
Using Continuations to Implement Thread Management
and Communication in Operating Systems

Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean

School of Computer Science

Carnegie Mellon University
5000 Forbes Avenue Pittsburgh, PA 15213

Abstract

We have improved the performance of the Mach 3.0 op-

erating system by redesigning its internal thread and

interprocess communication facilities to use coniznzta-

tions as the basis for control transfer. Compared to

previous versions of Mach 3.0, our new system con-

sumes 85% less space per thread. Cross-address space

remote procedure calls execute 14’% faster. Exception

handling runs over 60% faster.

In addition to improving system performance, we

have used continuations to generalize many control

transfer optimizations that are common to operating

systems, and have recast those optimizations in terms

of a single implementation methodology. This paper

describes our experiences with using continuations in

the Mach operating system.

1 Introduction

We have achieved significant improvements in the per-

formance of the Mach 3.0 operating system kernel [Ac-

cetta et al. 86] by redesigning it to use continuations as

the basis for control transfers between execution con-

texts. In our system, a thread blocks in the kernel in

one of two ways. It either preserves its register state

and stack and resumes execution by restoring this state,

This research was sponsored in part by The Defense Ad-

vanced Research Projects Agency, Information Science and Tech-

nology Office, under the title “Research on Parallel Computing”,

ARPA Order No. 7330, issued by DARPA/CMO under Contract

MD S972-90-C-O035 and in part by the Open Software Founda-

tion (OS F). Draves was supported by a fellowship from the Fan-

nie and John Hertz Foundation. Bershad was partially supported

by a National Science Foundation Presidential Young Investiga-

tor Award.

The views and conclusions contained in this document are

those of the authors and should not be interpreted as represent-

ing the official policies, either expressed or implied, of DARPA,

OSF, the Fannie and John Hertz Foundation, the NSF, or the

U.S. government.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, tha ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permiaaion of the Association for Computing

Machinery. To copy otherwise, or to republish, requirea a fae

and/or specific permission.
@ 1991 ACM O-8979 J.447.3/9J /0009 /0j22.., $~.~O

or it s~ecifies its resumption context as a continuation.
a func~ion that the thread should execute when it next

runs. By allowing a thread to block with a continua-

tion, the kernel programmer can save space and time

during thread management. Continuations enable a

thread to discard its stack while blocked, thereby re-

ducing the space required to support threads in the

kernel. Continuations also allow a thread to present

a high-level representation of its execution state while

blocked, reducing control transfer overhead because the

state can be examined and acted upon. By not reqztir-

irzg a thread to block with a continuation, the kernel

programmer can rely on a traditional style of concur-

rent programming when using a continuation would be

difficult.

Continuations have enabled us to reduce the stor-

age requirements of the Mach kernel and improve its

runtime performance. Compared to earlier, optimized

versions of Mach 3.0 on a DECstation 3100, for exam-

ple, our new system consumes over 85~0 less space per

thread by making kernel stacks per-processor, rather

than per-thread, resources. A cross-address space re-

mote procedure call (RPC) executes 14% faster. Ex-

ception handling performance, crucial to the emulation

of several non-Unix operating systems, has improved

by a factor of two to three. Additionally, continuations

enable many common control transfer optimizations to

be recast in terms of a single implementation method-

ology.

The system described in this paper is in daily use

by researchers at Carnegie Mellon and elsewhere. We

believe that our technique of using continuations to

manage control transfers will yield similar results for

other operating system kernels that, like Mach, rely

on threads and interprocess communication to support

multithreaded programming and distributed comput-

ing [Mullender et al. 90, Rozier et al. 88, Thacker

et al. 88].

1.1 Managing Control Flow in Operat-

ing System Kernels

In the past, operating systems have relied on one of two

distinct models for executing within the kernel: the pro-

cess model and the interrupt model. With the process

122

model, the kernel’s address space cent ains one stack for

every thread in the system, When a thread traps into

the kernel due to a system call or a fault, it uses its ded-

icated kernel stack to keep track of execution state. In

this way, the thread can be rescheduled and resched-

uled at any time while executing in the kernel, since

its entire state is saved while blocked. Unix [Rltchie

& Thompson 78] is an example of an operating system

that relies on the process model.

In contrast to the process model, the interrupt model

treats system calls and faults like interrupts: all execu-

tion inside the kernel uses a single per-processor stack

in the kernel’s address space. Threads that block while

in the kernel must first save information about their

execution context. This saved information is used to

later resume the blocked thread in an appropriate state.

QuickSilver [Haskin et al. 88] and V [Cheriton 88] are

examples of operating systems that rely on the inter-

rupt model.

The main advantage of the process model is that it

can be easily programmed — kernel threads have no

“special” constraints on when they can block or ref-

erence pageable memory. Unfortunately, the process

model has two performance problems. First, since each

thread requires a stack in the kernel’s address space,

the process model can consume large amounts of mem-

ory. Second, because a kernel stack reflects the state

of a blocked thread at the machine level in terms of re-

turn addresses, saved registers and automatic variables,

it is difficult to evaluate that state and to implement

optimizations that reduce the latency of transferring

control from one thread to another.

1.2 A Brief History of Control Transfer

in Mach

Early versions of the Mach operating system kernel

relied on the process model for two reasons. First,

the Mach kernel was patterned after Accent [Rashid

& Robertson 81], which used the process model. With

much of the overall design of Mach and portions of its

code derived directly from Accent, it was natural for

Mach to use Accent’s process model as well [Rashid 86].

Second, early versions of Mach included a Unix compat-

ibility layer which executed in kernel mode. This layer

was implemented with software from BSD Unix [Lef-

fler et al. 89], an operating system based on the pro-

cess model. Significant programming effort would have

been required to use a different control model while

that code remained in the kernel.

As Mach evolved, it became clear that the process

model was inappropriate. In Accent, thread manage-

ment primitives were handled in microcode, so they

were quite fast relative to the machine’s CPU speed.

In contrast, Mach was designed to run on a wide range

of architectures. so we could not assume microcode to

reduce thread management costs. Also, unlike Accent,

Mach supports multiple threads of control per address

space. This resulted in situations where a small num-

ber of programs might be using large numbers of kernel

threads. With the process model, each of these threads

would consume 4 kilobytes of stack in the kernel’s ad-

dress space. Finally, as the Unix compatibility code

moved out of the kernel and into user space [Golub

et al. 90], there was no longer a need to use the process

model in the kernel purely to support Unix compatibil-

ity.

Our reevaluation of the process model was acceler-

ated by our desire to efficiently support small systems,

fast RISC uniprocessors, and multiprocessors. Al-

though it is now common to find workstations equipped

with 32 megabytes or more of memory, we wanted Mach

to run efficiently on small PCs, laptops and notebook

computers, which typically have less than 8 megabytes

of memory. Consequently, it was critical to keep the

kernel’s memory requirements low. Furthermore, aa

processor speed increases, the relative cost of cache and

TLB misses also grows. We expected that if we made

kernel stacks more of a per-processor, rather than a

per-thread resource, then the number of cache and TLB

misses on references to kernel stacks would be reduced.

Additionally, Mach runs on cache-coherent multipro-

cessors, and these machines are most efficient when

dealing with per-processor data structures [Anderson

et al. 89].

We were also concerned about the latency of trans-

ferring control from one thread to another. our experi-

ences designing fast interprocess communication (IPC)

systems [Draves 90, Bershad 90] taught us several im-

port ant lessons regarding low latency control transfer.

We wanted to apply these lessons in a general way to

other kernel-level control transfer paths. While low la-

tency was important for the cross-address space RPC

path, especially since most of the operating system was

implemented at user level, other paths, such as excep-

tion handling, were also becoming important. Fast ex-

ception handling, for example, becomes necessary when

using virtual memory primitives from user level [Appel

& Li 91], or when emulating one operating system with

another [Black et al. 91]. Moreoverj because Mach runs

on a wide variety of processor architectures, it was im-

portant that we could apply our general solutions in a

machine-independent fashion — ad hoc assembly lan-

guage solutions to performance problems were unac-

ceptable.

