
Compiler Support for Garbage Collection in a
Statically Typed Language

�

Amer Diwan Eliot Moss Richard Hudson
�

Object Systems Laboratory
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

(To appear in SIGPLAN ’92 PLDI)

Abstract

We consider the problem of supporting compacting garbage
collection in the presence of modern compiler optimizations.
Since our collector may move any heap object, it must ac-
curately locate, follow, and update all pointers and values
derived from pointers. To assist the collector, we extend the
compiler to emit tables describing live pointers, and values
derived from pointers, at each program location where col-
lection may occur. Significant results include identification
of a number of problems posed by optimizations, solutions to
those problems, a working compiler, and experimental data
concerning table sizes, table compression, and time overhead
of decoding tables during collection. While gc support can
affect the code produced, our sample programs show no sig-
nificant changes, the table sizes are a modest fraction of the
size of the optimized code, and stack tracing is a small frac-
tion of total gc time. Since the compiler enhancements are
also modest, we conclude that the approach is practical.

1 Introduction

As part of ongoing efforts to implement orthogonal persis-
tence [1] and garbage collection for Modula-3 [2], we have
designed and implemented compiler techniques to assist the
garbage collector and the persistent memory manager. Our
work has been done in the context of Modula-3, but is appli-
cable to other statically typed languages.1 In the remainder
of this section we describe the requirements we had to meet
to support garbage collection in our context.

�
This project is supported by National Science Foundation Grant CCR-

8658074, Digital Equipment Corporation, Apple Computer, and GTE
Laboratories.�

The authors can be reached electronically via Internet addresses�
diwan,moss,hudson � @cs.umass.edu.

1The Modula-3 type system allows some dynamism, but type safety of
all constructs (except those permitted only in UNSAFE modules) can be
checked at compile time.

With regards to persistence, our scheme must allow objects
to be moved, and possibly removed from main memory al-
together, for buffer management [3, 4] purposes. Moreover,
since orthogonality allows any object to become persistent,
all objects need to be movable. This requirement is also es-
sential for fully compacting garbage collection (cf. [5, 6]),
which yields good locality and fast object allocation time.

Portability to a wide variety of hardware and software
platforms is one of the key goals for Persistent Modula-3.
Therefore our scheme must not rely on any special hardware
support (such as hardware pointer tags).

Our scheme must have minimal impact on run-time per-
formance. Our work is being done in the context of a highly-
optimizing compiler.2 Thus we must not defeat or disallow
any compiler optimizations. This is a challenge since the
compiler and optimizer are not bound by the rules of the
source language and may introduce complex pointer manip-
ulations. We also want to avoid tagging objects except when
explicitly required by the language.

In a statically typed language, the compiler knows which
global variables contain pointers. It also knows which stack
locations and registers contain pointers at any point in a pro-
gram. In the following sections we describe a technique that
exploits this compile-time knowledge to assist the garbage
collector in locating and updating pointers in the stack and in
the registers, and at the same time meets our requirements:
the ability to move objects, portability, and minimal impact
on performance. After describing the scheme, we present
some experimental results.

2 Basic Problems

Unambiguous full copying collection (cf. [8, 5, 6]) must be
able to determine if an object is reachable from other live
objects or from the roots. Moreover, the garbage collector
must be able to find all pointers to a given object so that they
may be updated when the object is moved. These require-
ments translate to a number of low level requirements on the
collector: (i) it must be able to determine the size of heap
allocated objects, so that they can be copied; (ii) it must be

2Our compiler is based on gcc 2.0 and uses its optimizer [7].

able to locate pointers contained in heap objects, so they they
can be both traced and updated; (iii) it must be able to locate
pointers in global variables; (iv) it must be able to find all
references in the stack and in the registers at any point in the
program at which collection may occur; (v) it must be able to
find objects that are referred to by values created as a result
of pointer arithmetic; (vi) and it must be able to update these
values when the objects involved are moved.

Modula-3 requires type descriptors in heap objects which
makes it straightforward to determine the size of heap allo-
cated objects and to find pointers within them. Thus it is easy
to trace the heap. Since Modula-3 is a statically typed lan-
guage, compile-time location of pointers in global variables
is also simple. Locating pointers in the stack and in registers
is more difficult, because the stack layout and register assign-
ments may vary even within a procedure. We must also be
able to handle compiler temporaries containing pointers, in
the stack and in registers.

