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ABSTRACTSingle superlass inheritane enables simple and eÆienttable-driven virtual method dispath. However, virtual me-thod table dispath does not handle multiple inheritaneand interfaes. This ompliation has led to a widespreadmisimpression that interfae method dispath is inherentlyineÆient. This paper argues that with proper implemen-tation tehniques, Java interfaes need not be a soure ofsigni�ant performane degradation.We present an eÆient interfae method dispath meha-nism, assoiating a �xed-sized interfae method table (IMT)with eah lass that implements an interfae. Interfae me-thod signatures hash to an IMT slot, with any hashing olli-sions handled by ustom-generated onit resolution stubs.The dispath mehanism is eÆient in both time and spae.Furthermore, with stati analysis and online pro�le data, anoptimizing ompiler an inline the dominant target(s) of anyfrequently exeuted interfae all.Miro-benhmark results demonstrate that the expeted ostof an interfae method all dispathed via an IMT is om-parable to the ost of a virtual method all. Experimentalevaluation of a number of interfae dispath mehanismson a suite of larger appliations demonstrates that, even forappliations that make only moderate use of interfae meth-ods, the hoie of interfae dispathing mehanism an sig-ni�antly impat overall performane. Fortunately, severalmehanisms provide good performane at a modest spaeost.
1. INTRODUCTIONMultiple inheritane adds power, expressiveness, and per-haps omplexity and ontroversy to an objet-oriented pro-

gramming model. Whether multiple inheritane simpli�esor ompliates the programming model remains a matterof debate. The designers of Java opted to avoid potentialproblems by providing only a limited form of multiple in-heritane, with the interfae onstrut. Java allows onlysingle superlass inheritane; a lass an inherit method im-plementations from at most one diret superlass. However,a lass may implement any number of interfaes. Eah lassmust expliitly provide implementations of the method sig-natures delared by its interfaes.Single inheritane enables simple and eÆient virtual me-thod dispath using virtual method tables (VMTs). How-ever, a single VMT annot support interfae method dis-path due to potential multiple inheritane. This has ledto a widespread impression that interfae method dispathin Java is inherently ineÆient. A na��ve interfae dispathmehanism an indeed introdue tremendous overhead. Forexample, Vallee-Rai reported that the Ka�e JIT Compilerinvokeinterfae byteode osts approximately 50 times aninvokevirtual [43℄. The initial implementation of interfaeinvoation in the Jalape~no JVM performed similarly poorly(see Setion 7).There are three soures of potential ineÆieny with inter-fae methods: dynami type heks, method dispath, andinhibition of ompiler optimizations. This paper desribestehniques to overome all three of these obstales.Setion 2 onsiders the semantis of Java interfaes, elui-dating the dynami type heking requirements imposed bythe Java virtual mahine spei�ation. Setion 3 reviewsthe Jalape~no virtual mahine, inluding its mehanism forquikly determining if a lass implements an interfae.Setion 4 desribes prior shemes for interfae method dis-path and more generally for dispathing methods in thepresene of multiple inheritane or dynami typing. Then,Setion 5 presents Jalape~no's sheme for interfae methoddispath. The JVM assoiates a small, �xed-sized interfaemethod table (IMT) with eah lass. The system hasheseah interfae method signature to an IMT slot, with hashollisions handled by ustom-generated onit resolutionstubs. In the usual ase (no ollision), the runtime ost of a



all through an interfae is almost idential to a virtual me-thod all. An IMT ollision adds a little additional overhead(roughly the same as a method prologue and epilogue).Interfae alls might hamper inlining or fore extra run-time tests to guard inlined method bodies. Setion 6 de-sribes Jalape~no's mehanisms for inlining interfae alls.Jalape~no's adaptive optimization system uses the same ri-teria for inlining interfae method alls as it does for vir-tual alls. Moreover, the ompiler usually employs the sameruntime heks to guard both types of inlined method bod-ies. This setion also shows how an optimizing ompileran often eliminate the dynami type hek imposed by theinvokeinterfae byteode.Setion 7 presents experimental results evaluating the per-formane impat of di�erent interfae dispathing meha-nisms. The experiments onsider four alternatives: a na��veimplementation of the language spei�ation, two variationson itables, and IMT-based dispath. Miro-benhmark re-sults verify that both IMTs and one of the two itable shemesare not signi�antly more expensive than virtual methoddispath. Results with a suite of larger appliations exam-ine the spae and time tradeo�s of the four alternatives.Overall, IMT-based dispath and one of the itable shemesahieve the best runtime performane, and have reasonablylow spae osts. The experiments also illustrate that evenfor appliations that make only moderate use of interfaemethods, the hoie of interfae dispathing mehanism ansigni�antly impat bottom line performane.Setion 8 desribes several ways in whih the implementa-tion of IMT-based dispath in Jalape~no ould be improved.Setion 9 onludes that performane onerns should notdeter programmers from using Java interfaes.
2. JAVA INTERFACESThe Java interfae onstrut provides a limited form of mul-tiple inheritane [20℄. A Java interfae is a type whose mem-bers are all either abstrat methods or onstants. A properJava lass may implement zero or more interfaes, while itextends exatly one lass.1 Additionally, an interfae anextend other interfaes.Most JVM implementations provide virtual method dispaththrough a table a assoiated with eah lass. This virtualmethod table (VMT) holds a referene to the implementa-tion of eah method delared by the lass. When the JVMloads a lass A, it assigns eah virtual method in A a uniqueo�set in A's VMT. Methods inherited from a superlass re-tain the unique o�set assigned by the superlass. So, eahnew lass that extends A inherits A's VMT and o�sets for in-herited methods. If a lass overrides an inherited method, itsimply overwrites the VMT entry of the inherited method'so�set. The net result is that for a method foo() of lassA, a referene to a suitable foo() implementation resides atthe same o�set in the VMT of lass A as in the VMT for anysublass of A. Furthermore, the VM an assign VMT o�setsdensely, to minimize the size of eah VMT.1The one lass with no superlass, java.lang.Objet, is notproper in this sense.