1.3 Some Inadequate Solutions

Very early on, we realized that we needed to address

the size and speed problems associated with manag-

ing large numbers of threads in the kernel. As our first

solution, we modified our user-level threads package, C-

Threads [Cooper & Draves 88], so that it multiplexed

user-level threads on top of kernel-level threads [Golub

et al. 90]. Our intention was to reduce the kernel

space required to support large numbers of threads

since one kernel-level thread could support many user-

level threads in the same address space. Further, as

123

noted elsewhere [Anderson et al, 91, Marsh et al. 91],

user-level threads can also reduce the latency of switch-

ing between two threads when both are in the same

address space.

Our use of C-Threads eased, but did not solve, the

space problems of the process model. First, every ad-

dress space still required at least one kernel-level thread

because kernel-level threads cannot be shared between

address spaces. Doing so in Mach would create sub-

stantial protection problems. Each emulated Unix pro-

gram used one kernel thread as its Unix “process,” and

each multithreaded program running with C-Threads

used at least one kernel thread as its “virtual proces-

sor.” A second problem with putting user-level threads

on top of the kernel’s process model is that threads

that blocked while executing within the kernel still con-

sumed a kernel stack. As a result, we observed that

C-Threads, on average, was only able to reduce the

number of kernel-level threads in the system by about

a factor of two.

User-level threads excel at improving performance

when applications have little involvement with the ker-

nel. While multiprocessor programs tend to stay away

from the kernel, our experience with multithmaded pro-

grams such as servers has shown them to be kernel

intensive, for example, because of IPC, page faults,

and exceptions. So, while user-level threads partially

address the space requirements of multithreaded pro-

grams, they alone are not enough. We needed a kernel

solution to solve a kernel problem.

Our experience with other systems such as Quick-

Silver and RIG [Ball et al. 76] led us to consider the

interrupt model, but we finally concluded that it was

inappropriate for the Mach kernel. In its favor, the

interrupt model consumes few kernel resources, since

threads don’t have dedicated kernel stacks. On the

other hand, the model can be difficult to program, since

every potentially blocking operation requires special-

purpose code to save and restore state. Further, this

code may have to peek over module boundaries so that

a blocking module can save state for its callers, ham-

pering a system’s maintainability. For Mach, which

runs on multiprocessors (i.e., locks are used internally),

and supports virtual memory (i.e., the kernel can page

fault), we felt that the interrupt model was unmanage-

able, and therefore unacceptable.

1.4 Restructuring With Continuations

We have restructured the Mach kernel so that a thread

can use either the process model or the interrupt model

when blocking. When a thread blocks using the process

model, its current execution state is recorded on the

stack. The blocked thread is resumed with a context-

switch. When a thread blocks using the interrupt

model, it records the execution context in which it

should be resumed in an auxiliary data structure, called

a continuation [Milne & Strachey 76]. The blocked

thread is resumed by means of a call to the saved con-

tinuation. Our new approach offers several advantages

over one that uses the interrupt model or the process

model alone:

It provtdes the ease-of-use advantages of the pro-

cess model. A thread may block with its stack con-

text intact at any time within the kernel. This is

important when the interrupt model would “not

be convenient,” say because a thread is deeply

nested in a function call chain when it blocks on

a semaphore, or because it has taken a page fault

while executing in the kernel.

It provides the performance advantages of the in-

terrupt model. When a thread has little or no ker-

nel context, say because it is waiting to receive a

message from another thread, or because the next

instruction it should execute is in user space, it

may relinquish its kernel stack entirely. Further-

more, since a continuation is accessed through a

machine-independent interface, it is often possible

to examine a continuation at runtime and avoid

using it, because the system’s current state makes

its use unnecessary.

It provides a generalized framework and interface

with which to implement many runtime optim-iza-

tions found in other operating systems. Many low-

level optimization associated with control trans-

fer in operating systems can be recast in terms

of continuations. For example, handoff schedul-

ing [Black 90b, Thacker et al. 88], stackless ker-

nel t breads [Thacker et al. 88], asynchronous

1/0 [Levy & Eckhouse 89], kernel-to-user up-

calls [Hutchinson et al. 89, Anderson et al.

91, Scott et al. 89], and Lightweight Remote Pro-

cedure Call [Bershad et al. 90] each represent an

optimization to IPC and thread management sys-

tems that can be described and implemented in

terms of continuations. Furthermore, by defining

a machine-independent interface to continuations,

these optimizations can be achieved with portable

code.

We have used continuations to handle a variety of

control transfers in the Mach kernel and have been able

to improve system performance in a large number of

places by applying a small set of optimizations in a
uniform way.

In this paper we describe the use and performance of
continuations in the Mach 3.0 operating system, In Sec-
tion 2 we describe the implementation of continuations
in Mach. We examine the performance improvements
that result from using continuations and the optimiza-
tion they allow in Section 3. In Section 4 we show how
continuations can be used to implement several control
transfer functions found in other operating systems. In
Section 5 we discuss related work. Finally, in Section 6
we summarize and present our conclusions.

124

Before Continuations

/* a frequently used system call */

example (argl, arg2) {
Pl(argl, arg2) ;

if (need-to-block) {
/* use process model */

thread-block() ;
P2(argl) ;

} else {

P30 ;

}

/* return control to user +/
return SUCCESS;

}

Afier Continuations

example (argl, arg2) {
Pl(argl, ‘arg2) ;
if (need-to-block) {

/* use continuation ./

save context in thread;

thread_block(example-continue) ;

/elmmtEACHED*/

} else {

P30;

}
/. return control to user */

thread-syscall-return (SUCCESS) ;

}

example-continueo {
recover context from thread;
P2(recovered argi) ;

/* return control to user */

thread-syscall-return (SUCCESS) ;

}

Figure 1: Transforming a Blocking Kernel Procedure

2 Using Continuations in an

Operating System Kernel

In this section we describe the kernel programmer’s

view of continuations, the steps we took to convert a

process-based kernel into one that uses continuations,

and some general optimization techniques made pos-

sible by continuations. We then show the influence

that continuations have had on the implementation of

several critical kernel services. Finally, we present the

machine-independent interface for continuation man-

agement in the Mach kernel.

2.1 Creating Continuations

There are two kinds of control transfers that involve

continuations: transfers that occur at the user/kernel

boundary when a thread traps or faults out of user

space and into the kernel, and those that occur within

the kernel when one thread transfers control to another.

System calls, exceptions and interrupts at user level

transfer control to the kernel. The kernel entry rou-

tines create a continuation which, when called from the

kernel, returns control to the user level. Control does

not return to the caller. System calls generate a con-

tinuation which is invoked with the return code for the

system call. Exceptions and interrupts, which do not

return values to user programs, generate a continuation

that is later invoked without arguments.

Within the kernel, a thread creates a continuation

when it relinquishes its processor. It does this by pass-

ing a function pointer to the kernel procedure that

blocks threads. The function becomes the thread’s

continuation and is stored in the kernel’s machine-

independent thread data structure. In the absence of

further runtime optimizations, the thread resumes by

calling its continuation.

A function specified as a continuation cannot return

as normal functions do; it may only call other func-

tions or continuations. This point distinguishes contin-

uations from closures.

If the blocking thread must preserve any state while

blocked, it must do so explicitly, as with the interrupt

model. The kernel’s thread data structure contains a

scratch area large enough for 28 bytes of state. If a

thread needs to save more state, it must allocate an

additional data structure.

In those cases where it is not possible, convenient, or

beneficial to block with a continuation, a null argument

to the blocking function will cause the thread to block

using the process model. The thread’s context will be

preserved on the stack, and the thread will resume in

that same context.