Updating and following pointers is complicated if pointers
do not always point directly to objects. We say a pointer
is tidy if it points at the object header (or some standard
fixed offset from the header). Untidy pointers may be intro-
duced by language features or by compiler optimizations. In
Modula-3, pointers to the interior of objects are created by
the VAR parameter passing mechanism, by the WITH state-
ment, and by SUBARRAY expressions. Here are examples of
optimizations that create untidy pointers:3

Strength Reduction: The body

A[i] := 13;
INC (i);

of an array initialization loop can be turned into
*p++ = 13, with p appropriately initialized.

Virtual Array Origin: If A is an array of type ARRAY
[7..13] OF INTEGER, the obvious method of ac-
cessing A[i] is:
*(&A[7] + (i - 7) * sizeof (int))
The subtraction can be avoided by creating an (untidy)
pointer to A[0] and using it to index into the array.

Common Subexpression Elimination: The code

A[i,j] := 10;
A[i,k] := 20;

may be compiled into

t = &A[i];
*(t + j * sizeof (int)) = 10;
*(t + k * sizeof (int)) = 20;

if the optimizer can determine that t is being computed
twice and that i is not updated.

3In our examples we present source code in Modula-3 and com-
piler/optimizer output in C. Note, though, that our Modula-3 compiler gen-
erates assembly code.

Double Indexing: The code

A[i] := 1;
B[i] := 2;

may be optimized to

t1 = &A[0] + (i * sizeof(int));
t2 = &B[0] - &A[0];
*t1 = 1;
*(t1 + t2) = 2;

which is useful on machines that have addressing modes
with two or more index registers, such as the SPARC.

We use the term derived value for any value created by
pointer arithmetic, and the term base value for any value
participating in the derivation. Note that a derived value
may be an untidy pointer to the interior of an object (strength
reduction example), an untidy pointer that points outside the
object to which it refers (virtual array origin example), or
even a non-pointer value (double indexing example), and
the examples given above may not exhaust the possibilities.
In Section 3, we describe a scheme that handles a broad
class of pointer arithmetic, which includes all optimizations
performed by gcc.

3 Solutions

We construct tables at compile time to assist the collector
in locating and updating all pointers in the stack and in the
registers. We construct one set of tables per gc-point. A
gc-point is a program point where a collection might occur.4

An alternative is to use tags or type descriptors in the stack.
We decided against tagging stack allocated objects because
the stack layout is relatively static, and thus amenable to tab-
ular description, and stack frames are created and destroyed
at a high rate, so the overhead of maintaining any kind of
descriptors in the stack is likely to be unacceptable.

We construct three kinds of tables for each gc-point in
a procedure: stack pointers, register pointers, and deriva-
tions. The stack pointers table encodes the locations in the
procedure’s stack frame that contain live tidy pointers at the
gc-point. Likewise, the register pointers table encodes the
registers that contain live tidy pointers at that gc-point. The
derivations table describes the derivation of all derived val-
ues live at the gc-point. In this section we concentrate on
the conceptual contents and usage of the tables, and defer
consideration of implementation issues to Section 5.

At garbage collection time, the first task is to locate the
tables for each frame on the stack. This is done by extract-
ing return addresses from frames and using them to search
a table that maps gc-points to gc tables. We can use the
stack pointers table directly. Using the register pointers table
requires additional information about which registers were

4We give details on choosing these points in Section 5.

Base Location

b1

b2

b3

+

−

+

Relation

a

Figure 1: Derivations table for a at program point p

saved at each call point, so that the register contents can be
reconstructed as of the time of the call.

The derivations tables are needed for updating derived
values when their base values change. At each gc-point, each
live derived location is associated with a table that describes
its derivation at that point. For example, Figure 1 shows the
derivation table for a variable a whose value is derived as:

a := b1 + b3 - b2 + E

where E is some integer expression that does not use pointers
or derived values.

There are two steps to updating the derived values. The
first step occurs immediately after all the tables have been
located. In this step, the value of E is calculated and stored
in a. To calculate E we adjust a by applying the inverse
operation for each base value of a:

a := a - b1 - b3 + b2

Note that the order in which derived values are updated is
crucial: a derived value must be updated before any of its
base values. Thus, if a base value is a derived value itself,
then its value must be adjusted after that of any values derived
from it and before any values from which it is derived. We
take two measures to ensure this ordering. First, we visit the
derivations table of a callee before that of its caller. Second,
the derivations tables for a given gc-point are ordered such
that the derivations table of a derived value comes before
the derivations tables of its base values. Note that circular
dependencies cannot occur because derivations are always
made from previously calculated base values.

