𝑘 , 𝐷𝑇𝑟𝑘𝑗)
5: else
6: 𝐶2 = 𝐶2 ∪ (𝐷𝑇𝑖𝑟𝑘 , 𝐷𝑇𝑟𝑘𝑗)
7: end if
8: end for
9: (𝐷𝑇 ′

𝑖𝑟𝑥
;𝐷𝑇 ′

𝑟𝑥𝑗
) = (1

|𝐶1|

∑

𝐷𝑇𝑖𝑟𝑘∈𝐶1
𝐷𝑇𝑖𝑟𝑘 ;

1
|𝐶1|

∑

𝐷𝑇𝑟𝑘𝑗∈𝐶1
𝐷𝑇𝑟𝑘𝑗)

20: (𝐷𝑇 ′
𝑖𝑟𝑦
;𝐷𝑇 ′

𝑟𝑦𝑗
) = (1

|𝐶2|

∑

𝐷𝑇𝑖𝑟𝑘∈𝐶2
𝐷𝑇𝑖𝑟𝑘 ;

1
|𝐶2|

∑

𝐷𝑇𝑟𝑘𝑗∈𝐶2
𝐷𝑇𝑟𝑘𝑗)

21: if (𝐷𝑇 ′
𝑖𝑟𝑥

;𝐷𝑇 ′
𝑟𝑥𝑗

) ≠ (𝐷𝑇𝑖𝑟𝑥 ;𝐷𝑇𝑟𝑥𝑗) then
22: (𝐷𝑇𝑖𝑟𝑥 ;𝐷𝑇𝑟𝑥𝑗) = (𝐷𝑇 ′

𝑖𝑟𝑥
;𝐷𝑇 ′

𝑟𝑥𝑗
)

23: 𝐹 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒
24: end if
25: if (𝐷𝑇 ′

𝑖𝑟𝑦
;𝐷𝑇 ′

𝑟𝑦𝑗
) ≠ (𝐷𝑇𝑖𝑟𝑦 ;𝐷𝑇𝑟𝑦𝑗) then

26: (𝐷𝑇𝑖𝑟𝑦 ;𝐷𝑇𝑟𝑦𝑗) = (𝐷𝑇 ′
𝑖𝑟𝑦
;𝐷𝑇 ′

𝑟𝑦𝑗
)

27: 𝐹 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒
28: end if
29: until 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 > 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑚𝑎𝑥 𝑜𝑟 𝐹 𝑙𝑎𝑔 == 𝑓𝑎𝑙𝑠𝑒
30: if 𝐷𝑇𝑖𝑟𝑥 >= 𝐷𝑇𝑖𝑟𝑦 then
31: 𝐶𝑓𝑖𝑙𝑡𝑒𝑟 = 𝐶1
32: else
33: 𝐶𝑓𝑖𝑙𝑡𝑒𝑟 = 𝐶2
34: end if
35: for each (𝐷𝑇𝑖𝑟𝑘 ;𝐷𝑇𝑟𝑘𝑗) ∈ 𝐶𝑓𝑖𝑙𝑡𝑒𝑟 do
36: 𝑅′ = 𝑅′ ∪ 𝑟𝑘
37: end for
38: return 𝑅′

vectors are added to the corresponding clusters until it does not change
any more.

After the clustering algorithm, the vectors are divided into two
clusters. One of the clusters includes vectors corresponding to the good
recommenders and the centroid’s first value of it is larger because the
average direct trust of the good recommenders is larger. We consider
the first cluster as the trustworthy one. Finally, the recommenders cor-
responding to each vector in the trustworthy cluster are subsequently
used for the recommendation trust evaluation. Through the recommen-
dation filtering algorithm, the impact of trust related attacks such as
bad mouthing attacks and ballot stuffing attacks can be minimized by
filtering out the malicious recommenders. But the recommendations
provided by the remaining recommenders may not be all used. We
need to consider some important factors that affect the accuracy of the
recommendation trust.

5.2.3. Evaluation of recommendation trust
Although the recommendation filtering algorithm can effectively

resist some trust related attacks, it may not filter out all the malicious

Computer Networks 190 (2021) 107952G. Chen et al.

b

i

i
r

5

r
t
m

𝑇

r
0

recommenders. In addition, the well-behaved recommenders may not
evaluate the trustee accurately due to insufficient interactions and thus
cannot provide precise recommendations. To solve those problems that
the filtering algorithm cannot deal with, we apply three important
factors in the evaluation of the recommendation trust.

In human society, we usually trust information provided by people
who we believe. Similarly, in the trust model, the trustor tends to
use the recommendations provided by recommenders who are highly
rated by the trustor. As a result, the direct trust of the trustor about
the recommender is needed in the evaluation of the recommendation
trust. The second important factor is the similarity of the direct trust
evaluation. Generally speaking, the trustor is more willing to receive
recommendations from recommenders who have similar views with it.
The similar views mean that the trustor and recommenders give similar
evaluation of the direct trust to the trustee who provides the same
service. Eq. (4) shows how to calculate the similarity of the direct trust
evaluation between the trustor and the recommender.