2.2 Converting the Kernel to Use Con-
tinuations

Transforming the Mach kernel to use continuations was

a straightforward process. First we identified those

kernel functions that could potentially block and re-

quired only a small amount of state to be preserved

while blocked. We then separated each of those func-

tions into two parts: one before the block and one af-

ter. We defined a new function that consisted of the

post-block, or continuing, part of the original function,

and left only the pre-block part in the original. Next,

we identified the stack context that was common to

the two parts and modified the pre-block code to store

that context in the blocking thread’s scratch area. Sim-

125

ilarly, we modified the post-block function so that it

used the scratch context. In the pre-block function,

we changed the call to the kernel’s blocking function

so that it passed the post-block function as an argu-

ment. That function serves as the thread’s continu-

ation. Lastly, we changed the post-block function to

invoke a continuation on exit, rather than returning to

its caller off of the stack. Figure 1 illustrates a sample

transformation; one function becomes two, and the sec-

ond function is named as an argument in the blocking

part of the first.

In most cases we did not find it difficult to rewrite

blocking kernel functions to use continuations. For user

threads that trap into the kernel, the primary cases

where blocking occurs are on message receives, excep-

tions, page faults, and preemptions. Each occurs as

a result of a user-to-kernel transfer (system call, ex-

ception or interrupt), and each, upon being handled,

returns control to the user level by way of the contin-

uation that was created when control transferred into

the kernel.

For threads that run only in the kernel, there is no

“return-to-user-level” continuation. In practice, most

of our kernel threads execute an infinite loop, block-

ing until an event occurs, doing some work, and then

blocking again. For these threads, we define the contin-

uation to be a function containing the body of the loop.

The last statement in the function blocks with a con-

tinuation that is the function itself, thereby achieving

the infinite loop via tail-recursion.

2.3 Optimization Techniques Using
Continuations

Continuations enable three general control transfer op-

timizations that improve the performance of the kernel:

stack discarding, stack handoff, and continuation recog-
nition.

A continuation specifies the context in which a

thread is to be resumed, so the thread’s kernel stack

can be discarded while the thread is blocked. This

saves both space and time. It allows the kernel to

save space because the stack of a blocked thread can be

used by another thread. Further, if the nezt thread to

run has blocked with a continuation and discarded its

own stack, that thread can use the blocking thread’s

discarded stack directly. This second optimization is

called stack handofl. By reducing the memory require-

ments of the kernel, continuations can also save time

since they decrease the size of the kernel’s working set,

and therefore increase the effectiveness of caches and

TLBs.

Time can be saved during a control transfer to a

continuation by first examining the continuation at

runtime (the saved continuation, which is a function

pointer, can be compared to a set of known values).

This technique is called continuation recognition, and

it allows the kernel to use information that is avail-

able at the time a thread is resumed so that a more

specific (and faster) code sequence can be used instead

of the thread’s continuation. Moreover, by not chang-

ing the stack pointer after a stack handoff, a resumed

thread can execute that specific code sequence within

the function call context of the blocking thread.

2.4 Using Continuations for Cross-
Address Space RPC

Operating system services in Mach are accessed by

means of cross-address space RPCS to user-level

servers. We have used continuations to restructure the

kernel’s RPC path to improve performance.

Figure 2 shows the fast path through the calling half

of a Mach RPC.l A single system call, machmsg, com-

bines the sending and receiving phases of an RPC into

one operation. A client thread uses machmsg to send

an RPC request message to a server, and to receive the

reply message. A server thread uses machmsg to send a

reply message to the client, and to receive the next re-

quest message. In both cases, the sending thread wakes

up the receiving thread and blocks itself until a message

arrives.

The sending thread enters the kernel and creates a

continuation that will return it to user level. It then

looks for a thread that is able to receive the message.

If it can’t find such a thread, then a slow path is taken

and the message is queued. If the sender does find the

thread, it does a stack handoff to the receiver. This

leaves the sending thread blocked with a continuation,

machmsg.cent inue, and no kernel stack. The hand-

off changes the currently running kernel thread to the

receiving thread, but it does not immediately call the

receiver’s continuation. Instead, the receiving thread

runs in the context of the sender’s machmsg system

call. At this point, the thread checks its own continu-

ation before using it. If it is machmsg-conti.nue, be-

cause the receiver had blocked in this same path, then

math-msg completes the fast RPC path and transfers

out of the kernel into the receiver’s address space. Oth-

erwise, machmsg calls the receiver’s saved continuation

to complete the message’s processing within the kernel.

This can happen, for example, when a receiver specifies

unusual options or constraints, such as maximum size,

on messages. This requires extra processing on every

receive, so the receiver will be blocked with a different

continuation that does further work. In practice, the

extra work is rarely required, so most threads block
with math-sg_cont inue.

Using continuations reduces space and time over-
heads during RPC. Since almost all threads in Mach
are normally waiting for a message, stack discarding
frees their kernel stacks while they are blocked. Call
latency is reduced because the handoff allows the block-
ing thread to communicate its still-active function call
context to the resuming thread. The resuming thread

may complete the control transfer by calling its previ-

ously stored continuation, or it may take an alternate

1The return phase is symmetric and works in the same way.

126

Client Address Space

sender calls math msg :— ..

--7!
enter kernel, saving .
user continuation

.
■..

copy–in message
..
*
●.

find receiver
..........

Stack Handoff ~

sender blocked
with continuation

receiver blocked
with continuation

. ...

G
,
.
. copy
.
‘
.
.
.
.
. exit
, user

L

.
■

■

-out message

kernel, call]
continuation

.ng

+
~ receiver returns from mach_msg

ServerAddress Space

Figure2: Calling Halfof the Fast RPC Path

fast path that takes advantage of informationin the

inherited context. Within this context, the sender’s

and receiver’s message processing can be optimized to-

gether. For example, the fast RPCpath avoids queue-

ing and dequeueing the message, repeatedly synchro-

nizing, and repeatedly parsing the message to check for

exceptional conditions. Instead, the message is passed

implicitlyonthe commonstack, thesender locks shared

datastructures and the receiver unlocks them, andonly

the sender, not the receiver aswell, checks the message

for exceptional conditions such as whether the message

is large.

2.5 Using Continuations for Other
Types of Control Transfers

an RPC whenever the thread raises an excep-
tion [Black et al. 88]. For example, an exception

is raised when a thread tries to write to a read-

only page (because it’srunning in ashared virtual

memory [Appel & Li 91]) or execute a privileged

instruction (because Mach is emulating another

operating system such as MS-DOS [Duncan 86]or

the Macintosh OS [Rose & Hacker 85]). Theex-

ception server receives a request message from the

kernel, attempts to handle it, and sends a reply

message back to the kernel indicating the status

of the just-taken exception. In most cases, the

server can handle the exception and its reply mes-

sage causes the kernel to immediately restart the

faulting thread in user space.

Although the RPC path is the most frequently traveled, Unlike a user-to-user RPC, though, the kernel is

we have also used continuations on several other kernel an endpoint of communication when interacting

paths. Three of these paths, exception handling, thread with an exception server. We take advantage of

preemption and user-level page faulting, illustrate the this by using continuations to reduce the latency

different ways in which continuations can be applied. of exception-handling. Before entering the normal

path for sending the exception message, the fault-

. Exception Handling. In Mach, every thread has ing thread, executing here in kernel mode, checks

an exception server that the kernel invokes with for a server thread waiting to receive a message

127

(with the continuation machmwg.continue). If

the faulting thread finds a server thread, then it

defers creating the request message and immedi-

ately does a stack handoff to the server thread,

passing information about the fault directly on

the shared stack. This avoids the copying, pars-

ing, and queueing of the message that would oc-

cur if the message were sent in the context of the

faulting thread and then received in the context of

the server thread. If no server thread is waiting

with mach_msg_cont inue, then this slower path is

taken.

● Preemptive Scheduling.