The second step of the update occurs after garbage collec-
tion has completed. Its purpose is to reconstruct the derived
values from the updated bases. This step uses the new base
values to re-derive a. In the above example the new values
of b1 and b3 are added to a while that of b2 is subtracted.
Once again the order in which updates occur is important;
a value needs to be updated before any values derived from
it. This order is exactly the reverse of that required in the
previous step.

We have made two assumptions in the design of the deriva-
tions table. First, we assume that the base values are live
whenever values derived from them are live. This is nec-
essary for us to be able to update the derived values. In

Section 4 we show how we ensure this property. As a side
effect of this requirement, we never need to follow derived
values to find reachable objects. This is because we require
the lifetime of a base value to include that of its derived
values. Hence, any object reachable via a derived value is
also reachable via a non-derived value. Second, we assume
that the operations used in the derivation (� and � in this
example) have inverses. Invertibility allows us to use the
technique outlined above to adjust a derived value if one (or
more) of its base values change as a result of collection. In
the above example, invertibility allowed us to update a given
only the base values; no information about E was needed.
Our current implementation handles two kinds of operations
in a derivation (� and �),5 but it can easily be extended to
handle other invertible operations as well. Thus, we currently
handle all deriving expressions of the form:����� � � ���
	

�
���

where
� �

and
	 �

are pointers or derived values, and � does
not involve either pointers or derived values. To handle non-
commutative operations, we would need to be careful about
the order of the base values in the table for each derivation.
To handle non-invertible operations the tables would have to
be redesigned to allow the entire deriving expression to be
recomputed at run time.

4 Some Complications

The job of the compiler would be simple if it could correctly,
statically, and unambiguously identify the base values for
each derived value at any given point in the program. Un-
fortunately, this is not the case for at least three scenarios:
(i) when a base value dies before a value derived from it,
(ii) when multiple derivations of a value reach a gc-point,
and (iii) when indirect references are used as base values in a
derivation. In this section we describe each of these problems
and present our solutions to them.

The following example illustrates the Dead Base problem:

SOURCE
A: REF ARRAY [1..10] OF INTEGER;
FOR i := 1 TO LAST (Aˆ) DO

s := s + Aˆ[i];
END;

OPTIMIZED
for (i = 1; i <= 10; i++)

s = s + *A++;
<gc-point>�

5These are the only operations exploited by the gcc optimizer.

If data flow analysis can determine that A is dead after the
loop, then the compiler may use A to efficiently step through
the array. In this code, A’s base value (the original value of
A) is not available to the collector inside the loop. Hence, if
collection is triggered at gc-point then the collector will
be unable to update A.

We solve this problem by making our compiler consider a
use of a derived value as a use of each of its base values.6 This
forces the compiler to retain the base values for the lifetime
of the values derived from them. While this can affect perfor-
mance by increasing the lifetime of variables, which in turn
can increases register pressure, we try to minimize its impact
by careful selection of base values. When multiple copies
of a base value are available, we give preference to stack
allocated base values over register allocated ones (to reduce
register pressure), and to values in user declared variables
over values in compiler temporaries (to shorten temporary
lifetimes).

The problem of Ambiguous Derivations occurs when mul-
tiple derivations of a derived value reach a program point.
This is illustrated in the following example:

SOURCE
i := 1;
WHILE (cond)
IF (inv) THEN

PRINT (P[i]);
ELSE

PRINT (Q[i]);
END;
INC (i);

END;

OPTIMIZED
i = 1;
if (inv)
t = &P[0] + 1;

else
t = &Q[0] + 1;

while (cond)
PRINT (*(t + i++));

If inv is invariant in the loop, the optimizer may hoist the
conditional out of the loop causing t’s derivation to be am-
biguous inside the loop; t is derived from either &P[0] or
&Q[0].

We solve this problem by introducing path variables for
each ambiguously derived value. The path variable encodes
which one of the possible derivations actually happened. The
following code segment illustrates it for the example above:

6We need to do this only if the derived value is live at some later gc-point.

i = 1;
if (inv)

t � = <path 1 taken>
t = &P[0] + 1;�

else
t � = <path 2 taken>
t = &Q[0] + 1;�

while (cond)
PRINT (*(t + i++));

When our compiler detects an ambiguous derivation, it emits
tables for each possible derivation; the appropriate deriva-
tions table is chosen at run time based on the value of the
path variable.