Interfaes and multiple inheritane prelude this dispathmehanism. Suppose foo() is an abstrat method of aninterfae I. If two otherwise unrelated lasses A and B bothimplement I, then A and B must eah provide a suitablefoo() method. However, there is no guarantee that A.foo()and B.foo() will have been mapped to the same VMT o�set,sine A and B share no inheritane relationship.The interfae method dispath byteode, invokeinterfae,also arries a greater runtime veri�ation burden than doesits virtual ounterpart, invokevirtual. The �rst time thelatter byteode exeutes, it may fore the spei�ed lassto be loaded (with all of the potential for raising exep-tions that this may entail). Thereafter, the JVM veri�erguarantees that \this" objet for the virtual method willhave a suitable method at the appropriate slot in its VMT.Conversely, the veri�er allows an invokeinterfae all toan objet of a lass that does not atually implement theinterfae. Should this happen, the JVM must throw anInompatibleClassChangeError.2Any implementation of interfae dispath in Java shouldnot ompromise other optimizations enabled by Java's sim-ple objet model. For example, Jalape~no exploits a two-word objet header for fast synhronization, hash odes, andgarbage olletion. For this reason, some multiple inheri-tane mehanisms employed for statially typed languageswith more omplex objet models (notably C++ [39℄) arenot aeptable solutions for Java interfae methods.
3. THE JALAPE ÑO JVMJalape~no [1℄ is a researh Java virtual mahine targetingserver appliations. It is written in Java [2℄. This design de-ision allows Java optimization tehniques, inluding thosedesribed here, to apply to both appliation ode and tothe JVM's ompilers, adaptive optimization system, threadsheduler, garbage olletor, and other subsystems.Jalape~no employs a ompile-only strategy; it ompiles eahmethod to native ode before the method exeutes. Two dif-ferent ompilers address distint design points. The baselineompiler produes poor quality ode quikly. The optimiz-ing ompiler provides several levels of optimization for meth-ods deemed to require better performane. All optimizationlevels inlude linear san register alloation [35℄ and BURS-based instrution seletion [36℄. Optimization level 0, thelowest, onsists mainly of a set of on-the-y optimizationsperformed during intermediate representation (IR) gener-2This error is spei�ed as a Runtime Exeption in the seondedition of the virtual mahine spei�ation [32℄, but not inthe �rst edition [31℄. A soure-to-byteode ompiler wouldrefuse to ompile suh a program, but if one �le hangesafter an initial ompilation, subsequent ompilation of the�le ould reate the o�ending lass �les (hene the nameof the exeption). Something similar ould happen withinvokevirtual, but, in that ase, the inompatibility wouldbe deteted at lass-loading. Sine the interfaes a lassimplements are not neessarily loaded with the lass itself,and sine interfaes an extend other interfaes, the fat thata lass does, or does not, implement an interfae annot bedetermined until the �rst time an instane of the lass istested against an interfae.



ation. Level 1 augments level 0 with aggressive inlining(driven by both stati heuristis and online pro�le infor-mation) and a number of other loal and intra-proeduralow-insensitive optimizations. Level 2 augments level 1 witha suite of intra-proedural stati single assignment (SSA)based optimizations.Jalape~no's adaptive optimization system [5℄ maintains sta-tistial samples of the dynami all graph. Using this infor-mation it shedules frequently alled and/or omputation-ally intensive methods for reompilation at an appropriatelevel of optimization. The adaptive system also relies on theon-line pro�le data to guide inlining deisions.Jalape~no supports a variety of on�gurations; this paperassumes the following on�guration. The JVM runs on aPowerPC-based SMP running the AIX operating system. Ituses a parallel, non-generational opying garbage olletor.The optimizing ompiler statially ompiles the methods ofsystem lasses (at optimization level 2), as part of Jalape~no'sboot image. The baseline ompiler initially ompiles eahappliation method just before the method exeutes for the�rst time. The adaptive optimization reompiles hot meth-ods for improved performane.Objets in Jalape~no eah have a two word header. The �rstheader word points to a Type Information Blok (TIB) forthe type of the objet. The TIB is a Java array of objets 3.A TIB onsists of a �xed-size header setion, and a variable-size VMT. The �rst slot of a TIB header ontains a refer-ene to an objet that desribes the type. Three more slotsare used to provide an eÆient implementation of dynamitype heking [3℄. As disussed in the previous setion, thetest that the lass of an objet implements an interfae on-tributes to the overhead of using interfae methods. One ofthese three TIB slots points to a data struture | an arrayof bytes alled an Implements Trits Vetor (ITV) | thatallows Jalape~no to answer just suh questions quikly. Eahinterfae is assigned a unique integer index into the ITV.Consider the ITV for a lass C, supposing interfae I hasbeen assigned ITV index n. The value of C's ITV entry atindex n ahes the result of a test that C implements I. ThisITV entry holds 0 if C is known to not implement the I, 1if C does implements I, and 2 if the test has not yet beenmade.As there is no a priori bound on the number of interfaesthat a JVM may enounter during its exeution, the JVMmust have the ability to grow the ITVs. To this end, the im-plementation logially partitions the ITV into two setions.The �rst setion does not require an array bounds hek,while the seond setion requires a hek in ase the ITV inquestion needs to grow. Those interfaes with indies lessthan the initial size of all ITVs never require a bounds hek.In any event, the �rst test that a lass implements an inter-fae is moderately expensive. However, subsequent tests forthe same lass and interfae obtain the ahed result of the�rst test from the lass's ITV fairly heaply.3Some of the performane impliations of requiring the TIBto be a legal Java array are onsidered in Setion 7.4

4. PRIOR TECHNIQUES FOR INTERFACE
DISPATCHThe �rst subsetion desribes interfae tables (itables), prob-ably the most ommonly used mehanism for interfae me-thod dispath in high performane Java implementations.The problem of dispathing Java interfae methods is loselyrelated to that of virtual method dispath in other objet-oriented languages with dynami typing. The following twosubsetions review previous work in ahing and method sig-nature (seletor) indexed dispath tables and desribe howthese tehniques have been adapted for Java. Finally, thelast subsetion disusses mehanisms to implement virtualmethod dispath in the presene of multiple inheritane inC++ that are less amenable to adaptation to Java.

4.1 Interface tablesAn itable is a virtual method table for a lass, restrited tothose methods that math a partiular interfae the lass im-plementation. To dispath an interfae method, the systemmust �rst loate the itable that orresponds to the appropri-ate lass/interfae pair. The JVM an then load the desiredtarget method from a known o�set in this itable. Typi-ally, the system stores itables in an array reahable fromthe lass objet. Sometimes a JIT ompiler an determinestatially what itable applies at a partiular interfae me-thod invoation site. If not, it must searh for the relevantitable at dispath-time [37, 17℄. In a straightforward imple-mentation, searh time inreases with number of interfaesimplemented by the lass. However, most systems augmentthis basi searhed itable approah with some form of itableahe or move-to-front algorithm [14℄ to exploit temporalloality in itable usage to redue expeted searh times.The CACAO JVM [29℄ implements a variant of the basiitable sheme that avoids a dispath-time searh for the rightitable. Rather than storing a lass's itables in a list thatmust be searhed, it maintains an array of itables for eahlass indexed by interfae id. This (mostly empty) arraygrows down from (the CACAO analog of) the TIB, thusmaking it easily aessible for dispathing. To dispath aninterfae method, CACAO simply loads the TIB from theobjet, loads the itable for the interfae at a onstant o�setin the TIB, and obtains a pointer to the allee ode froma onstant o�set into the itable. With this mehanism, aninterfae method dispath introdues only one more depen-dant load than a virtual method dispath.To somewhat redue the spae overhead of arrays of diretlyindexed itables, CACAO an safely trunate the interfaetable for a lass to end with its last non-empty entry, sineempty entries will never be aessed. This optimizationeliminates spae overhead for lasses that don't implementany interfaes. Nevertheless, in non-trivial programs, theinterfae tables for lasses that implement any interfae willbe large and mostly empty, sine most lasses implementonly a tiny fration of the total set of interfaes.
4.2 CachingEarly Smalltalk-80 systems used dynami ahing [30℄ toavoid performing a full method lookup on every messagesend. The runtime system began method lookup by �rst