Thread preemption occurs during a clock interrupt

when the current thread’s quantum has expired. If

the interrupted thread is running at user level, the

stack context that the thread builds as it fields the

interrupt becomes unimportant, since the thread

can simply resume execution at user level. There-

fore, the preempted thread blocks with a contin-

uation that returns the thread to user level when

called.

Using continuations for preemption means that

most runnable, but not actually running, threads

do not require kernel stacks. It also reduces

rescheduling latency slightly, since the preempted

thread does not have to unwind its kernel stack

after being rescheduled.

● User-Level Page Faults.

When a thread faults on a non-resident page from

user space, it must block in the kernel until a free

physical page can be found and filled with data.

The kernel’s fault handler blocks the thread with a

continuation that maps the new page and resumes

the thread at user level. This avoids consum-

ing stacks for faulting threads and conveniently

reduces the kernel’s memory consumption when

there is little free memory available.

This optimization only applies to user-level page

faults. When a thread faults in the kernel, its

kernel state and stack are preserved. Kernel-level

page faults are an example of where it would be

quite hard to use continuations since, in general, a

thread can fault anywhere while executing in the
kernel. Because of this difficulty, we simply fall

back on the process model in this case.

Continuations are also used when threads voluntarily

relinquish the processor from user level and when inter-

nal kernel threads block waiting for work. In the first

case, there is no kernel state to save (as with preemp-

tions). In the second case, we can use continuations to

implement tail recursion using the technique described

in Section 2.2.

2.6 Implementing Continuations in a
Portable Operating System Kernel

The Mach 3.0 kernel runs on a variety of pro-
cessor architectures. This portability is achieved by
dividing the kernel into machine-independent mod-
ules, which implement the Mach kernel interfaces, and
machine-dependent modules, which manage the hard-
ware. Machine-independent modules manage schedul-
ing, interprocess communication, and virtual mem-
ory. Machine-dependent modules implement the low-
level trap and exception machinery, handle the memory
management unit, and export a new internal interface
for manipulating stacks and continuations.

The new interface allows the machine-independent

thread management and IPC modules to change ad-

dress spaces, to manage the relationship of kernel stacks

and threads, and to create and call continuations. The

operations are listed in Figure 3. The interface does not

include any functions for examining a blocked thread’s

continuation. It is stored in the kernel’s machine-

independent thread data structure, and can be exam-

ined directly by any other thread running in kernel

mode.

The routines in Figure 3 are the building blocks with

which higher level thread management operations are

constructed. Figure 4 shows some of these operations

and demonstrates the use of the interface within the

kernel. The thread_handoff call gives control to a

specific thread. It does a stack handoff and updates

thread scheduling information to indicate that the old

thread is blocked and the new thread is running. The

function returns control running as the new thread,

but does not call the new thread’s continuation. This

gives threadiandof f‘s caller a chance to do contin-

uation recognition, as is done on the RPC and excep-

tion handling paths. In contrast, the thread.block call

chooses any runnable thread for execution. If the new

thread has a continuation and thread_block’s caller

haa provided a continuation, then thread.block takes

advantage of the more efficient st ack_handof f path.

Otherwise it must use suit ch-cent ext, which changes

stacks.

The implementation of thread-block illustrates the

interaction of swltch_cont ext, stack_attach, and

stack-detach. The thread-block function cannot

detach and free the old thread’s stack, or place

the old thread on a run queue where another pro-

cessor might find it, while executing on the old

thread’s stack. Therefore the implementation first uses

switch-context to change to the new thread’s stack

and the new thread then uses thread_dispatch to dis-

pose of the old thread. If the new thread doesn’t al-

ready have a stack, then stack-attach initializes it to

execute thread-cent inue, which calls the new thread’s

own continuation after disposing of the old thread.

128

stack-attach(thread, stack, cent)

Transforms a machine-indep endent continuation into a machine-dependent kernel stack, attaching

the kernel stack to the thread and initializing the stack so that when switch-context resumes the

thread, control transfers to the supplied continuation function with the previously running thread

as an argument.

stack-detach (thread)

Detaches and returns thethread’s kernel stack.

stackfiandoff (new-thread)

Does a stack handoff, moving thecurrent kernel stack from the current thread tothe new thread.

stacklmndoff changes address spaces if necessary. stackJmndoff returns as the new thread.

call-cent inuation(cont)

Calls the supplied continuation, resetting the current kernel stack pointer to the base of the stack.

This function prevents stack overflow during along sequence ofcontinuation calls.

switch-context(cont, new-thread)

Resumes thenewthread onitspreserved kernel stack. Thiscall changes address spaces if necessary.

If a continuation for the current thread is supplied, then switch-context does not save registers

and does not return. Otherwise, switch-context saves the current thread’s register state and

kernel stack and returns when the calling thread is rescheduled, returning the previously running

thread.

thread-syscall-return(return-value)

Calls the current thread’s user system call continuation to make the thread return to user space

from asystem call with thespecified return value. (Low-level machine-dependent trap code creates

system call continuations). I

thread.-exceptionreturno

Calls the current thread’s user exception continuation to make the thread return to user space

from an exception or page-fault. (Low-level machine-dependent trap code creates exception con-

tinuations.)

Figure3: Kernel Interface to Machine-Dependent Control ’llansfer Functions

2.7 The Advantage ofa Kernelized Sys-

tem

We believe that the effectiveness of continuations in

Mach stems from the fact that Machisa “kernelized”

operating system. It exports a small interface and im-

plements only a few abstractions. As a result, there

are few points in the Mach kernel where a thread can

block, and even fewer where most threads actually do

block. Although there are roughly 60 different points

where a thread can block in the Mach 3.0 kernel, over

99% oftheblocks occur at only six points. As wouldbe

expected, we have focused our reorganization on those

few “hot spots.” There are still paths in the kernel

where continuations are not used, but they are traveled

so infrequently that their effect on system performance

is negligible.

In contrast, we believe that it would have been much

more difficult to use continuations in a “monolithic”

operating system such as Mach 2.5. That system im-

plements the BSD Unix interface entirely within the

kernel’s address space. Most threads that block do so

while executing deep within the kernel in the Unix com-

patibility layer. Generating a continuation for these
threads would be difficult because they block only af-

ter building up a large amount of state on their ker-

nel stack. Additionally, there are over 180 places in

Mach 2.5 where a thread can block, and there are no

real hot spots. For these reasons, we believe that there

are few places where continuations could be used, and

the overall space and time savings from using them

would be small.

2.8 Software Engineering Concerns

A practical concern with continuations stems from their

potential for overuse. Continuations should be applied

judiciously to avoid ending up with an interrupt-model

kernel that suffers from the problems described in the

introduction. A key advantage of our use of continua-

tions is that most of the kernel can work (and block)

in the same way it did under the process model. Con-

sequently, the bulk of the system is no less fragile than

it was under that model. Code on paths that use

continuations is fragile in the sense that it assumes

certain things about its callers (e.g., if the code uses

thread.syscall~ eturn, it can only be used to imple-

ment system calls), but we view this as a reasonable

price to pay given that we have been able to adopt a

high-level approach to improving system performance.