𝑆(𝑡)
𝑖𝑟𝑘

= 1 −

∑

𝑙∈𝑆𝑒𝑡(𝑖,𝑟𝑘) |𝐷𝑇𝑖𝑙 −𝐷𝑇𝑟𝑘𝑙|

|𝑆𝑒𝑡(𝑖, 𝑟𝑘)|
(4)

In Eq. (4), 𝑆(𝑡)
𝑖𝑟𝑘

denotes the similarity of direct trust evaluation
between trustor 𝑖 and recommender 𝑟𝑘. It falls in the interval of [0, 1]
where 1 means that the trustor and the recommender give exactly the
same evaluation for each trustee. 𝑆𝑒𝑡(𝑖, 𝑟𝑘) represents trustees common
to 𝑖 and 𝑟𝑘, and |𝑆𝑒𝑡(𝑖, 𝑟𝑘)| is the number of common trustees. Assuming
that a recommender only gives the correct recommendations about
part of trustees, the direct trust evaluation of the trustor and the
recommender about the same trustee may not be similar. In such a
case, the similarity of the direct trust evaluation will be very small.
Therefore, the trust model can resist selective misbehavior attacks by
using the factor of similarity in calculating.

The last factor is the confidence level of the recommender about
the trustee. The confidence level reflects the number of interactions
between the recommender and the trustee. The higher the confidence
level is, the more the interactions between them are. Consequently, the
recommender with a high confidence level is more popular because it
can evaluate the direct trust of the trustee accurately through sufficient
interactions. Eq. (5) shows the calculation of the confidence level. It
evolves from the beta distribution standard deviation.

𝐶 (𝑡)
𝑟𝑘𝑗

= 1 −

√

√

√

√

√

12(𝛼(𝑡)𝑟𝑘𝑗 + 1)(𝛽(𝑡)𝑟𝑘𝑗 + 1)

(𝛼(𝑡)𝑟𝑘𝑗 + 𝛽(𝑡)𝑟𝑘𝑗 + 2)2(𝛼(𝑡)𝑟𝑘𝑗 + 𝛽(𝑡)𝑟𝑘𝑗 + 3)
(5)

In Eq. (5), 𝐶 (𝑡)
𝑟𝑘𝑗

denotes the confidence level of recommender 𝑟𝑘
about trustee 𝑗 at time 𝑡. 𝛼(𝑡)𝑟𝑘𝑗 and 𝛽(𝑡)𝑟𝑘𝑗 is the accumulated positive

and negative feedback given by the 𝑘′th recommender 𝑟𝑘 about target
trustee 𝑗. Eq. (6) shows the way to calculate them and it is similar
to Eq. (2).

𝛼(𝑡)𝑟𝑘𝑗 =
𝑚
∑

𝑖=1
𝑒−𝛾(𝑡−𝑡𝑖) ∗ 𝛼(𝑡𝑖)𝑟𝑘𝑗

𝛽(𝑡)𝑟𝑘𝑗 =
𝑚
∑

𝑖=1
𝑒−𝜎(𝑡−𝑡𝑖) ∗ 𝛽(𝑡𝑖)𝑟𝑘𝑗

(6)

In Eq. (6), 𝑚 is the size of the sliding window between 𝑟𝑘 and 𝑗. 𝛾
and 𝜎 are decay factors of the time decay function. 𝛼(𝑡𝑖)𝑟𝑘𝑗

and 𝛽(𝑡𝑖)𝑟𝑘𝑗
is the

positive and negative feedback at time 𝑡𝑖, respectively. We combine the
three important factors explained above and give the calculation of the
recommendation trust in Eq. (7).

𝑅𝑇 (𝑡)
𝑖𝑗 =

𝑛
∑

𝑘=1

𝐷𝑇 (𝑡)
𝑖𝑟𝑘

𝑆(𝑡)
𝑖𝑟𝑘

𝐶 (𝑡)
𝑟𝑘𝑗

∑𝑛
𝑘=1 𝐷𝑇 (𝑡)

𝑖𝑟𝑘
𝑆(𝑡)
𝑖𝑟𝑘

𝐶 (𝑡)
𝑟𝑘𝑗

∗ 𝐷𝑇 (𝑡)
𝑟𝑘𝑗

(7)

In Eq. (7), 𝑅𝑇 (𝑡)
𝑖𝑗 is the recommendation trust of trustee 𝑗 calculated

y trustor 𝑖. 𝑛 is the number of recommenders after filtering. 𝐷𝑇 (𝑡)
7

𝑟𝑘𝑗
s the recommendations provided by recommender 𝑟𝑘 about trustee
𝑗. Its correctness depends on the behavior of the recommender. The
utilization of 𝐷𝑇 (𝑡)

𝑖𝑟𝑘
, 𝑆(𝑡)

𝑖𝑟𝑘
and 𝐶 (𝑡)

𝑟𝑘𝑗
can minimize the impact of bad and

mprecise recommendations and thereby improve the precision of the
ecommendation trust evaluation.

.3. Synthesis trust

Neither direct trust nor recommendation trust can comprehensively
eflect the trustee’s trustworthiness. Hence, our trust model uses syn-
hesis trust that is calculated by combining direct trust and recom-
endation trust. Eq. (8) shows the calculation of the synthesis trust.

(𝑡)
𝑖𝑗 = 𝜔𝐷𝑇 (𝑡)

𝑖𝑗 + (1 − 𝜔)𝑅𝑇 (𝑡)
𝑖𝑗 (8)

In Eq. (8), 𝑇 (𝑡)
𝑖𝑗 denotes the synthesis trust of trustor 𝑖 about trustee

𝑗. Its range is between 0 and 1, where 1 means complete trust while 0
means complete distrust. 𝐷𝑇 (𝑡)

𝑖𝑗 and 𝑅𝑇 (𝑡)
𝑖𝑗 is direct trust and recommen-

dation trust calculated by Eqs. (3) and (7). 𝜔 is a weight that weighs
the importance of direct trust and recommendation trust. It falls in the
interval [0, 1] and the bigger it is, the more important direct trust is.
The selection of 𝜔 is pivotal to the trust model. We adopt an adaptive
weight that can adjust automatically according to the dynamically
hostile environment. The utilization of adaptive weight can resist trust
related attacks such as bad mouthing attacks and ballot stuffing attacks
so that improving the accuracy of trust evaluation. Eq. (9) illustrates the
calculation of weight 𝜔.