onsulting a global hash table (keyed by a lass/seletor4pair) that ahed the results of reent method lookups. Al-though onsulting the hash table was signi�antly heaperthan a full method lookup, it was still relatively expensive.Therefore, later Smalltalk systems added inline ahes [13℄as a mehanism to mostly avoid onsulting the global ahe.In an inline ahe, the all to the method lookup routine isoverwritten with a diret all to the method most reentlyalled from the all site. The prologue of the allee methodis modi�ed to hek that the reeiver's type mathes andalls the method lookup routine when the hek fails. Inlineahes are extremely e�etive if the all site is monomor-phi, or at least exhibits good temporal loality, but performpoorly at most polymorphi all sites.Polymorphi inline ahes (PICs) [22℄ were developed tooverome this weakness. In a polymorphi inline ahe, theall site invokes a dynamially generated PIC stub that exe-utes a sequene of tests to see if the reeiver objet mathespreviously seen ases. If a math is found, then the orrettarget method is invoked; if a math is not found, the PICterminates with a all to the method lookup routine (whihmay in turn hoose to generate a new PIC stub for the allsite, extended to handle the new reeiver objet).Similar ideas an be applied to interfae method dispath.When an interfae method is dispathed, the system anahe some history information regarding the dynami all.5For interfae method dispath, the history onsists of a keyand a VMT o�set. The ahing algorithm employed di-tates the nature of the key. The VMT o�set represents theo�set of the dispathed method. The next time the systemenounters a similar invoation, it an re-use the old o�setif the new key mathes the old one.Any of dynami ahing, inline ahes, or polymorphi in-line ahes ould be used to dispath interfae methods. Infat, the �rst edition of The Java Virtual Mahine Spei�-ation [31℄ de�ned a \quik byteode" that ated as inlineahe by ahing history with the invoation site.6 Otherahing shemes ould be used as well. For example, if in-voations on the same objet, or objets of the same lass,are onsidered similar, the key represents the signature ofthe interfae method and the information is ahed eitherin the objet or its lass objet. Or, if invoations of thesame interfae method signature are onsidered similar, thekey will be the lass of the objet on whih the method isinvoked and the ahe ould be stored in a parallel strutureto the table of interfae-method signatures.4the seletor, or signature, of a method is its name, the typesof its parameters, and its return type (if any).5The system must take are when ahing on SMP om-puters. Unless the key-value pair is updated atomially, aproessor might see the �rst value of one pair and the se-ond value of another. In most irumstanes, this spellsdisaster! Sine the ost of expliit synhronization is oftenprohibitive, it may be bene�ial to enode these pairs in asingle word to exploit atomi single-word memory aess.6The quik byteodes have been dropped from the seondedition of the JVM spei�ation [32℄.

A feature of any ahing sheme is that it relies on temporalloality and thus annot guarantee eÆient dispathing forall programs. Polymorphi inline ahes are less vulnerablethan simple inline ahes, but they still an perform poorlyat \megamorphi" all sites. This paper's experimental re-sults indiate that ahe mispreditions would be an issueeven for a polymorphi inline ahe on some programs (jessand possibly HyperJ).
4.3 Selector Indexed TablesFor our purposes, the signature of a Java method is its nametogether with the types of its arguments, if any, and its re-turn type (possibly void). Signatures of interfae methodsare assigned unique small integer identi�ers alled seletors.Seletor indexed dispath tables [10℄ provide a straightfor-ward but spae-intensive solution to the interfae methoddispath problem. Eah lass maintains a (potentially large)table indexed by seletor. Entries orresponding to a me-thod signature of an interfae that the lass atually imple-ments point to the ode for the mathing virtual method;all other entries are null. Seletor indexed dispath tableswere originally proposed to implement virtual method dis-path in dynamially typed objet oriented languages, butwere onsidered too spae-intensive to be pratial.Several approahes have been proposed to greatly redue thespae osts of seletor indexed tables. Driesen onsidered us-ing a speialized sparse array data struture [16℄. The SableVM also uses seletor indexed dispath tables for interfaemethod dispath, but redues the spae impat by releasing\gaps" in the dispath tables to the alloator to realloate assmall objets [18, 19℄. Although lever, this trik an signif-iantly ompliate both alloation and garbage olletion.7Seletor oloring [15℄ has been applied to redue the sizeof seletor indexed dispath tables. Just as in register al-loation [6℄, the assignment of identi�ers to seletors anbe viewed as a graph oloring problem. Two seletors anbe assigned the same olor if they are never implemented bythe same lass. Using this approah, several algorithms havebeen proposed that greatly redue the size of the dispathtables [15, 4, 45, 44℄. Unfortunately, all of these algorithmsassume that the set of seletors and the lasses that im-plement them are known a priori. Thus, previous seletoroloring algorithms are a poor math for Java, sine theJVM annot know this information in advane.CACAO's seond sheme for interfae method dispath is se-letor oloring [29℄. This seond sheme improves over theirdiretly indexed itable sheme desribed above by eliminat-ing the need for an extra indiretion (and thus virtual andinterfae invoations ost exatly the same), but the spaeimpliations still ould be severe in some programs. How-ever, this sheme is only appliable if all interfaes and alllasses that implement interfaes are known to the JVMin advane. An optimisti oloring sheme with a reov-ery mehanism to reolor the seletors and path previously7However, the Sable VM puts a limit (1000) on the numberof interfae signatures that are dispathed in this fashion.After the limit is exeeded it falls bak to a slower dispathmehanism.



ompiled interfae invoation sites has been onsidered forCACAO, but has not been implemented [28℄.
4.4 Multiple Inheritance in C++Statially-typed objet-oriented languages have faed simi-lar problems with multiple inheritane. The usual solutionin C++ [39℄ uses multiple dispath tables for eah type,one orresponding to eah superlass. An objet pointer in-diates the dispath table orresponding to the stati typeof the objet referene. Virtual dispath may require this-pointer adjustment to fore the objet pointer to refer to theappropriate o�set in the objet header.The C++ solution uses signi�antly more spae in the ob-jet than neessary for Java, whih does not have multipleimplementation inheritane. Myers [33℄ presented a sophis-tiated algorithm to redue the spae overhead by mergingdispath tables for ompatible types and exploiting bidire-tional layout in the objet header.Both of these tehniques rely on omplete knowledge of anobjet's superlasses at ompile-time. Unfortunately, thisknowledge is not neessarily available in Java, sine thelass loader may not load the full interfae hierarhy be-fore ompiling a lass's methods. Furthermore, even withbidiretional layout, these mehanisms may inrease the ob-jet header size and add runtime overhead for this-pointeradjustment.
5. IMT-BASED INTERFACE DISPATCHJalape~no implements a new interfae dispath mehanism,alled the interfae method table (IMT). IMT-based dis-path aims to math the eÆieny of seletor indexed dis-path tables while avoiding both the potentially large spaeosts and the a priori knowledge requirements of seletoroloring. The key idea is to inlude a mehanism to handleolor ollisions. By being able to tolerate olor ollisions,IMT-based interfae method dispath obtains most of thebene�ts of seletor oloring without having to know all in-terfae method signatures in advane, and without ommit-ting to making all dispath tables large enough to be ableto obtain a perfet oloring for every program.Eah seletor (interfae method signature id) is hashed intoan IMT o�set. The system assigns interfae method idssequentially as new interfae method signatures are disov-ered, either by loading interfaes or by ompiling referenesto interfae methods. In the urrent implementation, Jala-pe~no maps ids diretly to IMT slots, modulo the size of theIMT, a �xed onstant.Figure 1 depits the virtual and IMT-based interfae dis-pathing sequenes on a PowerPC. The extra instrution inthe IMT dispath sequene prepares for the possibility of aollision by loading the id of the interfae signature beingdispathed into a hidden parameter. If there is no ollision,then the IMT entry holds a referene to the exeutable odefor the allee method, and the system would branh diretlyto it (the hidden parameter being ignored). If there is aollision, then the IMT entry holds a referene to a ustom-generated onit resolution stub. The stub uses the hid-