2.9 Summary

Continuations represent one more case where leverage

and uniformity can be gained by promoting an operat-

ing system abstraction to a first-class object — an ob-

129

thread. handoff (cent, new-thread) {

old-thread = current -threado ;

old-thread->cont = cent;

/* stack-handoff changes current. threado */

stack-handoff (new-thread) ;

/* now current-thread{) == new-thread */

/* update scheduling state */

old-t hread->state = WA ITIUG;

new-t hread->state = RUIWABLE;

}

thread-continue (old-thread) {

new-thread = current .threado ;

thread-dispatch(old-thread) ;

(*new-thread-> cent) () ;

/*E0T8EACMED*/

}

thread-dispatch (old-thread) {

if (old-thread-> cent) {

stack = stack-detach (old-thread) ;

/* return stack to free pool ./

stack. free(stack) ;

}

if (old -thread ->stat e == RUli EABLE)

/. return old-thread to run queue */

thread-set run(old-thread) ;

}

thread_ block (cent) {

/* stop running the current thread */

old-thread = current -threado ;

/* select a runnable thread from the ready queue */

new-thread = thread-selecto ;

if (new-t hread->cont) {

if (cent) {

/* stack-handoff changes current-threado */

stack-handoff (new-thread) ;

/e now current-threado == new-thread */

old-thread->cont = cent;

if (old. thread-> state == RUEliABLE)

/* return old-thread to ready queue */

thread_ setrun(old_thread) ;

call- continuation (new-thread-> cent) ;

l* IJOTREACHED*/

} else {

/* create a new stack */

stack = stack-al locateo ;

stack-at tach(new-thread, stack,
thread_ continue) ;

}
}

thread-d ispatch(switch-cont ext(cont, new-thread)) ;

}

Figure 4: Using the Control Transfer Interface

ject that can be named and manipulated by kernel code.

In this sense, continuations are similar to Mach’s pmap

abstraction [Rashid et al. 87]. A pmap is a first-class

object that reflects a sequence of address mappings

from virtual to physical memory. By encapsulating the

abstraction of memory mapping in a first-class object,

and by separating the abstraction from its machine-

dependent implementation (page tables and segment

registers), the pmap interface is portable and can be

used and optimized in ways that were not originally

possible [Young et al. 87]. Continuations as a first-

class kernel abstraction have yielded similar results.

3 Performance

In this section we examine the effect that contin-

uations have on performance. In terms of space, we

show that almost all control transfers in the kernel

use continuations and are able to leave the blocking

thread without a stack. This effectively makes kernel

stacks into a per-processor resource. In terms of time,

we also show that most control transfers use continu-

ation recognition. This reduces the latency of cross-

address space communication and user-level exception

handling.

3.1 Experimental Environment

We measured three versions of the Mach kernel: MK32,

MK40 and Mach 2.5. Both MK32 and MK40 are Mach

3.0 “pure” kernels in that they do not implement the

Unix system call interface in the kernel’s address space.

The MK32 kernel does not use continuations, but in-

cludes optimizations that reduce the overhead of cross-

address space RPC [Draves 90]. The MK40 kernel uses

continuations as described in Section 2. Mach 2.5 is a

hybrid kernel that implements the BSD Unix interface

in kernel space, does not include the RPC optimizations

in MK32, and does not use continuations.

All kernels run on the DECstation 3100 (DS31OO)

and the Toshiba 5200/100. The DS31OO is a MIPS

R2000-based workstation with separate 64K direct-

mapped instruction and data caches and a four-stage

write buffer. It has a 16.67Mhz clock and executes one

instruction per cycle, barring cache misses and write

stalls. Our DS3 100 was configured with 16 megabytes

of memory and a 250 megabyte Hitachi disk drive.

The Toshiba 5200 is an Intel 80386-based laptop with

a 20Mhz clock and a 32K combined instruction and

data cache. Our Toshiba 5200 was configured with 8

megabytes of memory and a 100 megabyte Conner disk

drive.

The Mach 3.0 kernel tests were run in an environment

130

Toshiba 5200 running MK40 and Unix emulation

Operations Compile Test Kernel Build DOS Emulation

Using (22 sees) (4917 sees) (698 sees)

Stack Discard blocks % blocks % blocks %

message receive 3113 83.4 1391769 86.3 200167 55.2

exception o 0.0 882 0.0 137367 37.9

page fault 34 0.9 3278 0.2 144 0.0

thread switch o 0.0 114 0.0 4 0.0

preempt 288 7.7 78602 4.9 19101 5.3

internal threads 239 6.4 135756 8.4 5791 1.6

total stack discards 3674 98.4 1610401 99.9 362574 100.0

no stack discards 60 1.6 2117 0.1 7 0.0

Table 1: Frequency of Stack Discarding with Continuations

Toshiba 5200 running MK40 and Unix emulation

Compile Test Kernel Build DOS Emulation

count % count % count %

total blocks 3734 100.0 1612518 100.0 362581 100.0

Istack handoff I 3614 96.8 1608320 99.7 362567 100.0

recognition 2247 60.2 1166449 72.3 311277 85.9

Table 2: Frequency of Continuation

in which Unix system calls are implemented as RPCS

to a Unix server. We also measured an MS-DOS emu-

lation environment on the Toshiba 5200. The MS-DOS

emulator catches the faults resulting from privileged in-

structions and MS-DOS system calls with a user-level

exception handler. The exception handling thread runs

in the address space of the emulated MS-DOS program.

3.2 Dynamic Frequency of Continua-

tion Use

The value of continuations depends on the frequency

with which they can be used. To determine this, we

counted the number of blocking operations that used

the continuations in three tests run on the Toshiba

5200 running the MK40 kernel. The first test mea-

sured a short C compilation benchmark. The second

test measured a Mach 3.0 kernel build where all the

files resided in AFS, the distributed Andrew File Sys-

tem [Satyanarayanan et al. 85]. The third test mea-

sured the MS-DOS program Wing Commander~M, an

interactive video game. The short compilation and MS-

DOS tests were run with the machine in single-user

mode. The kernel build was run in multi-user mode

because AFS requires network services and a user-level
file cache manager. Table 1 summarizes the results.

On the DS31OO, the frequencies are similar, with the

exception of the MS-DOS game, which runs only on

the Toshiba,

Recognition and Stack Handoff

The table shows that about 99’?10of all control trans-

fers use continuations and take advantage of stack dis-

carding. The most frequent operations are message re-

ceive and exception handling. The other operations

are page-fault handling, voluntary rescheduling [Black

90a], involuntary preemptions, and blocking by inter-

nal kernel threads. The remaining blocking operations

(which do not use continuations) occur during kernel-

mode page faults, memory allocation, and lock acquisi-

tion. Because generating a continuation for these cases

is difficult, MK40, using the process model, preserves

kernel stacks while threads block.

Table 2 shows that stack handoff occurs on nearly all

control transfers. Moreover, continuation recognition,

which can occur during cross-address space RPCS and

exceptions, happens in over 60?Z0 of all blocking opera-

tions.

3.3 Time Savings Due to Continuations

We can show that continuations improve the runtime

performance of cross-address space RPCS and excep-

tion handling. Our RPC test measures the round-trip

time for a cross-address space “null” RPC. Our excep-

tion handling test measures the time for a user-level

server thread to handle a faulting thread’s exception.

The exception server thread runs in the same address

space as the faulting thread; it does not examine or

change the state of the faulting thread, so the excep-

tion is retaken. The times for the two tests, averaged

131

DS31OO Toshiba 5200

MK40 MK32 Mach 2.5 MK40 MK32 Mach 2.5

null RPC 95 110 185 535 510 890

exception 135 425 380 525 1155 1410

Table 3: RPC and Exception Times (in psecs)

MK40 MK32

instrs loads stores instrs loads stores

system call entry 64 7 25 67 8 20

system call exit 35 21 1 24 11 1

stack handoff 83 22 18

context switch 250 52 27

Table 4: Component Costs on the DS31OO

over a large number of iterations and running on MK40,

MK32 and Mach 2.5, are shown in Table 3.

RPC Improvements

The RPC path in MK32 was already highly optimized

relative to Mach 2.5, so there was little room for im-

provement. Although it uses the process model (that is,

one stack per thread), MK32 avoids the general sched-

uler code during RPC transfers. Instead, it context-

switches directly from the sending thread to the re-

ceiving thread. In contrast, Mach 2.5 queues messages

and uses the general scheduling machinery to determine

that the receiving thread is the next to run.