An alternative solution to the ambiguous derivations prob-
lem is to use Path Splitting similar to Chambers and Ungar
[9]. Figure 2 demonstrates this technique. In Figure 2, the
body of the loop is duplicated such that the derivation of t
in each copy of the loop body is unambiguous.

Currently we use the path variable scheme to disambiguate
derivations. Both solutions have overheads. The path vari-
able technique adds assignments to the program; the path
splitting technique increases the code size and is also more
complicated than the path variable scheme. We selected the
path variable scheme because it is simpler and we believe am-
biguous derivations are rare, and thus the run-time overhead
is not significant.

The problem of Indirect References occurs when the loca-
tion of a base value is not known at compile time. This can
happen if the base value is obtained by an indirect reference.

SOURCE
a: REF ARRAY [1..5] OF

REF ARRAY [5..9] OF INTEGER;
foo (aˆ[2]ˆ[6]);

COMPILED
foo (*(a + sizeof (int))

+ sizeof (int))

In the example, if the parameter to foo is passed by ref-
erence, then the expression pushed on the stack is derived
from the value in memory location a + sizeof (int).
Hence, we cannot determine the location of the base value
at compile time. We solve this problem by preserving the
intermediate reference in a stack slot or register, thus causing
the derivation to refer to a value in a compile-time known
location. Indirect references pose a problem only for ma-
chines with complicated addressing modes. We expect that
this problem will not arise for load/store architectures.

t = &P[0] + 1 t = &Q[0] + 1

PRINT (*t + i++)

t = &P[0] + 1 t = &Q[0] + 1

PRINT (*t + i++)PRINT (*t + i++)

Figure 2: Disambiguating derivations by path splitting

5 Implementation Issues

The organization of the tables and the selection of gc-points
might have a significant impact on the performance of our
scheme. The tables should be as small as possible but at the
same time the collector must be able to extract the information
it needs efficiently; compactly encoded tables are likely to
have higher decoding overhead. Since tables are emitted
at each gc-point, the number of gc-points affects the space
overhead of our scheme. Selection of gc-points is especially
relevant in a pre-emptive multi-threaded environment. Since
a thread switch can occur at any time, we must be prepared
to handle a collection when a thread is not at a gc-point. In
Sections 5.1, 5.2, and 5.3, we survey some possible solutions
to these concerns and justify the choices we have made.

5.1 Table Organization

Storing a list of all live tidy pointers in the stack at each gc-
point in a procedure is likely to be expensive. We expect that
the variation in stack layout at different gc-points is usually
small and thus we consider using delta tables at gc-points. A
delta table encodes how the information at a given gc-point
differs from the information in some other table (called its
ground table). Our implementation uses a scheme called

�
-main.

In the
�
-main scheme, each procedure has a main table

which describes all slots in the frame of that procedure that
contain pointers at some gc-point. Given this, a delta table
merely describes which entries of the main table are valid
at the gc-point. Since the delta table needs to contain only
liveness information, only one bit per entry in the main table
is needed per gc-point.

Our current implementation uses the
�
-main main scheme

for stack allocated non-derived pointers only. The registers
table has 1 bit per hard register; any attempt to compact this
information further is likely to yield little or no improvement.
We do not use a delta scheme for the derivations table because
in our experience derived values are rare; moreover, they
tend to have short lifetimes and thus the information varies

Continuation

7

Sign−extended value

0

Figure 3: Packing words into bytes.

widely between gc-points. For instance, an important source
of derived values in Modula-3 is call-by-reference, which
creates derived values that are live at only one gc-point (the
call). We therefore store full information for derived values
at each gc-point.

In our measurements we observed that delta and registers
tables for adjacent gc-points are often identical. Also, many
registers tables, many delta tables, and most derivations ta-
bles are empty. We keep a descriptor at each gc-point which
indicates if any of the tables at that gc-point are empty, or if
they are identical to the table at the preceding gc-point.

5.2 Compressing the tables

Despite the compact representation provided by the
�
-main

scheme, we found that the tables were unacceptably large:
about 45% of the size of optimized code (see Section 6.1). In
this section, we describe the packing techniques that we use
to reduce the table sizes to about 16% of the optimized code
size.

The stack tracing tables are generated in two phases. The
first phase produces tables of 32 bit words. Each memory
location is encoded into a word, and the delta tables and
register pointers tables occupy an integral number of words.7

The second phase goes through the table of words and packs

7The number of words used for a delta or a register pointers table depends
on either the number of entries in the ground table or the number of hard
registers.