den parameter to determine whih of the several signaturesthat share this slot in the reeiver lass's IMT is the desiredtarget, and then loads the VMT o�set for the appropriatemethod, and transfers ontrol to the ode referened at thiso�set in the VMT.Conit stub ode generation must proeed arefully, dueto the restrited ontext in whih the stub must exeute.Before exeuting it, the alling sequene has already storedthe aller's return address and all parameters in the loa-tions ditated by the alling onvention. The onit resolu-tion stub must respet the alling onvention, and thus mayuse only a small number of registers without introduingsave/restore overhead.Figure 2 shows a onit resolution stub for an IMT slotwith four possible target methods. The proessor's link reg-ister ontains the return address in the alling method. Thenon-volatile registers annot be used until the allee savesthem. The volatile registers annot be used beause theymay ontain parameters to the method being alled. OnlyJalape~no's three PowerPC srath registers (s0, s1, and r0)are readily available for use by the stub.8 Although the de-tails of the stub are highly arhiteture dependent, similarideas apply on other platforms.9It remains to explain how the virtual mahine populatesIMTs. The simplest sheme would be to reate the IMT for alass when the lass is loaded. Unfortunately, Jalape~no doesnot know when a lass is loaded whih of its publi virtualmethods are interfae methods sine a lass's interfaes arenot loaded with the lass. Jalape~no ould onservativelyassume that all suh methods are interfae methods, butthis would lead to exessive false IMT onits.Instead the system an build the IMTs inrementally as theprogram runs. When the virtual mahine disovers that alass implements an interfae, it adds that interfae's meth-ods to the lass's IMT. If this proess reveals an IMT on-it, the system dynamially generates the appropriate on-it resolution stubs. Sine the virtual mahine must alwaysperform the relevant type hek before the interfae methoddispath (either at runtime or at ompile time, as disussedin the next setion), the IMT will always ontain the re-quired methods by the time of invoation.
6. INLINING INTERFACE INVOCATIONSThe previous setions desribe eÆient shemes for interfaemethod dispath. However, interfaes ould oneivably alsoinhibit ompiler optimizations, method inlining in partiu-lar. This setion disusses optimizations performed by the8These registers are used by Jalape~no method prologues(and epilogues) to alloate (free) the stak frame for thealled method. They are also used as temporary registersbetween method alls. Register 0 (r0) is of limited utilitysine many PowerPC instrutions treat what would be areferene to it as a literal 0.9Jalape~no's register onventions for Intel's IA32 arhiteturedo not provide a free srath register for the hidden parame-ter, so the interfae method signature id is passed by storingit at a prearranged loation in thread-spei� memory.



// virtual invoation sequene// t0 ontains a referene to the reeiver objetL s2, tibOffset(t0) // s2 := TIB of the reeiverL s2, vmtOffset(s2) // s2 := VMT entry for method being dispathedMTLR s2 // move target address to the link registerBLRL // branh to it (setting LR to return address)// IMT-based interfae invoation sequene// t0 ontains a referene to the reeiver objetL s2, tibOffset(t0) // s2 := TIB of the reeiverL s2, imtOffset(s2) // s2 := IMT entry for signature being dispathedL s1, signatureId // put signature id in hidden parameter registerMTLR s2 // move target address to the link registerBLRL // branh to it (setting LR to return address)Figure 1: Sequenes for virtual and IMT-based interfae dispath
// id1 < id2 < id3 < id4// t0 ontains the address of the reeiving objet ("this" parameter)// s1 ontains the interfae method signature id ("hidden" parameter)// LR ontains the return address in the aller//L s0, tibOffset(t0) // s0 := TIB of the reeiverCMPI s1, id2 // ompare hidden parameter to id of seond methodBLT L1 // if less than branh to (id1..id1) searh treeBGT L2 // if greater than branh to (id3..id4) searh treeL s0, offset2(s0) // load VMT entry for seond methodMTCTR s0 // move this address to the ount registerBCTR // branh to it (preserving ontents of the LR)L1: L s0, offset1(s0) // load VMT entry for the first methodMTCTR s0 // move this address to the ount registerBCTR // branh to it (preserving ontents of the LR)L2: CMPI s1, id3 // ompare hidden parameter to id of third methodBGT L3 // if greater than branh to (id4..id4) searh treeL s0, offset3(s0) // load VMT entry for the third methodMTCTR s0 // move this address to the ount registerBCTR // branh to it (preserving ontents of the LR)L3: L s0, offset4(s0) // load VMT entry for the fourth methodMTCTR s0 // move this address to the ount registerBCTR // branh to it (preserving ontents of the LR)Figure 2: A onit resolution stub with four entries.



Jalape~no optimizing ompiler to inline interfae alls andfurther redue the osts of dynami dispathing.interfae I { publi void foo(); }lass B implements I {void foo() {...}}lass C extends B {}lass A {void bar(I i, I i2) {if (I instaneof B) {i.foo();} else {i2.foo();}I i3 = (I) new B();i3.foo();}}Figure 3: Some example interfae usage patterns.Devirtualization is a well-known tehnique that onverts avirtual dispath to a statially-bound (diret) all when thetarget of the dispath an be uniquely determined at ompiletime. Similarly, the Jalape~no optimizing ompiler performsvirtualization, reduing an interfae invoation to a virtualmethod all.Consider, for example, the ode for method A.bar() in Fig-ure 3. This ode an be transformed as follows:1. The ompiler an virtualize the all to i.foo(), sineit an determine that at that program point, i must bea sub-lass of B. Therefore, i.foo() an be dispathedas a virtual method all to B::foo().2. The ompiler annot virtualize the all to i2.foo(),laking any onlusive information on the type of i2.3. The ompiler an �rst virtualize and then even devir-tualize the all i3.foo(), sine intra-proedural typeanalysis [27, 9℄ determines that i3 an only ontainobjets with onrete type B.The optimizing ompiler an inline devirtualized methodalls, virtual alls, and interfae invoations. The ompileran inline a devirtualized all diretly (without guarding),sine analysis has revealed the exat target. To inline se-leted potential targets of a virtual all, ompilers an per-form various forms of guarded inlining. The ompiler an de-ide whih targets to speulatively inline at a all site usingstati heuristis [13, 8℄, pro�le information [24, 21℄, and/orstati examination of the program's lass hierarhy [7, 11℄.