𝜔 =

{

1 − 𝜃𝑒−𝛥𝑡𝐼𝑁 𝐷𝑇𝑖𝑟 ≥ 𝐷𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,
1 𝐷𝑇𝑖𝑟 < 𝐷𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .

(9)

In Eq. (9), the calculation of 𝜔 is divided into two parts. The
principle of separate calculation is to compare 𝐷𝑇𝑖𝑟 and 𝐷𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .
𝐷𝑇𝑖𝑟 denotes the average value of direct trust of trustor 𝑖 about all
ecommenders. 𝐷𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the threshold of direct trust and is set to
.5 by default. If 𝐷𝑇𝑖𝑟 is less than 𝐷𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝜔 will be equal to 1. It

means that trustor 𝑖 will only use the direct trust depending on the
direct interactions with the target trustee if most of the recommenders
are malicious. This way of calculating weight can prevent the trustor
mistaking a good trustee as a malicious one when the proportion of
malicious recommenders is high. When 𝐷𝑇𝑖𝑟 is equal to or greater than
𝐷𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , the calculation of 𝜔 is related to the number of interactions
𝐼𝑁 between trustor 𝑖 and trustee 𝑗, and 𝛥𝑡 that the difference between
the current time and the time of last interaction. The high number of
interactions means that the trustor has already adequately known about
the trustee, so the direct trust of the trustor about the trustee is more
accurate. But if the trustor and the trustee have not interacted recently,
even if they interacted with each other many times long time ago, the
direct trust still cannot reflect the current trustworthiness of the trustee.
In such a case, we regulate the importance of the direct trust via 𝛥𝑡. The
adaptive weight can be dynamically adjusted according to the current
interaction situation to adapt to the dynamically hostile environment.

6. Experimental results and analysis

The detailed performance evaluation of our work is done in two
main parts. In the first part, we compare our proposed system architec-
ture based on TTPs with the centralized architecture and the distributed
architecture in terms of energy consumption. In the second part, we
first validate the effectiveness of the recommendation trust evaluation
and the adaptive weight. Then, we compare our trust model with three
related models: TBSM [9], NRB [23] and NTM [4]. These three related
models all adopted some methods to avoid the negative impact caused
by malicious nodes on trust evaluation. In TBSM [9], they established
social relationships between nodes and used these relationships to help
the trustor not to use bad recommendations provided by malicious

Computer Networks 190 (2021) 107952G. Chen et al.
recommenders. In NRB [23], they divided recommendation trust into
direct recommendation trust and indirect recommendation trust ac-
cording to whether the trustor interacts with the trustee directly. In
direct recommendation trust, the trustor selects common nodes be-
tween it and the trustee as recommenders. The trustor can easily know
the trustworthiness of recommenders by interacting with them directly
and thus do not use incorrect recommendations when calculates the
recommendation trust of the trustee. In NTM [4], they did not use
too high or too low recommendations provided by recommenders to
avoid bad mouthing attacks and ballot stuffing attacks. To ensure the
fairness and the effectiveness of the comparative experiments, we first
use the best parameter values mentioned in their paper for the unique
parameters of each trust model. Then, for the network simulation
parameters such as the number of nodes, the moving range of nodes
and the mobility model of nodes, we use the same parameter settings
explained below.

We perform comprehensive experiments based on the ns-3 simula-
tor. The ns-3 simulator is a discrete-event network simulator and the
components of our trust model can be added to it. Table 1 lists the
basic parameter values used to configure the network for experiments
and the default parameter values of our trust model. We consider an IoT
environment with 200 nodes and 20 TTPs. The nodes randomly move
in an area of 1000×800 square meter with a speed of 20 m/s while TTPs
are uniformly distributed in this area. Each node selects the closest TTP
on the distance to help it store the feedback about neighbor nodes and
evaluate the trust value of trustees every round of trust evaluation.
The mobility model we use in ns-3 is the random waypoint which is
very similar to the real world movement [29]. We choose the AODV
routing protocol which has been realized in ns-3 and can support our
trust model well. 𝜆, 𝛾 and 𝜎 are decay factors of the decay function in
the calculation of the number of feedback. The size of the decay factor
can control the speed of decay. 𝑚 is the size of the sliding window. 𝜃
is the parameter used to calculate the adaptive weight in Eq. (9). For
the sake of determining the exact value of the constant terms in the
above equation, we need to do multiple sets of experiments in the given
network environment to obtain better results. For the three relevant
trust models in the comparative work, we adopt the same method to
obtain the values of some constant terms in their equation. This is to
ensure the fairness of the comparative experiments.

To verify the attack resistance of our trust model, a proportion of
malicious nodes that will perform trust related attacks is randomly
selected from all nodes. Trust related attacks in our experiments include
on–off attacks, self promoting attacks, bad mouthing attacks, ballot
stuffing attacks and selective misbehavior attacks which are mentioned
in Section 2. Under on–off attacks, malicious nodes will perform these
attacks in a random period of time. Under self promoting attacks, ma-
licious recommenders will give recommendations about themselves to
the trustor. Malicious recommenders will give false recommendations
that are opposite to the ground truth about trustee when performing
bad mouthing attacks and ballot stuffing attacks. However, malicious
recommenders will not perform trust related attacks to all trustors.
They will randomly perform these attacks to part of the trustors.
These are selective misbehavior attacks. The range of the proportion
is from 10% to 70% and the default value is 30%. The trust evaluation
interval is 100 s and the total simulation time is 10000 s. There are
14,833 data packets related to trust messages sent and received by
nodes in the entire network and the packet loss rate is 2.7%. These
trust messages include feedback messages about neighbors, trust value
request messages, feedback messages from other TTPs and such similar
messages sent by the nodes and TTPs.