Continuation

017

Base Register

Signed Offset

Figure 4: A ground table entry that fits into 1 byte.

them into bytes. The high bit of each byte determines if it is
the last byte in the encoding of a word or if the following byte
is also part of the word (see Figure 3). The bytes are stored
from most- to least-significant, and the first byte is sign-
extended, since many offset (and hence many word values)
are negative.

Each entry in a ground table encodes a stack location that
is live at some point in the procedure. The low two bits of
the encoding identify the base register (FP, SP, or AP, for the
VAX). The remaining bits are the offset (in words) from the
base register. Most entries in the ground table fit into one
byte each (see Figure 4).

Each entry in a derivation table encodes either a register
or a memory location. This encoding is more involved than
that of the ground table because entries in this table are not
restricted to FP, SP, AP

���
offset. Thus, most entries in the

derivations table require 2 bytes.
The register pointers table contains 1 bit per hard register;

most of these tables compact to 1 or 2 bytes each. The delta
table contains 1 bit per entry in the ground table. Most of
our procedures had fewer than 8 stack allocated pointers, al-
lowing most delta tables to be compressed to 1 byte. Besides
the above mentioned tables, we have a descriptor at each
gc-point that encodes whether any of the tables at the current
gc-point are empty or are identical to those at the previous
gc-point. This information packs into 1 byte per gc-point.

At each gc-point we find the appropriate tables by us-
ing a mapping from program counter values to gc tables.
We compress this by using distances between gc-points in
conjunction with the start address of the enclosing module,
instead of using 32 bits for the program counter value at each
gc-point. The distances are not available until link time; our
compiler assumes that distances between adjacent gc points
can fit in two bytes. If the distances had been available to
our compiler, we would have been able to compress most
distances to 1 byte, yielding an additional savings of 1 byte
per gc-point.

There is one important consideration that our current im-
plementation does not handle: each pointer contained in an
array is treated as a separate variable. We have no way of
indicating patterns (e.g., starting from address a, the next 200
stack location are pointers). We have a design for compact
descriptions of arrays, and it will be simple to add it to the
implementation. Our benchmarks did not use any such ar-
rays, so adding this space optimization would not affect the

result we report here.

5.3 Selecting GC-Points

Selecting gc-points in a single threaded environment is easy:
all calls can be considered gc-points since all allocation is
done via a call and hence collection will never be triggered
at a non-call point.8 Of course, some calls do not need
to be gc-points. If the compiler performs inter-procedural
analysis then it can determine that some procedures never
allocate any heap storage and thus calls to them need not be
gc-points. In our current implementation all calls except for
ones to non-allocating procedures are considered gc-points.
The non-allocating procedures are statically determined (for
instance run-time error reporting routines) rather than via
inter-procedural analysis. We may explore refinements in
future work.

Selecting gc-points in a multi-threaded environment with
pre-emptive scheduling is more challenging since collection
may be triggered while threads are suspended at non-gc-
points. In our approach, if a thread triggers collection then the
suspended threads that are not at gc-points are resumed and
allowed to run until they all reach gc-points. We accomplish
this by ensuring that resumed threads reach (and block on)
a gc-point in a bounded amount of time, and that they do
not do any allocations. Ensuring that a resumed thread does
not allocate any memory before it reaches a gc-point requires
that most calls be gc-points. To avoid an unbounded wait for
threads to become ready for collection, we insert a gc-point
in all loops that do not have a guaranteed gc-point in them.
A loop has a guaranteed gc-point if an allocating-procedure
or a nested loop is executed at each iteration of the loop,
regardless of the path taken through loop. In addition to
gc-points at calls and in loops, we need gc-points at places
where a thread can block.9

6 Results

This paper is not about a fast garbage collection technique. It
is about how garbage collection can be assisted by compile-
time acquisition of information, and have minimum impact
on compiler optimizations. As such, our results are not tim-
ings for the garbage collector; they are measurements of the
sizes of the compile-time tables generated, the effect our
schemes have on compiler optimizations, and the time re-
quired to decode the generated tables. In Section 6.1 we give
the table sizes for each of our benchmarks, in Section 6.2 we
describe the effects of our scheme on the quality of gener-
ated code , and in Section 6.3 we report the time required to
decode the tables at garbage collection time.

8This will not work if allocation is done inline, in which case we must
include inline allocations as gc-points.

9In most systems these points are call points so they do not need special
treatment.