Jalape~no uses both lass tests and method tests [12℄ to per-form guarded inlining of virtual alls based on both lasshierarhy analysis and on-line pro�le information.10In addition to determining whih alls are legal to inline,the ompiler must identify a set of all sites as attrativeandidates to inline. Jalape~no's optimizing ompiler usesa mix of stati heuristis and on-line pro�le information tomake these deisions. The stati heuristis identify andi-dates based on size estimates of the aller and allee, anddata-ow properties known at the all site. Furthermore,the stati heuristis elet to perform a guarded inline of avirtual or interfae all only if analysis of the urrent lasshierarhy of the program reveals that there is only one possi-ble target for the all. Note that the adaptive optimizationsystem generally does not optimize a method until it be-omes a hot spot in the program's exeution. We expetmost dynami lass loading that a�ets suh a all site tohappen before Jalape~no optimizes and speulatively inlinesit.These stati heuristis will not identify many of the mostommon interfae methods as inline andidates. The mostommon interfaes (e.g. Serializable, Enumeration, et.)have many di�erent implementations. In general, a ompilerwould have to resort to ontext-sensitive inter-proeduralanalysis to virtualize or devirtualize all sites for methodsof these interfaes. Suh analysis usually osts too muhfor a JIT or runtime ompiler, whih must normally rely onless expensive, solely intra-proedural analysis. As a result,a JIT will likely fail to statially determine one target formany interfae alls.Jalape~no's adaptive optimization system solves this problemusing on-line pro�le-direted inlining to identify andidatesto be inlined with guards at hot all sites. Normally, the me-thod test guards inlined interfae methods, just as it guardsinlined virtual methods.11Pro�le-direted inlining naturally tends to minimize the over-head of onit resolution stub exeution. If a partiularonit resolution stub exeutes frequently, the adaptive op-timization system will tend to ag at least one target methodas \hot". The adaptive system heuristis would then likelyinline that method into hot all sites. This optimization willredue the frequeny of onit resolution stub exeution. Ifthe heuristis do not inline a hot target method, deeming it10If lass hierarhy analysis determines that a non-devirtualized all site an urrently only invoke a single tar-get method (but the allee method is not delared to be �-nal), then it ould be inlined without a guard by relying oninvalidation mehanisms suh as on-stak-replaement [23℄or ode pathing [26℄ to undo the inlining if a future lassloading event invalidates it. Neither of these reovery meh-anisms have been implemented in Jalape~no. However, Jala-pe~no does use pre-existene [12℄ as a partial substitute for afull-edged invalidation mehanism.11In exeedingly rare ases, the ompiler may speulativelyinline a method from a lass that annot be proven, at om-pile time, to implement the target interfae (for example,�gure 5). In this ase, the ompiler must insert a dynamitype hek to ensure that the reeiver implements the inter-fae before exeuting the inlined body.



Enumeration e = getEnumeration();while (e.hasMoreElements()) {use(e.next());}Figure 4: A ommon interfae idiom requiring a sin-gle dynami type hek.lass A {publi int foo() { ... }}lass B extends A implements I {}interfae I {publi int foo();}lass Test {int test() {I i = reateI();return i.foo();}I reateI() { return reateA(); }A reateA() { ... return new B(); }}Figure 5: An anomalous example; after inliningreateI, the ompiler an virtualize i.foo(), but an-not remove the dynami type hek to ensure thatthe objet referred to by i atually implements I.This situation an arise when the lass A was modi-�ed to no longer implement I after the lass �les forTest and B were produed.too big to inline, then its exeution ost likely dominatesoverhead imposed by the onit resolution stub.As disussed in setion 2, both guarded interfae invoationand the normal interfae dispath sheme require a dynamitype hek. The ompiler an redue the overhead of thistype hek in two ways. First, if the ompiler an use typeanalysis to statially verify that the reeiver implementsthe target interfae, the runtime hek an be eliminated.Seondly, the optimizing ompiler represents dynami typeheks as binary operators in the low-level intermediate rep-resentation used to drive ode motion and redundany elim-ination. If the ompiler an identify multiple type heks ofthe same objet against a partiular interfae, it an removethe redundant heks. Partial redundany elimination an,for example, hoist the loop-invariant type heks from theloop in �gure 4. Similarly, the ompiler will optimize redun-dant loads in the dispath sequene; the TIB base pointerload for objet e in the �gure an also be hoisted from theloop.As disussed in Setion 2, the virtual mahine spei�ationgenerates some fringe ases that the ompiler must handleorretly. For example, in Figure 5, the ompiler might su-

essfully virtualize an interfae all, but still fail to eliminatethe dynami type hek for the dispath. Suppose the om-piler analyzes Test.test(), with only intra-proedural in-formation and inlining. Further suppose the ompiler inlinesreateI into test(), but doesn't hoose to inline reateA()(perhaps beause it is too big). The ompiler an virtualizethe all to foo(), sine type propagation determines that iis a sublass of A. However, it annot remove the dynamitype hek, sine A doesn't implement I. The dynami typehek is required to detet and raise an InompatibleClass-ChangeError if reateA should ever return a sublass of Athat does not implement I.
7. EXPERIMENTAL RESULTSThis setion empirially assesses four interfae method dis-path shemes: a na��ve implementation, two itable variants,and IMTs. It also explores the e�etiveness of the vari-ous optimizing ompiler tehniques desribed in Setion 6.The next subsetion preisely desribes the implementationdetails of the four alternative shemes. The following sub-setion presents miro-benhmark results that fous on thediret osts of virtual and interfae dispath under eah al-ternative sheme. The third subsetion desribes our suiteof larger benhmarks and presents data on the dynami fre-queny of interfae invoation in eah program. The �nalsubsetion �rst assesses the e�etiveness of the ompilertehniques for avoiding interfae dispathing entirely, andthen presents data omparing the various dispathing teh-niques fousing on their impat on appliation runtime andthe spae impliations of eah alternative.All performane results reported below were obtained onan IBM RS/6000 Enterprise Server F80 running AIX v4.3.The mahine has 4GB of main memory and six 500MHzPowerPC RS64 III proessors eah with 4MB of L2 ahe.
7.1 Interface Dispatch ImplementationsThe alternative implementations of interfae method dis-path are as follows.� Class Objet Searh: a na��ve implementation of theinvokeinterfae spei�ation. On every interfae me-thod dispath, the VM invokes a runtime servie to�nd the target method. The servie routine takes thereeiver objet and a desription of the desired inter-fae method, and searhes the lass hierarhy to �nda mathing virtual method. The searh routine alsoperforms the required dynami type hek.� Searhed ITables: the VM searhes a per-lass list ofitables to �nd the appropriate itable, and then indexesinto the itable to �nd the target method. On every in-terfae method dispath, a runtime servie routine isinvoked to �nd the desired itable. The servie rou-tine takes the reeiver objet and the id of the desiredinterfae. It searhes the lass's list of itables (reah-able from the TIB of the objet); if it �nds the itablethen it simply returns it. If it fails to �nd the itable,then it must perform a dynami type hek to ensurethat the lass atually implements the interfae. As a