The dynamically hostile environment in our experiments includes
two aspects. First, nodes randomly move with random directions ac-
cording to the random waypoint mobility model. As a result, the
neighbors of a node are constantly changing. Second, the proportion of
malicious nodes changes from 10% to 70%. Our experiments focus on
the effectiveness of trust evaluation mechanisms that we adopt and the
8

Table 1
Simulation parameters.

Parameter Value

Nodes 200
Area 1000 m × 800 m
TTPs 20
Speed 20 m/s
𝑃𝐹 1.5
Radio range 100 m
Malicious ratio 30%
𝐷𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.5
Routing protocol AODV
Mobility Random waypoint model
𝜆 0.05
𝛾 0.7
𝑚 5
𝜎 0.7
𝜃 0.1

Fig. 3. Energy consumption varying the number of nodes.

comparison with other relevant models in terms of convergence rate,
stability and attack resistance in the dynamically hostile environment.
For simplicity, we assume that an honest node has a 95% probability
of generating positive feedback, and a malicious node has a 95%
probability of generating negative feedback. This premise simplifies the
way of sending and receiving service requests between the trustor and
the trustee. Our trust model depends on the feedback provided by the
trustor, so this premise does not affect the function of the trust model
and we can pay more attention to the performance of the trust model
in the dynamically hostile environment.

The trust value in our experiments is between 0 and 1 where 1
means completely trustworthy and 0 means completely untrustworthy.
We can understand 0 and 1 as the likelihood of being trustworthy.
Therefore, even if the trust evaluation results are close, the meaning
of the trust value is different. We use the mean absolute error (MAE)
to measure the accuracy of trust evaluation. The smaller the MAE is, the
higher the accuracy of the trust evaluation is. The comparative results
show that our model converges fast and remains stable in the trust
evaluation. Besides, when the proportion of malicious nodes reaches
70%, the mean absolute error (MAE) of our trust evaluation is still less
than 0.05 while the MAE in others becomes larger. It means that our
model is more resistant to trust related attacks than other models.

6.1. Energy consumption of the system architecture

In this subsection, we compare our proposed system architecture
based on TTPs with the centralized architecture and the distributed
architecture in terms of energy consumption. We apply our proposed
trust model to the three architectures, respectively. The trust model in

Computer Networks 190 (2021) 107952G. Chen et al.
Fig. 4. Effectiveness of 𝑘-means.

Fig. 5. Effectiveness of recommendation trust evaluation.

Fig. 6. Effectiveness of adaptive weight.

our architecture has been introduced in Section 4. The implementation
of the trust model in the centralized architecture and distributed ar-
chitecture is slightly different from our proposed architecture based on
TTPs. In the centralized architecture, there is only one TTP at the center
of the network, so each node periodically sends feedback to the same
9

TTP which is responsible for handling all trust evaluation requests.
There is no TTP in the distributed architecture and each node evaluates
the trust value of other nodes by itself. Therefore, each node sends and
receives feedback with its neighbor nodes for the trust evaluation.

In the trust management system, the energy consumption of a node
is mainly divided into two parts: computing energy consumption and
communication energy consumption. Computing energy consumption
mainly refers to the energy consumption when nodes generate feed-
back. This part of the energy consumption is the same in the three
architectures. Additionally, in the distributed architecture, each node
needs to evaluate the trust of others, resulting in their computing
energy consumption being greater than the centralized architecture and
our proposed architecture. As for communication energy consumption,
it is closely related to the number of trust messages sent and received
by nodes in the network. We focus on the communication energy
consumption of nodes in the three architectures, which can be obtained
through the ns-3 energy module.

Fig. 3 shows the results of the overall energy consumption of nodes
by varying the number of nodes in the three architectures. In view of
that, we conclude that energy consumption increases as the number
of nodes increases. But the difference is that the energy consumption
increases slowly in our proposed architecture while it increases rapidly
in both the centralized architecture and the distributed architecture.
Meanwhile, our proposed architecture achieves better energy saving
than the other two architectures. The reason behind that is the nodes in
our proposed architecture only need to transmit trust messages between
their own TTP and themselves. Beyond that, they do not have any
additional energy consumption related to trust messages. Therefore,
the overall energy consumption does not increase rapidly even if the
number of nodes increases. In the centralized architecture, some nodes
cannot directly transmit trust messages with the only TTP which is
not in their transmission range, and need other nodes to help them
relay trust messages. The relay of trust messages increases the energy
consumption of some nodes, resulting in higher overall energy con-
sumption than our proposed architecture. Besides, the increase in the
number of nodes which all send trust messages to the same TTP will be
more likely to cause packet loss, so the retransmission of trust messages
further increases the overall energy consumption. In the distributed
architecture, each node needs to transmit trust messages with all neigh-
boring nodes, so the average number of trust messages transmitted
by each node is more. Compared with the first two architectures, this
will undoubtedly cause each node to consume more energy, leading
to higher overall energy consumption. Increasing the number of nodes
leads to a high density of network which increases the average number
of neighbor nodes of each node, which in turn significantly increases
the energy consumption of each node and results in the maximum
overall energy consumption of the distributed architecture. Obviously,
our proposed architecture shows better performance in terms of energy
consumption than the other two architectures.