6.1 Table Sizes

We measured table sizes for 4 Modula-3 programs:
typereg, FieldList [10], takl [11] and destroy
[12]. typereg implements type registration and type com-
parisons using structural equivalence for our Modula-3 run-
time system. FieldList implements command parsing for
a UNIX shell. We considered typereg and FieldList
to be good programs to use for our measurements for two
reasons. First, they are “real” programs rather than synthetic
benchmarks. Second, they consist of a number of short rou-
tines with frequent calls. Since we consider most calls as
gc-points, we felt that this would represent a worst case sce-
nario. We chosetakl because it is a well known benchmark.
We chose destroy because it is heavily recursive and trig-
gers garbage collection frequently, and thus stresses the code
that decodes the tables at garbage collection time.

In Table 6.1 we list relevant data about each of the bench-
mark programs. (The -opt suffix indicates that compiler
optimizations were turned on.) In Table 6.1 we give the cor-
responding table sizes, under both the full information and the

�
-main schemes, with and without each of byte and identical-

to-previous compression. Here is the key for interpreting the
columns of these tables:

Size Program size in bytes.

NGC Number of gc-points that had non-empty tables.

NPTRS Total number of pointers.

NDEL Number of delta tables emitted.

NREG Number of register pointers tables emitted.

NDER Number of derivations tables emitted.

Plain Table sizes as a percentage of code size with no com-
pression.

Previous Table sizes as a percentage of code size when a
descriptor is used to indicate that a table is identical to
that at the previous gc-point.

Packing Table sizes as a percentage of code size when byte
level packing is used.

PP Table sizes as a percentage of code size when both Pre-
vious and Packing are used.

None of our benchmarks had any ambiguous derivations
and therefore the compiler introduced no path variables.

From Table 6.1 it can be seen that storing full information at
each gc-point (with packing) generally produces larger tables
than those produced by

�
-main (with packing). However the

difference is not great.
�
-main is based on the assumption

that procedures have many non-empty gc-points and many
live stack allocated pointers at each gc-point. If this is not the
case, then storing full information at each gc-point can yield
table sizes comparable to

�
-main without the extra run-time

decoding overhead of
�
-main. However, our measurements

indicate that the run-time overhead of decoding these tables
is small, so there is little practical benefit to storing full
information at each gc-point (see Section 6.3).

For the
�
-main scheme, both Packing and Previous tend

to reduce table sizes. Applying both Packing and Previous
reduces the table size from about 45% of the size of the
optimized code to about 16%.

6.2 Effects on the optimized code

Our schemes have no effect on the optimized code produced
for any of our benchmarks. There are, however, some in-
structions introduced in the unoptimized code. Most of the
differences result from needing to preserve indirect refer-
ences at gc-points. There are 12 cases where this occurs in
typereg for the VAX and 32 cases in FieldList for the
VAX; here is a typical case:

Without gc restrictions
addl2 (r7),r0

With gc restrictions
movl (r7),r1
addl2 r1,r0

Our solution to the dead base pointer problem adds two moves
to the unoptimized FieldList; both are inserted to pre-
serve a clobbered base value.

Note that gc-safety, as proposed by Boehm10 [13], encoun-
ters the same requirement, so this is a basic safety concern
rather than a result of our approach. Also, this particular code
effect is not likely to occur on load/store architectures.

Compiler support for garbage collection may have other ef-
fects on the generated code besides the ones described above.
In particular, most generational schemes perform store checks
[14] when pointers might be written into heap locations. This
is a property of the garbage collection scheme11 and therefore
we do not “charge” this overhead to our scheme.

6.3 Timings

While good compression of the gc tables is important for
our scheme to be practical, the time to decode those tables
must also be reasonable. We do not yet have a complete
implementation of the garbage collection run-time, but we
have an initial version of stack tracing which we timed on
the destroy benchmark. destroy builds a complete tree
of specified branching factor and depth. It then repeatedly
builds a new subtree at some fixed intermediate depth, and

10Actually, Boehm does not appear to have recognized the indirect ref-
erence problem in the work we cite above. He focused on situations that
extend the lifetime of a derived pointer but did not address cases where the
lifetime of a base pointer might be shortened, e.g., by its being overwritten
in the heap.

11For instance, page traps could be used instead of store checks to imple-
ment generational schemes.