side-e�et of performing the dynami type hek, theitable for the target interfae is added to the lass's listof itables. The searh routine employs a move-to-frontalgorithm [14℄ to exploit temporal loality of interfaeusage and partially mitigate the searh overhead whena lass implements a large number of interfaes.� Diretly Indexed ITables: a per-lass array of itables isloaded from the TIB and indexed into by interfae id to�nd the appropriate itable, whih is then indexed intoto �nd the target method. This is one of the interfaedispathing shemes used in the CACAO JVM [29℄.The interfae dispath must be preeeded (either atompile-time or at run-time) by a dynami type hekto ensure that the lass of the reeiver objet atuallyimplements the target interfae. As a side-e�et, thedynami type hek adds the itable for the interfae tothe lass's itables array. This mehanism ensures thatthe required type hek has been performed for everypopulated itable.� IMT : interfae method tables as desribed in Setion 5.As in the diretly indexed itables, the IMT is lazily ini-tialized as a side-e�et of dynami type heking. Datais reported for two di�erent IMT sizes: 5 entries and40 entries (IMT-5 and IMT-40).The fat that Jalape~no is implemented in Java adds an extraindiretion of overhead to the itable and IMT dispath im-plementations. The Jalape~no TIB is implemented as a Javaarray in the run-time system. As suh, the TIB itself mustonform to the objet model, like any other Java objet inthe VM. As a result, Jalape~no does not have the ability togrow the TIB in two diretions. So, Jalape~no annot ref-erene two variable-size tables (eg. the VMT and IMT, orVMT and itable list) with just one pointer in the objetheader. So, in all shemes desribed, the urrent implemen-tation adds an extra indiretion from a TIB entry to aquirethe �rst level of interfae dispath data struture. We ouldeliminate this extra indiretion by irumventing the Javaobjet model for TIBs, and allow these strutures to growin two diretions. We evaluate the ost of the extra indi-retion with a mirobenhmark in the next setion. A JVMimplemented in C would not fae this diÆulty.
7.2 Micro-benchmarksThis Setions presents several miro-benhmarks to om-pare the diret osts of interfae and virtual dispathing inJalape~no. The ore of eah miro-benhmark onsists of aloop that in eah iteration performs a method invoation 20times. The loop exeutes 1,000,000 times, and the total walllok time spent exeuting the loop is reported. Thus, theseresults inlude the ost of the method body, and so providean upper bound on the ost of interfae dispath. Methodinlining was disabled for these experiments.The miro-benhmarks exerise three ategories of invoa-tion: virtual method invoation, interfae invoation wherethe interfae has only one method, and interfae invoationwhere the interfae has many (100) methods. The �nal at-egory illuminates the osts of onit resolution stubs.

The miro-benhmarks all one of two target methods. The�rst target (Trival Callee) simply returns the integer on-stant 1. For this trivial method, Jalape~no's optimizing om-piler applies leaf method optimizations whih avoid the nor-mal method prologue and epilogue sequenes. In fat, thegenerated ode for the allee method ontains only two ma-hine instrutions. The seond example (Normal Callee) in-vokes a slightly more omplex target method. This alleemethod onditionally either returns 1 or invokes anothermethod, based on the value of a stati �eld. The benh-mark sets the value of this stati �eld at runtime suh thatthe method always returns 1; however, the ompiler annotstatially fold the branh and does not apply leaf methodoptimizations.Table 1 presents the results of these experiments. In ad-dition to the four interfae dispathing shemes previouslydesribed, a �fth, Embedded IMT, is also inluded just forthe miro-benhmarks. The Embedded IMT on�gurationsimulates a runtime system in whih the extra indiretionimposed by Jalape~no's restrition to using Java objets forTIBs ould be eliminated by growing the TIB in both dire-tions, thus supporting a variable-size VMT and a �xed-sizeIMT that is only present for those lasses that atually usethe interfaes they implement. Based on the di�erenes be-tween the Embedded IMT and IMT data, it appears thatthe extra dependent load in the dispathing sequene addsapproximately two yles to the dispathing ost. This isfurther supported by the observation that the primary dif-ferene between a onit-free IMT dispath and a dispaththrough a diretly indexed itable is a single dependent load,and these data points also di�er by approximately two y-les.Overall, a onit-free IMT-based interfae method dispathis the most eÆient mehanism, followed losely by diretlyindexed itables. The di�erene between the onit-free dis-path through an Embedded IMT and a virtual dispath isinsigni�ant (0.1 yles). The hardware suessfully over-laps the extra register move immediate to set up the hiddenparameter with other operations, resulting in almost zeroobserved overhead.Dispath through a onit resolution stub is surprisinglyinexpensive. The ost of dispathing through a onit res-olution stub (even one with 20 entries) is roughly equivalentto the ost of a prologue/epilogue sequene. The di�erenebetween Trivial Callee and Normal Callee on virtual is 11 y-les; the di�erene on IMT-5 between a 1 method interfaeand 100 method interfae is 12 yles. IMT-based dispathwith onits is not as eÆient as interfae dispath througha diretly indexed itable. But, in a fairly typial ase wherethe allee is non-trivial and the onit stub only has to me-diate between a small number of andidate methods (IMT-40, 100, Normal), the di�erene is only 5 yles.Both Searhed ITables and Class Objet Searh are relativelyslow interfae dispathing mehanisms. But only Class Ob-jet Searh is truly pathologial with osts of 214x and 92xgreater than a virtual dispath. An interfae dispath usingSearhed ITables is only 9.5x and 4.6x slower than the equiv-



Dispathing Mehanism Number of Methods in Interfae Trivial Callee Normal Calleevirtual Not appliable 8.13 19.18Embedded IMT-5 interfae with 1 method (no IMT onit) 8.23 19.25Embedded IMT-5 interfae with 100 methods (20 element stub) 20.25 32.28Embedded IMT-40 interfae with 1 method (no IMT onit) 8.23 19.25Embedded IMT-40 interfae with 100 methods (2 or 3 element stub) 14.23 27.40IMT-5 interfae with 1 method (no IMT onit) 10.18 21.20IMT-5 interfae with 100 methods (20 element stub) 22.20 32.23IMT-40 interfae with 1 method (no IMT onit) 10.18 21.20IMT-40 interfae with 100 methods (2 or 3 element stub) 18.20 28.23Diretly Indexed ITables interfae with 1 method 12.18 23.20Diretly Indexed ITables interfae with 100 methods 12.18 23.20Searhed ITables interfae with 1 method 77.45 88.50Searhed ITables interfae with 100 methods 77.45 88.50Class Objet Searh interfae with 1 method 352.55 362.73Class Objet Searh interfae with 100 methods 1,743.13 1,759.48Table 1: Cost, in lok yles, of round-trip method dispath in Jalape~no, under eah alternative interfaedispathing mehanism.alent virtual dispath. This ould potentially be improvedfurther with inline ahing tehniques.
7.3 Application CharacteristicsTable 2 desribes the appliation benhmark suite, om-prising the SPECjvm98 [41℄ benhmarks and several largerodes. Improving interfae invoation will only help anappliation with non-negligible overhead due to interfaes.Therefore, let us begin by trying to quantify the importaneof interfae method invoation in eah benhmark. In thisexperiment, the system does not employ the tehniques de-sribed in this paper; in partiular, the ompiler does notvirtualize, devirtualize, or inline interfae invoations. How-ever, it may inline and devirtualize stati, speial, and vir-tual alls.Using instrumentation apability in Jalape~no's adaptive op-timization system, the optimizing ompiler inserted ountersinto the generated ode to ount and ategorize the dynaminon-inlined invoations during benhmark exeution.12 Allmaro-benhmarks run in a testing harness that exeutes thebenhmark ten times, printing and learing the ounters atthe start of eah run.Figure 6 shows the rate of non-inlined invoations per seondon the tenth run for eah of the four di�erent invoke byte-odes. The bar for ompress appears invisible beause afterinlining, ompress makes only 249 method alls per seond.Based on this data, we an expet little bene�t on mpegau-dio and absolutely no bene�t on ompress and mtrt. In fat,both ompress and mtrt make exatly one interfae methodinvoation per iteration. Therefore, results for ompress,mpegaudio, and mtrt will not be reported hereafter. Thepotential for improvement on db, opt-ompiler, HyperJ andDOMCount appears signi�ant; alls to interfae methods12Only invoations in methods that are exeuted frequentlyenough to be seleted for optimizing reompilation will beounted. However, the alling behavior of infrequently exe-uted methods should not substantially impat performane.