6.2. Effectiveness, convergence and attack resistance of the trust model

6.2.1. Effectiveness of 𝑘-means
In this subsection, we compare the recommendation filtering al-

gorithm based on 𝑘-means with other outlier detection methods in-
troduced in Section 2.3 to further justify the effectiveness of our
recommendation filtering algorithm. Fig. 4 shows the MAE of the
recommendation trust evaluation when using recommendation filtering
algorithms based on different outlier detection methods. In order to
ensure the fairness of the comparative experiments, we conduct mul-
tiple sets of experiments to determine the values of the parameters
required for each outlier detection method. The proportion of malicious
nodes increases from 10% to 70%. When each malicious node plays
the role of a recommender, it will be a malicious recommender which
performs trust related attacks and provide bad recommendations to the
trustor. We can see from Fig. 4 that when the proportion of malicious

Computer Networks 190 (2021) 107952G. Chen et al.

t
b
p
t
p
t
d
i
o
i
d
r

Table 2
Trust evaluation convergence of the trust model.

Node type Trust model

Our model TBSM NRB NTM

Honest 0.97 0.94 0.93 0.78
Malicious 0.02 0.05 0.06 0.20
Honest to malicious 0.03 0.09 0.15 0.24

Table 3
Trust evaluation accuracy rate of the trust model.

Trust model Accuracy rate

Our model 97.35%
TBSM 90.73%
NRB 91.45%
NTM 71.23%

nodes is small, all outlier detection methods can work and reduce
the MAE of recommendation trust evaluation. Due to the different
characteristics of each method, the filtering effect is also different,
resulting in different MAE. When the proportion of malicious nodes
increases, grubbs’ test, box plot and LOF have almost no effect on the
MAE of the recommendation trust evaluation, which means that they
cannot effectively detect the bad recommendations. We have already
analyzed the reasons why these three methods do not work in sub
Section 5.2.1. We can observe that the MAE of the recommendation
filtering algorithm based on isolation forest is even larger than the MAE
without any model when the proportion of malicious nodes reaches
50%. The reason is that isolation forest detects outliers based on the
global distribution of data instances. When the proportion of malicious
nodes increases, the area where the bad recommendations are located
becomes denser and the area where the good recommendations are
located is relatively sparser. This causes isolation forest to mistake good
recommendations for outliers and increases the MAE of recommenda-
tion trust evaluation. We can judge that the filtering effect of DBSCAN
is not as good as 𝑘-means according to the MAE of the recommendation
rust evaluation. DBSCAN marks the data instances as core points,
order points and noise points in the process of clustering. When the
roportion of malicious nodes increases, some good recommendations
hat are not in the dense area will be marked as noise points. This
art of the recommendations will not be in the cluster selected by the
rustor and will be filtered out. In this case, the MAE of the recommen-
ation trust evaluation will increase slightly. But it will not happen
n the recommendation filtering algorithm based on 𝑘-means which
nly divides the good recommendations and the bad recommendations
nto two different clusters. Through comparative experiments based on
ifferent outlier detection methods, we justify the effectiveness of our
ecommendation filtering algorithm based on 𝑘-means once again.

6.2.2. Effectiveness of recommendation trust evaluation
In this subsection, we validate the effectiveness of our recommen-

dation trust evaluation by separately observing the impact of factors
we discuss in Section 5.2. Fig. 5 shows the MAE of recommendation
trust evaluation when considering different factors and the proportion
of malicious nodes increases from 10% to 70%. We can observe that
the MAE increases rapidly without any defensive measure because the
trustor will use bad recommendations provided by malicious recom-
menders in the environment to evaluate the recommendation trust
of the trustee. These bad recommendations will seriously affect the
accuracy of recommendation trust and thus lead to a bigger MAE.
When we use the proposed recommendation filtering algorithm, the
MAE is around 0.1 and remains stable regardless of the increase of the
proportion of malicious nodes. Because the recommendation filtering
algorithm we proposed can effectively filter out bad recommendations.
Even if the proportion of malicious nodes in the environment increases,
10

the filtering algorithm can still select trustworthy recommenders. The
utilization of the direct trust of the trustor about the recommender
and the similarity of the direct trust evaluation between the trustor
and the recommender can also resist trust related attacks when the
proportion is not too high. The reason is that the direct trust and the
similarity of honest recommenders are higher and thus the weight of
their recommendations is bigger. The confidence level has no effect
on evaluation because it only reflects the quantity of interactions
between the recommender and the trustee. The recommendation filter-
ing algorithm may not be effective when the proportion of malicious
recommenders exceeds half. In this case, we must use the direct trust,
the similarity and the confidence level of the recommender. These three
important factors can reduce the weight of the bad recommendations
as much as possible. When we combine the filtering algorithm and
the three important factors together, the MAE approaches 0 and keeps
stable. Through the experimental results, we demonstrate that the rec-
ommendation trust evaluation used in our trust model can effectively
exclude bad and imprecise recommendations.

6.2.3. Effectiveness of adaptive weight
Fig. 6 shows the MAE of the trust evaluation using different weights

when the proportion of malicious nodes increases from 10% to 70%.
We can see that the MAE is the least when using the adaptive weight in
the trust evaluation. The reason is that the adaptive weight can adjust
automatically according to the current interaction situation between
the trustor and the trustee so as to adapt to the dynamically hostile
environment. If the trustor has frequently interacted with the trustee
recently, it can judge whether the trustee is trustworthy from its direct
trust toward the trustee and the direct trust is more credible than the
recommendation trust calculated from recommendations provided by
other recommenders in such case. However, a fixed weight cannot
freely regulate the importance of the direct trust and the recommen-
dation trust, which results in a larger MAE. For example, if the weight
of the direct trust is 0.3 while the weight of the recommendation
trust is 0.7, the convergence rate of the trust evaluation is fast even
if the trustor does not interact with the trustee directly. The reason
behind that is the trustor can rely on the recommendation trust which is
evaluated from recommendations provided by recommenders. But if the
proportion of malicious nodes is large, most of the recommendations
are wrong and thus affect the accuracy of the recommendation trust.
However, the weight of the recommendation trust will not be high
when we use the adaptive trust. The trustor determines the weight
of the direct trust and the recommendation trust according to the
number of interactions between the trustor and the trustee, the time of
interaction and the average trust value of recommenders. In conclusion,
the adaptive weight in our trust model effectively combines the direct
trust with the recommendation trust and reduces the MAE of trust
evaluation.