Despite the earlier optimizations, RPCS in MK40 are

still 14?lo faster than in MK32. The improvement is

mostly due to the stack handoff that replaces the more

expensive context switch .2 Table 4 illustrates the cost

differential between stack handoff and context switch in

terms of the number of instructions, loads, and stores

required on a DS31OO. The table shows that a hand-

off, which doesn’t require a complete context save and

restore, is substantially more efficient than a context

switch.

Runtime Cost of Continuations

There is a small runtime cost associated with the use

of continuations in Mach. As Table 4 shows, entering

and exiting the kernel takes slightly longer in MK40

than in MK32. This is due to the interaction between

continuations and architectural calling conventions. In

2The Toshiba 5200’s RPC latency increased slightly in MK40
because of a performance “bug” that is being fixed. The trap
handler on the 5200 saves user registers on the stack during kernel
entry, rather than in a separate machine-dependent data struc-
ture. As a result, the machine-dependent stack handoff procedure
must copy the current thread’s state from the stack and copy the
new thread’s state onto the stack. Once this is fixed, we expect
that the Toshiba 5200 times will improve by approximately 50
mecs.

MK32, the kernel’s system call entry routine does not

need to save any user registers on the stack. Registers

that are “caller-saved” have already been saved on the

user-level stack, and those that are ‘(callee-saved” will

be saved on the kernel-level stack as necessary by the

system call’s compiler-generated prolog. That prolog

implicitly assumes the process model and that callee-

saved registers will be restored on return from the pro-

cedure that saved them. When continuations are used

and stacks are discarded, though, a callee-saved register

will not be restored on return (since the return never

occurs). Consequently, the kernel entry routine must

save all callee-saved registers in an auxiliary machine-

dependent data structure, and the kernel’s exit routine

must restore them. The DS31OO, for example, has 9

callee-saved registers to which the additional costs in

Table 4 can be attributed. For exceptions and inter-

rupts, the kernel entry routine must preserve all user

registers, not just those that are callee-saved. This was

necessary in MK32 as well, so the relative cost of ag-

gressively preserving callee-saved registers decreases in

these cases.

Exception Handling Improvements

As Table 3 shows, exception handling in MK40 is two

to three times faster than in MK32. Unlike RPC,

the exception handling path had not been optimized

in MK32. Consequently, exception handling in MK40

demonstrates a “best case” result for continuations. It

also illustrates an important point regarding the use

of a general mechanism like continuations in an oper-

ating system kernel. Our need for a fast but portable

cross-address space RPC mechanism motivated us to

develop a general interface for handling control trans-

fer efficiently. Once we had that interface, we were able

to apply it easily to the exception handling path. In

less than three days of work, we saw a 2-3 fold improve-

ment in the runtime performance of exception handling.

We also realized a space savings due to stack discard-

132

ing. Further, because our optimizations were imple-

mented using machine-independent code, they only had

to be done once. Our experience with using continua-

tions on other kernel paths has been similar. This has

led us to conclude that we can apply continuations to

performance-critical paths and get good results with

relatively little effort.

3.4 Space Savings Due To Continua-

tions

Continuations effectively change the kernel stack into a

per-processor, rather than a per-thread, resource. For

the three test programs, the number of kernel-level

threads varied from 24 to 43. (In contrast, the ma-

chine on which we read our mail typically supports one

to two hundred threads.) Using MK32, there would be

as many kernel stacks as kernel-level threads. Using

MK40, the number of kernel stacks was, on average,

2.002. Over 99% of the time only two stacks were in

use: one for the currently running thread and one for

an internal kernel thread that never blocks with a con-

tinuation. That thread’s flow of control is such that a

continuation is difficult to use. Its stack, though, rep-

resents a constant per-machine, and not per-processor,

overhead3. The remaining .002 stacks were due to the

fact that some control transfers do not use continua-

tions (see the bottom row in Table 1). In the worst of

circumstances, we saw the compile test and MS-DOS

emulation use 3 stacks, and the kernel build use 6. In

the steady state, however, only 2 kernel stacks were

used.

I I MK40 I MK32

I MI state 484 I 452

MD state 206 0

stack o 4096

VM state o 116

total 690 4664

Table 5: Thread Management Overhead on the DS31OO

(in bytes)

Another way of evaluating the savings due to con-

tinuations is to consider the average amount of kernel

memory consumed by each thread. Table 5 shows the

size in bytes of the per-thread data structures main-

tained by the MK32 and MK40 kernels on the DS31OO.

On that machine, continuations reduce the average size

of a thread by 85Y0. On the Toshiba, there is a compa-

rable reduction.

The space required by a kernel-level thread in-

cludes machine-independent and machine-dependent

state, and possibly a stack. In MK40, the machine-

independent state has grown to include space for the

3This special thread will be removed from the kernel in a
future version of Mach.

continuation (a 4 byte function pointer), and the 28

byte scratch area, making it 32 bytes larger than in

MK32. The machine-dependent thread state includes,

for example, user registers that are saved when a thread

enters the kernel. In MK32, the thread’s machine-

dependent state is stored on the thread’s dedicated ker-

nel stack. In MK40, threads do not have a dedicated

kernel stack, so the machine-dependent state is kept in

a separate data structure.

The space consumed by a stack includes the stack

itself (4 kilobytes), and any data structures used by the

virtual memory (VM) system to maintain the stack in

the kernel’s address space. In MK32, kernel stacks are

pageable, so they require an additional 116 bytes of VM

data structures.4 The MK40 kernel takes advantage of

the fact that it is not necessary to page kernel stacks

(since there are so few of them) and saves space in the

VM system. Additionally, MK40 allocates stacks from

physical memory on architectures where this is possible,

freeing up a TLB entry for other purposes.

4 Generalizing Previous Opti-

mization with Continuations

Continuations provide a machine-independent frame-

work with which to realize many of the control transfer

optimizations found in other operating systems. As an

example, we can compare Mach’s continuation-based

RPC to the control transfer aspects of Lightweight Re-

mote Procedure Call (LRPC) [Bershad et al. 90].

LRPC is a high-performance interprocess communi-

cation facility designed for the common case of cross-

address space RPC. Part of LRPC’S good performance

is due to the fact that threads can cross address space

boundaries. A thread in the caller’s address space traps

into the kernel, but returns to the server’s address space

where it begins executing the server stub immediately.

Upon return, the caller’s thread traps back into the ker-

nel from the server’s address space and transfers back

into the caller’s address space at the instruction follow-

ing the trap. The primary performance advantage of

the single thread approach is that scheduling and mes-

sage queueing can be avoided entirely on the fast LRPC

path, since all work is being done in the context of a

single thread.

Mach’s continuation-based RPC achieves many of

the same performance advantages w LRPC: no queue-

ing, no scheduling, and sharing a kernel stack between

the caller and the callee. In fact, the flow of con-

trol through the kernel “looks” similar in the two sys-

tems: control enters a kernel procedure from one ad-

dress space and exits that same procedure into another.

4Even when kernel stacks are pageable, threads run often
enough that their stacks remain in memory. With MK32, for
example, w. found that over 90% of kernel stacks remained ree-
ident, even when the system paged other memory. When the
stack of an idle thread is actually paged out, an additional 22o
bytes of VM-related data structures per thread are required, so
a non-resident stack consumes 336 bytes.

133

Further, continuation-based RPC maintains the logi-

cal separation between a client’s thread and a server’s.

Threads remain fixed in their address space, eliminat-

ing many of the protection, debugging and garbage col-

lection problems that occur when threads migrate be-

tween address spaces [Bershad 90].

A natural extension to the continuation model al-

lows us to completely mimic the LRPC transfer pro-

tocol. By default, when a Mach thread traps into the

kernel, it generates a continuation that will transfer

control back to the same user-level context in which

the trap occurred. We are experimenting with an ex-

tension to the IPC interface that enables a thread to

register an overriding user-level continuation for sys-

tem call returns.5 This extension eliminates the cost of

saving and restoring register state for the server thread

and allows the server thread to discard its user-level

stack while blocked waiting for an RPC request.