Program Size NGC NPTRS NDEL NREG NDER
typereg 3154 59 87 58 26 3
typereg-opt 2289 52 122 39 41 0
FieldList 4594 51 103 45 18 11
FieldList-opt 3330 82 319 61 70 11
takl 457 8 11 8 6 0
takl-opt 437 9 18 6 9 0
destroy 1240 12 14 11 2 0
destroy-opt 552 14 18 4 13 0

Table 1: Statistics of each of the benchmark programs

Full Info
�
-main

Program Plain Packing Plain Previous Packing PP
typereg 45.5 14.3 35.0 28.2 12.3 10.6
typereg-opt 51.4 17.2 41.6 35.5 16.0 14.0
FieldList 30.3 11.1 16.4 14.8 6.1 5.6
FieldList-opt 64.7 22.9 53.0 47.6 20.8 18.7
takl 51.6 17.9 41.1 34.1 16.0 14.2
takl-opt 55.8 19.7 43.9 37.5 17.6 15.6
destroy 17.1 5.9 17.1 15.2 6.6 6.1
destroy-opt 46.4 17.4 42.8 38.4 18.1 16.5

Table 2: Table sizes as a percentage of code size

replaces a randomly chosen subtree of the same height with
the new subtree. We ran destroy in our Smalltalk system,
which uses the accurate scavenging scheme [15] we plan to
install in the Modula-3 run-time. We found that collections
averaged 280 ms of elapsed time. We coded the benchmark
in Modula-3 as similarly as possible, and caused “collec-
tions” at approximately the same points. To determine stack
tracing costs, we ran two versions of the Modula-3 program,
one with “collection” being a stack trace, the other with “col-
lection” being a null call, and calculated stack tracing to take
470 � s per collection. However, the difference between the
runs was small, and the variance significant even with many
repetitions in a system running in single-user mode, so the
90% confidence limit is that stack tracing takes less than 1710

� s per collection for this program. The corresponding num-
bers per stack frame traced are 27 � s and 98 � s, respectively.
We ran these tests on a VAXStation 3500, which is generally
rated at 3 to 5 VAX MIPS, suggesting that our current code
executes on the order of 100 to 400 VAX instructions per
frame traced. We believe we can tighten this up measurably.

Whether one uses the 470 � s per collection figure or the
1710 � s one, there are two additional factors to take into
account in comparing stack tracing overhead with overall
gc time. First, the destroy benchmark is unusually gc
intensive. Programs that create a lot of objects, but where
most do not survive to the next collection, exhibit something
like five times lower gc cost. Also, a Modula-3 collector may

be faster than a Smalltalk collector since for Modula-3 we
can generate type-specific routines for tracing heap objects,
and avoid Smalltalk’s object and pointer decoding overhead.
We will be generous and allow a factor of two speed up for
Modula-3, though we doubt the advantage is really that great.
Thus, in less gc-intensive Modula-3 programs, we estimate
the ratio of stack tracing time to total gc time to be less than
1710/28000 = 6% (470/28000 = 1.7%). We conclude that
stack tracing overhead is only a small part of gc time, even
in a high performance scavenging collector.

7 Related Work

Algol-68 implementations were the first to produce compiler
generated routines to assist in garbage collection. In the
Branquart and Lewi scheme [16], tables are produced that
map stack locations to the appropriate garbage collection
routine. Unlike our scheme, these tables have to be updated
every time a reference to the heap is created on the stack.

Goldberg’s compiler [17] produces stack tracing routines.
The return address in a call is used to locate a routine that
knows how to trace the frame of the caller. His work is not
done in the context of an optimizing compiler and thus he
does not address many of the issues we handle.

Boehm [13, 18] is currently incorporating garbage collec-
tion support in a C compiler. He is using an ambiguous roots

collector and his main concern is ensuring that all live ob-
jects have at least one pointer to their headers (i.e., there are
no live objects that are reachable only from derived values).
This problem is similar to our dead base pointer and indirect
references scenarios described in Section 4. Since he never
moves objects he does not need to deal with the issues in
updating derived values.

Exception handling implementations in CLU, Trellis, and
Modula-3 also use compiler generated tables. In our Modula-
3 implementation [19] tables are generated for each point
where an exception may be raised. The tables contain the
addresses of handlers for the exceptions that can be raised at
that point.

Zurawski and Johnson [20] emit compile-time tables to
allow them to construct the unoptimized state of the program
from the optimized state. Like us, they have to deal with
the effects of pointer arithmetic introduced by the optimizer.
Their focus, however, is on debugging; some optimizations
are disallowed to make debugging possible. There is a gen-
eral similarity between the simpler kinds of information we
need for garbage collection and what is needed for symbolic
debugging in the presence of optimization. Debuggers do
not need to update values or handle the derived value cases
that we do, however.