6.2.4. Convergence rate and stability of the trust model
In this subsection, we investigate the convergence rate and stability

of our trust model and three relevant trust models (TBSM [9], NRB [23]
and NTM [4]) are used for comparison. Fig. 7(a) shows the trust
evaluation of the trustor about an honest trustee who is randomly
selected and its ground truth is constant at 1 over time. We observe
that our trust model converges faster than other trust models and
remains stable with the minimum trust deviation. The convergence
rate of NRB [23] and NTM [4] is slow and the stability of them is
poor because they cannot effectively filter out bad recommendations
and reduce the impact of malicious nodes. In our trust model and
TBSM [9], the convergence rate is fast and the stability is good because
we can effectively filter out bad recommendations. Our trust model is
better because the adaptive weight we proposed can better combine
the direct trust and the recommendation trust to reduce the MAE
of the trust evaluation. Fig. 7(b) shows the trust evaluation about a
malicious trustee whose ground truth is always 0. Our trust model

also approaches ground truth faster. The reason is the same as the

Computer Networks 190 (2021) 107952G. Chen et al.
Fig. 7. Convergence rate and stability of the trust model.
Fig. 8. Attack resistance of the trust model.
results in Fig. 7(a). Fig. 7(c) shows a randomly selected trustee whose
behavior changes from honest to malicious after 𝑡 = 2500 s. We can see
that after the status changes, the trust evaluation in our trust model
converges toward the new ground truth quickly while NRB and NTM
converge slowly. The reason is that our trust model uses the sliding
window and the time decay function to store recent feedback and
reduce the impact of previous feedback. Besides, our trust model uses
the filtering algorithm and the adaptive weight to make better use of
recommendations provided by other recommenders.

Table 2 shows the trust evaluation of the trustor about a trustee
when using different trust models. The second row of Table 2 shows
the trust value of an honest trustee when t = 5000 s. We can observe
that the trust evaluation result of our model is closest to the ground
truth which is 1. Similarly, the third row is about the trust value of
a malicious trustee whose ground truth is always 0. Our trust model
is also closest to the ground truth. The results in the fourth row are
similar to the third row. The trustee changes from honest to malicious
after 𝑡 = 2500 s and the trust evaluation results are at t = 9500 s. Our
trust model still performs better than the other three models. Therefore,
our trust model is better than the other three models in the convergence
rate and stability of the trust evaluation.

6.2.5. Attack resistance of the trust model
In this subsection, we investigate the resistance of trust related

attacks in our trust model and we still choose the above three relevant
models for comparison. The malicious nodes randomly selected can
perform trust related attacks we summarized in Section 2.2 and the
proportion of malicious nodes is from 10% to 70%. From Fig. 8(a), we
can see that the MAE of trust evaluation approaches 0 and is hardly
affected by the proportion of malicious nodes in our trust model. The
reason is that our model can exclude most of the bad recommendations
by the filtering algorithm and minimize the impact of malicious recom-
menders through three important factors. On the contrary, NTM has no
special measure to resist trust related attacks, so the MAE rises rapidly
11
when the proportion of malicious nodes increases. TBSM and NRB
both decrease the weight of bad recommendations. But they cannot
be efficient when there are a large number of malicious nodes in the
environment. Fig. 8(b) shows the trust evaluation of an honest trustee
randomly selected and Fig. 8(c) shows the evaluation of a malicious
trustee. We observe that the trust bias between the estimated value and
ground truth is minimal in our model and remains stable at various
proportion of malicious nodes. It means that our trust model performs
better in the dynamically hostile environment.

Table 3 shows the average trust evaluation accuracy rate of these
four trust models. We can see that our trust model is the most accurate
with an average accuracy rate of 97.35%. We have analyzed the reason
why our trust model can evaluate trustees accurately and is resistant
to trust related attacks. The experimental results further validate that
our trust model can have high resistance toward attacks even in the
extremely hostile environment.

7. Conclusion

In this paper, we design and implement an adaptive trust model
based on the recommendation filtering algorithm for the IoT systems.
We first propose a system architecture based on TTPs that can save
energy of objects. In the direct trust evaluation, we use a sliding
window and a time decay function to reduce the impact of previous
feedback so as to converge faster. In the recommendation trust evalua-
tion, we design a recommendation filtering algorithm to filter out bad
recommendations and introduce three important factors to minimize
the impact of trust related attacks. Finally, we use an adaptive weight
to combine direct trust and recommendation trust into the synthesis
trust in order to improve the convergence rate and accuracy of the
trust evaluation. Simulation experiments validate that the utilization
of the recommendation trust evaluation and the adaptive weight can
minimize the MAE and adapt to the dynamically hostile environment.
Compared with TBSM [9], NRB [23] and NTM [4], our trust model

Computer Networks 190 (2021) 107952G. Chen et al.
converges faster and remains more stable. The MAE is always less
than 0.05 when the proportion of malicious nodes is from 10% to
70%. Experimental results further verify that our adaptive trust model
enables fast and accurate trust evaluation and resists trust related
attacks in the dynamically hostile environment.