With the ability to return out of the kernel to a con-

text other than the one that was active at the time the

kernel was entered, continuations can be used to imple-

ment a rich collection of control transfer mechanisms in

a general way. For example, the upcalls required by the

z-kernel [Hutchinson et al. 89] and Scheduler Activa-

tions [Anderson et al. 91] can be implemented by keep-

ing a pool of blocked threads in the kernel, each with a

default “return-to-user-level” continuation. To perform

an upcall, the default continuation is replaced with one

that transfers control out of the kernel to a specific

address at user level. Asynchronous 1/0 [Levy & Eck-

house 89] behaves in a similar fashion; on scheduling an

asynchronous 1/0, a thread provides the kernel with a

continuation to be called when the 1/0 completes.

5 Related Work

The language community has been experimenting with

continuations for almost two decades. Ward used con-

tinuations to define the primitives of a message pass-

ing algebra called mu-calculus [Ward & Halstead 80]

and showed that all control transfer could be expressed

in terms of that algebra. Functional languages that

support concurrent execution and first-class continua-

tions have been successful in implementing the former

in terms of the latter [Wand 80, Haynes & Friedman

84, Cooper & Morrisett 90]. These efforts, however,

have concentrated on control transfer at user level be-

tween contexts in the same address space. Functional
languages often use non-contiguous data structures to

implement function call stacks, partially reducing the

incentive to discard stacks. (A large portion of a kernel

thread’s discardable state is the unused stack space be-

low the bottom-most active call frame.) Additionally,

most functional languages make continuation recogni-

tion hard because they disallow equality comparisons

of functional objects. Lampson [Lampson et al. 74]

described a generalized control transfer interface based

5This extension is not part of Mach’s main-line release.

on continuations for an early version of the Mesa pro-

gramming language [Geschke et al. 77].

A much restricted form of Lampson’s interface later

appeared in the cross-address space RPC implementa-

tion for Topaz [Schroeder & Burrows 90], an operating

system designed for the Firefly, DEC SRC’s experimen-

tal multiprocessor workstation [Thacker et al. 88]. This

interface, implemented in assembly language, does a

stack handoff, but does not use recognition or take ad-

vantage of a shared stack context. (SRC’S RPC path is

so heavily optimized that the stack contains no useful

context because all values are kept in registers). Topaz

also allows threads to discard their kernel stacks when

blocking if they will execute in user space immediately

after being rescheduled. Because Topaz implements the

blocking component of semaphores and condition vari-

ables in the kernel, this is an important optimization

for threads blocked on user-level events. Even with the

optimization for these two cases, though, there are still

many places in the Topaz kernel where threads block

using the process model and consume a stack. Recent

measurements from a five processor, 96 megabyte Fire-

fly at DEC SRC, for example, showed that 886 kernel-

level threads were using 212 kernel stacks. Most of the

stacks were being used by threads internal to the ker-

nel (28), waiting for a timer to expire (106), waiting

for a network packet (20), or waiting to handle an ex-

ception (38). While we would not expect continuations

to improve the Firefly’s cross-address space RPC path,

we would expect a reduction in the amount of memory,

cache, and bus bandwidth consumed by so many ker-

nel stacks. In Mach, for example, 886 similarly blocked

kernel-level threads would require only 6 stacks, one for

each of the Firefly’s five processors and one for a special

kernel thread.

Operating systems implemented with the interrupt

model, such as QuickSilver [Haskin et al. 88], V [Cheri-

ton 88], and MS-DOS [Duncan 86], use the equivalent

of continuations exclusively. The V kernel, for example,

associates a “finish-up” function with a thread descrip-

tor to allow the thread’s computation to be resumed

after it blocks. However, these systems’ inability to use

the process model as a “safety net” has made their in-

ternal structure complex; for example, page faults must

generally be prevented while executing within the ker-

nel, and even simple kernel-level locking necessary for

multiprocessing is difficult [Cheriton 91].

We are not aware of any other system that combines

the process model and the interrupt model, that uses
recognition as a general optimization technique, or that

treats the crossing of the user-kernel boundary ss a

continuation-based control transfer that can be affected

by user-level applications.

6 Future Work and Conclusions

Our work with continuations in Mach is ongoing. We

are presently experimenting with continuations at the

application level within the context of C-Threads, our

134

user-level threads package. We intend to allow user-

level threads to use continuations, discarding their

stacks and performing recognition when possible. For

applications that do their own user-level scheduling and

synchronization, we expect that continuations will re-

duce the space and time overheads normally associated

with large numbers of user-level threads.

We are not the first to recognize the power and flex-

ibility of continuations as a mechanism for describing

and implementing the transfer of control between con-

texts. The novelty of our work lies in the fact that

we have been able to apply continuations in a general-

purpose operating system kernel. The use of continua-

tions has allowed us to implement portably new opti-

mization, and to recast several optimizations found in

other operating systems in terms of a single abstraction.

As a result, we have achieved substantial improvements

in system performance.

We believe that the methodology and techniques that

we have described in this paper can be applied to other

operating system kernels to achieve results similar to

our own. We invite the reader to examine cmr system

by obtaining the sources for the Mach 3.0 kernel via

anonymous ftp from cs.cmu .edu.

Acknowledgements

We’d like to thank Tom Anderson, Lance Bert, John

Carter, David Cheriton, Ed Felten, Bill Joy, Bob Kut-

ter, Peter Lee, Tim Mann, Brian Marsh, Sape Mullen-

der, John Ousterhout, Mike Schroeder, Dan Stodolsky,

Andy Tanenbaum, Raj Vaswani, John Zahorjan, and

Matt Zekauskas for their helpful discussions and com-

ments on earlier drafts of this paper. We’d also like to

thank Dave Redell and Mike Burrows for helping us to

understand Topaz and for providing us with usage data

from that system. Ed Lazowska’s tireless shepherding

greatly improved this paper.

References

[Accetta et al. 86] Accetta, M. J., Baron, R. V., Bolosky,
W., Golub, D. B., Rashid, R. F., Tevanian, Jr., A.,

and Young, M. W. Mach: A New Kernel Foundation

for UNIX Development. In Proceedings oj the Sum-

mer 1986 USENIX Conference, pages 93–1 13, July

1986.

[Anderson et al. 89] Anderson, T. E., Lazowska, E. D.,

and Levy, H. M. The Performance Implications of

Thread Management Alternatives for Shared Memory
Multiprocessors. IEEE Transactions on Computers,

38(12):1631-1644, December 1989.

[Anderson et al. 91] Anderson, T. E., Bershad, B. N., La-

zowska, E. D., and Levy., H. M. Scheduler Activa-
tions: Effective Kernel Support for the User-Level

Management of Parallelism. In Proceedings of the

13th ACM Symposium on Operating Systems Prin-

ciples, October 1991. This issue.

[Appel & Li 91] Appel, W. and Li, K. Virtual Memory

Primitives for User Programs. In Proceedings oj the

Fourth Symposium on Architectuml Support for Pro-

gramming Languages and Operating Systems, pages
96-107, April 1991.

[Ball et al. 76] Ball, J. E., Feldman, J. A., Low, J. R.,
Rashid, R. F., and Rovner, P. D. RIG, Rochester’s In-

telligent Gateway: System Overview. IEEE Transac-

tion on Soflwam Engineering, 2(4):321–328, Decem-

ber 1976.

[Bershad 90] Bershad, B. N. High Performance Cross-

Addmxs Spce Communication. PhD dissertation,

University of Washington, Department of Computer

Science and Engineering, Seattle, WA 98195, June
1990.

[Bershad et al. 90] Bershad, B. N., Anderson, T. E., La-

zowska, E. D., and Levy, H. M. Lightweight Re-
mote Procedure Call. ACM Transactions on Com-

puter Systems, 8(1):37–55, February 1990. Also ap

peared in Proceedings oj the 1.2th ACM Symposium
on Operating Systems Principles, December 1989.