8 Conclusions

We have described and evaluated compiler techniques for
supporting fully compacting garbage collection in a statically
typed language. We started with the following requirements:
the ability to move any object, portability, and low run-time
overhead. We met these requirements by making extensive
use of the information available to the compiler. While we
are not the first to recognize the availability of the compile-
time information, we believe that we are the first to exploit it
so thoroughly in a highly optimizing compiler.

9 Acknowledgements

Tony Hosking provided us with garbage collection measure-
ments from the UMass Smalltalk system. We would also like
to thank Chuck Lins for his extensive comments on a draft
of the paper.

References

[1] M. Atkinson, K. Chisolm, and P. Cockshott,
“PS-Algol: an Algol with a persistent heap,” ACM
SIGPLAN Not., vol. 17, pp. 24–31, July 1982.

[2] G. Nelson, ed., Systems Programming in Modula-3.
New Jersey: Prentice Hall, 1991.

[3] J. E. B. Moss, “Implementing persistence for an object
oriented language,” COINS Technical Report 87-69,

University of Massachusetts, Amherst, MA 01003,
Sept. 1987.

[4] A. L. Hosking, “Main memory management for
persistence,” Oct. 1991. Position paper presented at
the OOPSLA ’91 Workshop on Garbage Collection.

[5] J. F. Bartlett, “Compacting garbage collection with
ambiguous roots,” Research Report 88/2, Western
Research Laboratory, Digital Equipment Corporation,
Feb. 1988.

[6] J. F. Bartlett, “Mostly-copying garbage collection
picks up generations and C++,” Technical Note TN-12,
Western Research Laboratory, Digital Equipment
Corporation, Palo Alto, CA 94301, Oct. 1989.

[7] R. M. Stallman, GCC. Free Software Foundation,
Cambridge, MA.

[8] H.-J. Boehm and M. Weiser, “Garbage collection in an
uncooperative environment,” Software: Practice and
Experience, vol. 18, pp. 807–820, Sept. 1988.

[9] C. Chambers and D. Ungar, “Making pure object
oriented languages practical,” in Proceedings of the
Conference on Object-Oriented Programming
Systems, Languages, and Applications, (Phoenix,
Arizona, Oct. 1991), pp. 1–15, ACM SIGPLAN Not.
26, 11 (Nov. 1991).

[10] S. Harbison. Personal Communication, 1992.

[11] R. P. Gabriel, Performance and Evaluation of Lisp
Systems. Cambridge, MA: MIT Press, 1985.

[12] A. L. Hosking, J. E. B. Moss, and D. Stefanović, “A
comparative performance evaluation of write barrier
implementations,” in Proceedings of the Conference
on Object-Oriented Programming Systems,
Languages, and Applications, (Vancouver, Canada,
Oct. 1992). To appear.

[13] H.-J. Boehm, “A proposal for GC-safe C
compilation,” Oct. 1991. Position paper for OOPSLA
’91 Workshop on Garbage Collection.

[14] D. Ungar, “Generation scavenging: A non-disruptive
high performance storage reclamation algorithm,” in
Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical
Software Development Environments, (Pittsburgh,
Pennsylvania, Apr. 1984), pp. 157–167, ACM
SIGPLAN Not. 19, 5 (May 1984).

[15] R. L. Hudson, J. E. B. Moss, A. Diwan, and C. F.
Weight, “A language-independent garbage collector
toolkit,” COINS Technical Report 91-47, University of
Massachusetts, Amherst, MA 01003, Sept. 1991.
Submitted for publication.

[16] P. Branquart and J. Lewi, “A scheme for storage
allocation and garbage collection in Algol-68,” in
Algol 68 Implementation (J. E. L. Peck, ed.),
North-Holland Publishing Company, 1971.

[17] B. Goldberg, “Tag-free garbage collection in strongly
typed programming languages,” in Proceedings of the
ACM SIGPLAN ’91 Conference on Programming
Language Design and Implementation, (Toronto,
Ontario, Canada, June 1991), pp. 165–176, ACM
SIGPLAN Not. 26, 6 (June 1991).

[18] H.-J. Boehm, “Personal communication,” July 1991.

[19] A. Diwan, “Exception handling in Modula-3.” Internal
OOS Document, 1990.

[20] L. W. Zurawski and R. E. Johnson, “Debugging
optimized code with expected behavior,” ACM Trans.
Programming Languages and Systems, To appear.