However, there are still some limitations in our work. At present,
TTPs are fixed in our system architecture. So the trust model based on
our architecture needs to select TTPs in advance. In the future work, we
will study how to design a TTP designation algorithm to automatically
determine TTPs based on factors such as the trust value of IoT objects,
the remaining energy and the computing power. Furthermore, we plan
to further improve the resistance to trust related attacks of our trust
model so that it will still accurately evaluate the IoT objects when the
proportion of malicious nodes exceeds 70%. Then, we will design and
implement a trust management system based on our proposed model.
Therefore, the feedback information used in trust evaluation will be
generated based on the actual service provided by nodes. We will also
validate our trust model in a real IoT environment.

CRediT authorship contribution statement

Guozhu Chen: Conceptualization, Methodology, Software, Writing
- original draft. Fanping Zeng: Writing - review & editing, Resources,
Supervision. Jian Zhang: Writing - review & editing. Tingting Lu:
Writing - review & editing. Jingfei Shen: Writing - review & editing.
Wenjuan Shu: Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported partly by the National Key R&D Program
of China 2018YFB2100300 and 2018YFB0803400, the National Key
Basic Research (973) Program of China (2014CB340701) and National
Natural Science Foundation of China (NSFC) under grant 61772487.

References

[1] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Comput. Netw.
54 (15) (2010) 2787–2805.

[2] X. Li, R. Lu, X. Liang, X. Shen, J. Chen, X. Lin, Smart community: an internet
of things application, IEEE Commun. Mag. 49 (11) (2011) 68–75.

[3] A. Altaf, H. Abbas, F. Iqbal, A. Derhab, Trust models of internet of smart things:
A survey, open issues, and future directions, J. Netw. Comput. Appl. 137 (2019)
93–111.

[4] T. Wang, G. Zhang, M.Z.A. Bhuiyan, A. Liu, W. Jia, M. Xie, A novel trust
mechanism based on fog computing in sensor–cloud system, Future Gener.
Comput. Syst..

[5] A.M. Shabut, K.P. Dahal, S.K. Bista, I.U. Awan, Recommendation based trust
model with an effective defence scheme for MANETs, IEEE Trans. Mob. Comput.
14 (10) (2014) 2101–2115.

[6] R. Chen, J. Guo, F. Bao, Trust management for SOA-based IoT and its application
to service composition, IEEE Trans. Serv. Comput. 9 (3) (2014) 482–495.

[7] M.D. Alshehri, F.K. Hussain, O.K. Hussain, Clustering-driven intelligent trust
management methodology for the internet of things (CITM-IoT), Mob. Netw.
Appl. 23 (3) (2018) 419–431.

[8] Z. Gao, W. Zhao, C. Xia, K. Xiao, Z. Mo, Q. Wang, Y. Yang, A credible and
lightweight multidimensional trust evaluation mechanism for service-oriented IoT
edge computing environment, in: 2019 IEEE International Congress on Internet
of Things (ICIOT), IEEE, 2019, pp. 156–164.

[9] R. Chen, F. Bao, J. Guo, Trust-based service management for social internet of
things systems, IEEE Trans. Dependable Secure Comput. 13 (6) (2015) 684–696.

[10] H. Hellaoui, A. Bouabdallah, M. Koudil, TAS-IoT: Trust-based Adaptive Security
in the IoT, in: 2016 IEEE 41st Conference on Local Computer Networks (LCN),
IEEE, 2016, pp. 599–602.

[11] F.E. Grubbs, Procedures for detecting outlying observations in samples,
Technometrics 11 (1) (1969) 1–21.
12
[12] J. Laurikkala, M. Juhola, E. Kentala, N. Lavrac, S. Miksch, B. Kavsek, Informal
identification of outliers in medical data, in: Fifth International Workshop on
Intelligent Data Analysis in Medicine and Pharmacology, Vol. 1, Citeseer, 2000,
pp. 20–24.

[13] F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation forest, in: 2008 Eighth IEEE
International Conference on Data Mining, IEEE, 2008, pp. 413–422.

[14] M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based
local outliers, in: Proceedings of the 2000 ACM SIGMOD international conference
on Management of data, 2000, pp. 93–104.

[15] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., A density-based algorithm for
discovering clusters in large spatial databases with noise, in: Kdd, Vol. 96, 1996,
pp. 226–231.

[16] M.A. Wong, J. Hartigan, Algorithm as 136: A k-means clustering algorithm, J.
R. Stat. Soc. Ser. C Appl. Stat. 28 (1) (1979) 100–108.

[17] J. Guo, R. Chen, J.J. Tsai, A survey of trust computation models for service
management in internet of things systems, Comput. Commun. 97 (2017) 1–14.

[18] D. Chen, G. Chang, D. Sun, J. Li, J. Jia, X. Wang, TRM-IoT: A trust management
model based on fuzzy reputation for internet of things, Comput. Sci. Inf. Syst. 8
(4) (2011) 1207–1228.

[19] M. Nitti, R. Girau, L. Atzori, Trustworthiness management in the social internet
of things, IEEE Trans. Knowl. Data Eng. 26 (5) (2013) 1253–1266.

[20] Y.B. Saied, A. Olivereau, D. Zeghlache, M. Laurent, Trust management system
design for the Internet of Things: A context-aware and multi-service approach,
Comput. Secur. 39 (2013) 351–365.

[21] H. Xia, F. Xiao, S.-s. Zhang, C.-q. Hu, X.-z. Cheng, Trustworthiness inference
framework in the social Internet of Things: A context-aware approach, in: IEEE
Conference on Computer Communications (INFOCOM), IEEE, 2019, pp. 838–846.