[Black 90a] Black, D. L. Sckxiuling and Resource Manage-

ment Techniques for Multiprocessors. PhD disserta-
tion, School of Computer Science, Carnegie Mellon

University, July 1990.

[Black 90b] Black, D. L. Scheduling Support for Concur-

rency and Parallelism in the Mach Operating System.
IEEE Computer Magazine, 23(5):35-43, May 1990.

[Black et al. 88] Black, D., Golub, D., Hauth, K., Teva-
nian, Jr., A., and Sanzi, R. The Mach Excep

tion Handling Facility. In Proceedings of the ACM

SIGPLAN/SIGOPS Workshop on Parallel and Dis-

tributed Debugging, pages 45–56, May 1988.

[Black et al. 91] Black, D. L., Golub, D. B., Julin, D. P.,
Rashid, R. F., Draves, R. P., Dean, R. W., Forin, A.,

Barrera, J., Tokuda, H., Malan, G., and Bohman,

D. Microkernel Operating System Architectures and

Mach. Journal of Information Processing, December

1991. To appear.

[Cheriton 88] Cheriton, D. R. The V Distributed System.

Communications of the ACM, 31(3):314-333, March
1988.

[Cheriton 91] Cheriton, D. R. Personal Communication,

May 1991.

[Cooper & Draves 88] Cooper, E. C. and Draves, R. P. C-

Threads. Technical Report CMU-CS-88-154, School
of Computer Science, Carnegie Mellon University,

February 1988.

[Cooper & Morrisett 90] Cooper, E. C. and Morrisett,

J. G. Adding Threads to Standard ML. Technical

Report 186, School of Computer Science, Carnegie

Mellon University, December 1990.

[Draves 90] Draves, R. P. A Revised IPC Interface. In

Proceedings of the First Mach USENIX Workshop,

pages 101-121, October 1990.

135

[Duncan 86] Duncan, R. Advanced MS-DOS: the Microsoft

guide for assembly language and C programmers.

Redmond, Washington, 1986.

[Geschke et al. 77] Geschke, C., Morris, J., and Satterth-

waite, E. Early Experiences with Mesa. Communi-

cations of the ACM, 20(8):540–553, August 1977.

[Golub et al. 90] Golub, D., Dean, R., Forin, A., and
Rashid, R. Unix as an Application Program. In Pro-

ceedings of the Summer 1990 USENIX Conference,

pages 87-95, June 1990.

[Haskin et al. 88] Haskin, R., Malachi, Y., Sawdon, W.,

and Chan, G. Recovery Management in QuickSilver.
ACM Transactions on Computer Systems, 6(1):82-

108, February 1988.

[Haynes & Friedman 84] Haynes, C. T. and Friedman,

D. P. Engines Build Process Abstractions. In Con-
ference Record of the 1984 ACM Symposium on LISP

and Functional Programming, pages 18–23, August

1984.

[Hutchinson et al. 89] Hutchinson, N. C., Peterson, L. L.,
Abbott, M. B., and O’Malley, S. RPC in the z-Kernel:

Evaluating New Design Techniques. In Proceedings

of the 1.2th ACM Symposium on Operating Systems

Principles, pages 91-101, December 1989.

[Lampson et al. 74] Lampson, B. W., Mitchell, J. G., and

Satterthwaite, E. H. On the Transfer of Control Be-
tween Contexts. In Lecture Notes On Computer Sci-

ence: Proceedings of the Programming Symposium,

pages 181–203. Springer-Verlag, 1974.

[Leffler et al. 89] Leffler, S., McKusick, M., Karels, M., and

Quarterman, J. The Design and Implementation

of the ~ .5’BSD UNIX Operating System. Addison-

Wesley, Reading, MA, 1989.

[Levy & Eckhouse 89] Levy, H. M. and Eckhouse, R. H.

Computer Programming and Architecture: The VAX-

11 (2nd Edition). Digital Press, Bedford, MA, 1989.

[Marsh et al. 91] Marsh, B., Scott, M., LeBlanc, T., and
Markatos, E. First-Class User-Level Threads. In Pro-

ceedings of the 13th ACM Symposium on Operattng

S~s.tems Principles, October 1991. This issue.

[Milne & Strachey 76] Milne, R. and Strachey, C. A Theory

of Programming Language Semantics. Halsted Press,
New York, 1976.

[Mullender et al. 90] Mullender, S. J., van Rossum, G.,

Tanenbaum, A. S., van Renesse, R., and van

Staveren, H. Amoeba: A Distributed Operating
System for the 1990s. IEEE Computer Magazine,

23(5):44-54, May 1990.

[Rsshid & Robertson 81] Rashid, R. F. and Robertson,

G. G. Accent: A Communication Oriented Network
Operating System Kernel. In Proceedings of the 8th

ACM Symposium on Operating Systems Principles,

pages 64–75, December 1981.

[Rashid 86] Rashid, R. From RIG to Accent to Mach: The

Evolution of a Network Operating System. In Pro-

ceedings of the ACM/IEEE Computer Society 1986

Fall Joint Computer Confenmce. ACM, November

1986.

[Raahid et al. 87] Rashid, R., Tevanian, Jr., A., Young,

M., Golub, D., Baron, R., Black, D., Bolosky, W.,
and Chew, J. Machine-Independent Virtual Mem-
ory Management for Paged Uniprocessor and Multi-
processor Architectures. In Proceedings of the .2nd

Symposium on Architectuml Support for Program-

ming Languages and Operating Systems, April 1987.

[Ritchie & Thompson 78] Ritchie, D. and Thompson, K.

The UNIX Time-Sharing System. Bell System Tech-

nical Journal, July 1978.

[Rose & Hacker 85] Rose, K. and Hacker, B. Inside Mac-

intosh. Addison-Wesley, Reading, MA, 1985.

[Rozier et al. 88] Rozier, M., Abrossimov, V., Armand, F.,

Boule, I., Giend, M., Guillemot, M., Herrmann, F.,
Leonard, P., Langlois, S., and Neuhauser, W. The
Chorus Distributed Operating System. Computing

Systems, 1(4), 1988.

[Satyanarayanan et al. 85] Satyanarayanan, M., Howard,

J., Nichols, D., Sidebotham, R., and Spector, A. The
ITC Distributed File System: Principles and Design.

In Proceedings of the 10th ACM Symposium on Op-

erating Systems Principles, pages 35–5o, December

1985.

[Schroeder & Burrows 90] Schroeder, M. D. and Burrows,
M. Performance of Firefly RPC. ACM Transactions

on Computer Systems, 8(1):1–17, February 1990.

[Scott et al. 89] Scott, M. L., LeBlanc, T. J., and Marsh,
B. D. Evolution of an Operating System for Large-

Scale Shared Memory Multiprocessors. Technical Re-
port 309, University of Rochester, School of Com-

puter Science, March 1989.

[Thacker et al. 88] Thacker, C. P., Stewart, L. C., and

Satterthwaite, Jr., E. H. Firefly: A Multiproces-

sor Workstation. IEEE Transactions on Computers,

37(8):909-920, August 1988.

[Wand 80] Wand, M. Continuation-Based Multiprocessing.

In Conference Record of the 1980 LISP Conference,

pages 19-28, August 1980.

[Ward & Halstead 80] Ward, S. A. and Halstead, Jr., R. H.
A Syntactic Theory of Message Passing. Journal of

the ACM, 27(2):365–383, April 1980.

[Young et al. 87] Young, M., Tevanian, Jr., A., Rashid, R.,
Golub, D., Eppinger, J., Chew, J., Bolosky, W.,

Black, D., and Baron, R. The Duahty of Memory
and Communication in the Implementation of a Mul-
tiprocessor Operating System. In Proceedings of the

1 Ith ACM Symposium on Operating Systems Princi-

ples, pages 63-76, November 1987.

136