represent a substantial portion of their non-inlined invoa-tions.
7.4 Application PerformanceFigure 7 provides data on the e�etiveness of the variousompiler tehniques to avoid performing a full interfae dis-path. It shows the dynami perentage of interfae invoa-tions handled by eah dispathing mehanism. The systemdispathes eah interfae method all by one of the followingmehanisms:� Virtualized and inlined : Based on the results of typeanalysis, the optimizing ompiler virtualized the inter-fae all. The ompiler then inlined the virtual all.With the exeption of a tiny fration of the virtualizedand inlined alls in HyperJ, the ompiler onsistentlyfurther devirtualized, and ould omit the method testto guard the inlined method body.� Virtualized : The optimizing ompiler sueeded in vir-tualizing the all through type analysis, but was ei-ther unable or unwilling to inline it. The ompilermight not inline a virtual all for any of number ofreasons. Prime andidates inlude: a) the adaptivesystem ompiled the aller method at its lowest opti-mization level, with all inlining disabled, b) the inlin-ing heuristis deem the allee method too big to inlineinto the alling ontext given the all site's dynamifrequeny, and ) the all graph pro�le identi�es multi-ple possible targets at a dynamially polymorphi allsite, but does not identify any of the reeivers as adominant target pro�table to inline.� Stati guarded inline: The optimizing ompiler failedto virtualize the all with type analysis. But, at thetime the method was optimized, the set of loaded lassesde�ned only one implementation of the interfae me-thod. The ompiler, based exlusively on size heuris-tis (without pro�le information), speulatively inlined



Benhmark Desription Classes Methods Byteodesompress Lempel-Ziv ompression algorithm 48 489 19,480jess Java expert shell system 176 1101 35,316db Memory-resident database exerises 41 510 20,495java JDK 1.0.2 Java ompiler 176 1496 56,282mpegaudio Deompression of audio �les 85 712 51,308mtrt Two-thread raytraing algorithm 62 629 24,435jak Java parser generator 86 743 36,253SPECjbb2000 simulated transation proessing [42℄ 132 1778 73,608opt-ompiler Jalape~no optimizing ompiler 414 5030 139,004HyperJ Hyper-J [34, 25℄ omposition tool 421 5003 136,957DOMCount Xeres v1.2.3 [40℄ XML parser 142 1880 88,134Table 2: Benhmark harateristis. For eah benhmark, the Table gives the number of lasses loaded, thenumber of methods ompiled at runtime, and the number of byteodes ompiled at runtime. The statistisinlude both appliation ode and library ode loaded at runtime. The �rst seven rows omprise the suite ofSPECjvm98 benhmarks.
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Figure 6: Dynami rate of non-inlined invoations ategorized by invoke byteode. Optimizing interfae invo-ation will only improve the performane of those appliations with a signi�ant rate of interfae invoation(the bottom white portion of eah bar).
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Figure 7: Dynami perentage of interfae invoations handled by eah dispath mehanism.the single stati target, guarded by a runtime hek.13� Pro�le-direted guarded inline: Class hierarhy analy-sis determines that the interfae method has multiplepossible implementations. However, the online pro�leinformation identi�es one or more dominant targetsfor the all site. Based on this information, the om-piler speulatively inlined the dominant target(s) witha runtime guard.� Mispredited pro�le-direted guarded inline: The run-time guard at a pro�le-direted inline site failed, andthe ode fell bak to an IMT dispath. This ourseither due to inaurate pro�le information, or at allsites that have one or more dominant targets but o-asionally invoke other targets. In other words, theall site is dynamially polymorphi, but the ompilerdoes not inline all reeivers.� Interfae dispath: No other tehnique applied, andthe ompiler resorted to a full-blown run-time methoddispath.The mix of dispathing mehanisms varies widely from pro-gram to program. For example, the fration of invoa-tions dispathed as full-blown run-time alls ranged from 0%to 73%. In several ases, type analysis e�etively virtualizedinterfae invoations, overing 89% on SPECjbb, 76% on opt-ompiler and 18% on HyperJ. We expeted this on the opt-ompiler, sine we initially implemented the optimization to13In priniple, this runtime hek ould fail, if a lass loadedin the future de�nes a new reeiver method for the all site.However, in our experiments, this ase never ourred. Theadaptive system delays ompilation and optimization of eahmethod until pro�le information indiates the method is hot.In pratie, by the time the adaptive system ags a methodas hot, all relevant lasses have been loaded.

handle the most ommon patterns of interfae usage in ourown ompiler. However, we were pleasantly surprised withthe virtualization suess on HyperJ and SPECjbb. Notethat in these results, the optimizing ompiler relies almostexlusively on intra-proedural analysis. We expet evenbetter virtualization and devirtualization results using moreaggressive inter-proedural type analysis.The stati guarded inlining heuristi sueeded for only threeof the benhmarks; it had the most impat on HyperJ, whereit applied to 21% of the interfae invoations. In pratie,we expet the stati heuristi to apply to programs that useonly a single implementation of an interfae from a generalomponent arhiteture or library. The stati heuristi doesnot work for the more heavily used interfaes in the Javastandard library, suh as java.util.Enumeration; the om-piler must rely on pro�le-direted inlining or type analysisto handle these ases.Of all the benhmarks, jess stands out for its high (19%)rate of mispredited pro�le-direted inlined alls. We inves-tigated this phenomenon a bit further, and disovered thatjess ontains one frequently exeuted interfae invoationall site. This site alls an interfae method with 96 im-plementations. Of these 96, the all site invokes 14 distintreeivers during the size 100 benhmark run. The top fourmost frequent targets aount for 52%, 18%, 13%, and 8%of the dynami invoations, respetively. Eah of the othertargets aounts for less than 3% of the dynami invoations.The ompiler heuristis inline only the two most frequentlyinvoked targets. Thus, any alls to the other 12 targets atthat all site are mispredited.Figure 8 depits the performane impat from alternativeinterfae dispathing mehanisms. The Figure shows thatthe na��ve ClassObjetSearh sheme an indeed signi�antly
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Figure 8: Performane impat of alternative interfae method dispathing shemes. Speeds are normalizedto that of SearhedITable.hurt performane, slowing down HyperJ by a fator of 10.Among the two itable variants and the two IMT variants,eah performs the best on at least one benhmark, and rel-ative performane varies depending on the appliation.The interfae dispath mehanism impats performane moston the three largest benhmarks, opt-ompiler, HyperJ, andDOMCount. On opt-ompiler and HyperJ, diretly-indexeditables and the IMTs signi�antly outperform the searheditable. Several fators ould aount for this di�erene;namely, polymorphi all sites that defeat the move-to-frontsearh heuristi, along with fairly rih interfae hierarhies.Note that the searhed itable also under-performs on jess,whih was previously disussed as having a hot polymorphiall site.On the other hand, searhed itables outperform the otherson the DomCount XML parser benhmark. Possibly, thesearhed itable wins by ombining the dynami type hekwith the interfae dispath. Setion 8 disusses a possibleenhanement to the IMT dispath sequene to gain the samebene�t.The db performane result is anomalous, sine Figure 7 re-ports that pratially all interfae alls were inlined. Wehave oasionally observed unstable db performane on Jala-pe~no, possibly due to instability of TLB onits resultingfrom di�erenes in memory layout [38℄.Regarding IMT onits: on HyperJ, DOMCount and opt-ompiler, 45%, 16%, and 1.5%, respetively, of dispathesthrough the IMT went through a onit resolution stub.The other benhmarks never dispathed through onit res-olution stubs.