[22] Z. Lin, L. Dong, Clarifying trust in social internet of things, IEEE Trans. Knowl.
Data Eng. 30 (2) (2017) 234–248.

[23] H. Xia, B. Li, S. Zhang, S. Wang, X. Cheng, A novel recommendation-based
trust inference model for MANETs, in: International Conference on Wireless
Algorithms, Systems, and Applications, Springer, 2018, pp. 893–906.

[24] U. Jayasinghe, G.M. Lee, T.-W. Um, Q. Shi, Machine learning based trust
computational model for IoT services, IEEE Trans. Sustain. Comput. 4 (1) (2018)
39–52.

[25] J. Caminha, A. Perkusich, M. Perkusich, A smart trust management method to
detect on-off attacks in the internet of things, Secur. Commun. Netw. (2018).

[26] M. Bahutair, A. Bougeuttaya, A.G. Neiat, Adaptive trust: Usage-based trust in
crowdsourced IoT services, in: 2019 IEEE International Conference on Web
Services (ICWS), IEEE, 2019, pp. 172–179.

[27] C. Boudagdigue, A. Benslimane, A. Kobbane, M. Elmachkour, A distributed
advanced analytical trust model for IoT, in: 2018 IEEE International Conference
on Communications (ICC), IEEE, 2018, pp. 1–6.

[28] A. Josang, R. Ismail, The beta reputation system, in: Proceedings of the 15th
Bled Electronic Commerce Conference, Vol. 5, 2002, pp. 2502–2511.

[29] H. Simaremare, A. Syarif, A. Abouaissa, R.F. Sari, P. Lorenz, Performance
comparison of modified AODV in reference point group mobility and ran-
dom waypoint mobility models, in: 2013 IEEE International Conference on
Communications (ICC), IEEE, 2013, pp. 3542–3546.

Guozhu Chen: received his B.S. degree in Software Engi-
neering from Anhui University. Currently a Master student
in the School of Computer Science and Technology at
University of Science and Technology of China. His research
interests mainly include Internet of Things and Trust Model.

Fanping Zeng: is an Associate Professor of the School of
Computer Science and Technology, University of Science
and Technology of China. He graduated from Harbin In-
stitute of Technology with a bachelor’s degree and received
Ph.D. degree from the University of Science and Technology
of China in 2009. His main research interests include
software testing, network and system security. Recently, he
mainly focuses on the Internet of things, studies the col-
laborative optimization of edge and end resources, security
analysis, security testing and evaluation.

http://refhub.elsevier.com/S1389-1286(21)00089-X/sb1
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb1
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb1
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb2
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb2
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb2
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb3
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb3
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb3
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb3
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb3
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb5
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb5
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb5
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb5
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb5
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb6
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb6
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb6
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb7
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb7
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb7
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb7
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb7
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb8
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb8
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb8
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb8
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb8
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb8
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb8
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb9
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb9
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb9
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb10
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb10
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb10
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb10
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb10
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb11
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb11
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb11
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb12
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb12
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb12
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb12
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb12
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb12
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb12
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb13
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb13
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb13
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb15
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb15
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb15
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb15
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb15
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb16
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb16
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb16
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb17
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb17
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb17
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb18
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb18
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb18
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb18
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb18
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb19
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb19
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb19
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb20
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb20
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb20
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb20
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb20
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb21
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb21
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb21
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb21
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb21
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb22
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb22
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb22
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb23
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb23
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb23
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb23
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb23
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb24
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb24
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb24
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb24
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb24
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb25
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb25
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb25
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb26
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb26
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb26
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb26
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb26
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb27
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb27
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb27
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb27
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb27
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb29
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb29
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb29
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb29
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb29
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb29
http://refhub.elsevier.com/S1389-1286(21)00089-X/sb29

Computer Networks 190 (2021) 107952G. Chen et al.
Jian Zhang: received the B.Sc. degree from the University
of Science and Technology, China, in 1988, and the Ph.D.
degree from the Institute of Software, Chinese Academy of
Sciences, China, in 1994. He is a Research Professor with
the State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, and also a Professor
with the University of Chinese Academy of Sciences. His
current research interests include software testing, program
analysis, automated reasoning and constraint solving.

Tingting Lu: received his Bachelor of Management degree
in Information Management and Information System from
Anhui Medical University. Currently a Master student in
the School of Cyber Science and Engineering at University
of Science and Technology of China. His research interests
mainly include Edge Computing and Task Scheduling.
13
Jingfei Shen: received his B.S. degree in Software Engineer-
ing from Zhengzhou University. Currently a Master student
in the School of Computer Science and Technology at
University of Science and Technology of China. His research
interests mainly focus on Intrusion Detection System.

Wenjuan Shu: received the B.S. degree in computer science
from Anhui Normal University, China, in 2018. She is
currently working toward the M.S. degree in the School of
Computer Science and Technology at University of Science
and Technology of China. Her research interests include
cloud computing, deep learning, resource prediction and
resource optimization.

	An adaptive trust model based on recommendation filtering algorithm for the Internet of Things systems
	Introduction
	Background
	Trust in internet of things
	Attack model
	Outlier detection methods

	Related work
	System overview
	The proposed system architecture
	Process of trust evaluation

	The proposed trust model
	Direct trust
	Recommendation trust
	The choice of k-means
	Recommendation filtering algorithm based on k-means
	Evaluation of recommendation trust

	Synthesis trust

	Experimental results and analysis
	Energy consumption of the system architecture
	Effectiveness, convergence and attack resistance of the trust model
	Effectiveness of k-means
	Effectiveness of recommendation trust evaluation
	Effectiveness of adaptive weight
	Convergence rate and stability of the trust model
	Attack resistance of the trust model

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