Figure 9 shows the spae osts of the alternative interfaedispath shemes. The �gure shows three ategories of spaeusage:1. Data Strutures: This ategory represents the spaealloated to data strutures introdued to support in-terfae dispath. These data strutures inlude itables,IMTs, itable ditionaries, and TIB slots holding point-ers to interfae dispath strutures.2. Conit Stubs: This ategory represents the spae al-loated to onit resolution stub ode in the IMTvariants.3. Invoation Sequene: This ategory represents spaealloated for inline ode inserted into ompiled ma-hine ode to support interfae invoation. This in-ludes inline ode for dynami type heks, as well asinlined interfae dispath sequenes.The na��veClassObjetSearh sheme introdues no extra datastruture overhead, over and above lass loader data stru-tures required for other purposes.The �gure shows that in most ases, the spae alloated forthe inline invoation sequene exeeds spae osts for theother two ategories. Jess is an exeption; as disussed pre-viously, jess relies on few (only one hot) interfae all sites,but uses a fairly large number of lasses whih implementan interfae. This results in substantial spae osts for thediret itable sheme. IMTs with 40 entries waste spae om-pared to IMTs with only 5 entries, sine most IMT entriesare blank.
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Figure 9: Spae usage of alternative interfae method dispathing shemes. Five bars are plotted for eahbenhmark, showing from left to right the spae usage for Class Objet Searh, Searhed ITables, DiretlyIndexed ITables, IMT-5, and IMT-40. Eah bar is subdivided to show the ode spae onsumed by theinterfae dispathing sequene, the ode spae taken by onit resolution stubs, and the data spae used forsupporting data strutures. The �rst set of bars labeled Jalape~no JVM reports the spae used to supportinterfae dispathing for the approximately 900 lasses that omprise Jalape~no itself. This �xed spae ostwas deduted from the bars for eah benhmark, so that the bars for eah benhmark represent the spaeusage indued by the appliation ode over and above the ost for a bare Jalape~no VM.HyperJ stands out for its large spae usage. Both IMT-5and IMT-40 pay a signi�ant spae ost for onit resolu-tion stubs. It turns out that some lasses in HyperJ imple-ment interfaes with over 100 methods. For these ases, nooloring sheme will avoid saturating even the 40-slot TIB,resulting in onits at every TIB slot. So, both IMT-40 andIMT-5 result in the same number of total targets embodiedin onit resolution stubs. However, IMT-40 results in on-it stubs with fewer entries, resulting in improved run-timeperformane in Figure 8. HyperJ also demonstrates some ofsalability problems with diret itable dispath, as the diretitable data struture spae ost is signi�ant. However, thisost is dominated by the inlined invoation sequene spae;so, the diret itable sheme appears to be pratial on thisplatform for at least medium-sized appliations.
8. FUTURE WORKThe IMT mehanism enjoys �xed-size tables, at the ost ofextra spae and time for onit resolution stubs. Jalape~noould improve on its urrent (trivial) algorithm for sele-tor oloring by analyzing o�-line a olletion of standardJava lasses to disover sets of interfaes that are simulta-neously implemented by lasses. Based on this informationand pro�le data, a standard register alloation algorithmould minimize the expeted dynami number of ollisions ina �xed IMT size. During JVM exeution new (unexpeted)interfae method signatures ould be assigned to empty (orinfrequently-used) slots in an expanded IMT that would onlybe assoiated with those lasses that implemented the un-

expeted interfaes.This approah would naturally be limited by the set of lassesavailable for o�-line analysis. Alternatively, the adaptive op-timization system ould olor interfae method signaturesbased on on-line pro�le information, although removing theassignment of a seletor to a olor on-line ould entail sig-ni�ant ode-pathing.An anonymous reviewer, borrowing an idea from polymor-phi inline ahes, proposed folding the dynami type hekinto the onit resolution stubs. The stub shown in Fig-ure 2 assumes that the only possible values for the hiddenparameter are the four interfae method signatures that itwas generated to handle. The stub ould instead be gener-ated to treat unexpeted values of the hidden parameter asa signal that a dynami type hek needs to be performedand the stub extended.This approah would require all interfae method dispathesto go through onit resolution stubs, even if only one me-thod was atually mapped to a slot. Although the expetedost of a stub and a dynami type hek are similar, theonit stub is invisible to the ompiler and thus not easilyamenable to optimizations suh as ode motion and partialredundany elimination. On the other hand, in our experi-ments Jalape~no's optimizing ompiler was able to eliminatethe dynami type hek from fewer than 20% of the interfaealls that were atually dispathed through the IMT.



While our pro�le-direted inlining handles interfaes as ef-fetively as virtual alls, both su�er the overhead of a run-time guard. We are also urrently implementing an inval-idation mehanism to allow us to omit the guards on in-lined interfae and virtual all sites, in order to mitigate thepenalty of failed devirtualization.
9. CONCLUSIONSAn early onferene paper on the Jalape~no runtime [2℄ ad-mitted that \[w℄e don't make muh use of interfaes be-ause the performane overhead was too high to use it to allfrequently exeuted methods." This was partiularly damn-ing sine part of the stated rationale for writing Jalape~noin Java was the hope that doing so would \give us moreexperiene with the language, help us identify some of itsproblemati features, and give some insight into how to im-plement them eÆiently." An anonymous reviewer observed\The omment about not using interfaes is sad.And invites the question: if they had been used,would the performane of interfae invoationsnow be better?"That remark provided the impetus for the work reportedhere.This paper investigates three potential soures of interfaeineÆieny: impliit dynami type heking, atual interfaemethod dispath overhead, and possible opportunity ostsof forgone optimizations. Type heking overhead is real,but quite small, and an often be optimized away (usuallyin onjuntion with other optimizations). The interfae me-thod table (IMT) mehanism for dispathing interfae meth-ods is only a few yles more expensive than its ounterpartfor virtual methods. The third problem proved illusory: theJalape~no optimizing ompiler performs similar optimizationat both virtual and interfae method dispath sites.A number of di�erent interfae dispath mehanisms wereompared. Both IMTs and diret itables provide good per-formane with a moderate spae overhead. Only the naivelass-objet searh sheme provided truly atroious perfor-mane.Although early implementations of Java interfaes did notperform well, their reputation as being inherently ineÆientis undeserved. A Java programmer, or program generatingsystem, should feel free to fully exploit interfaes withoutonern for performane degradation.
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