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ABSTRACT

Single superclass inheritance enables simple and efficient
table-driven virtual method dispatch. However, virtual me-
thod table dispatch does not handle multiple inheritance
and interfaces. This complication has led to a widespread
misimpression that interface method dispatch is inherently
inefficient. This paper argues that with proper implemen-
tation techniques, Java interfaces need not be a source of
significant performance degradation.

We present an efficient interface method dispatch mecha-
nism, associating a fixed-sized interface method table (IMT)
with each class that implements an interface. Interface me-
thod signatures hash to an IMT slot, with any hashing colli-
sions handled by custom-generated conflict resolution stubs.
The dispatch mechanism is efficient in both time and space.
Furthermore, with static analysis and online profile data, an
optimizing compiler can inline the dominant target(s) of any
frequently executed interface call.

Micro-benchmark results demonstrate that the expected cost
of an interface method call dispatched via an IMT is com-
parable to the cost of a virtual method call. Experimental
evaluation of a number of interface dispatch mechanisms
on a suite of larger applications demonstrates that, even for
applications that make only moderate use of interface meth-
ods, the choice of interface dispatching mechanism can sig-
nificantly impact overall performance. Fortunately, several
mechanisms provide good performance at a modest space
cost.

1. INTRODUCTION

Multiple inheritance adds power, expressiveness, and per-
haps complexity and controversy to an object-oriented pro-

gramming model. Whether multiple inheritance simplifies
or complicates the programming model remains a matter
of debate. The designers of Java opted to avoid potential
problems by providing only a limited form of multiple in-
heritance, with the interface construct. Java allows only
single superclass inheritance; a class can inherit method im-
plementations from at most one direct superclass. However,
a class may implement any number of interfaces. Each class
must explicitly provide implementations of the method sig-
natures declared by its interfaces.

Single inheritance enables simple and efficient virtual me-
thod dispatch using wirtual method tables (VMTs). How-
ever, a single VMT cannot support interface method dis-
patch due to potential multiple inheritance. This has led
to a widespread impression that interface method dispatch
in Java is inherently inefficient. A naive interface dispatch
mechanism can indeed introduce tremendous overhead. For
example, Vallee-Rai reported that the Kaffe JIT Compiler
invokeinterface bytecode costs approximately 50 times an
invokevirtual [43]. The initial implementation of interface
invocation in the Jalapeno JVM performed similarly poorly
(see Section 7).

There are three sources of potential inefficiency with inter-
face methods: dynamic type checks, method dispatch, and
inhibition of compiler optimizations. This paper describes
techniques to overcome all three of these obstacles.

Section 2 considers the semantics of Java interfaces, eluci-
dating the dynamic type checking requirements imposed by
the Java virtual machine specification. Section 3 reviews
the Jalapeno virtual machine, including its mechanism for
quickly determining if a class implements an interface.

Section 4 describes prior schemes for interface method dis-
patch and more generally for dispatching methods in the
presence of multiple inheritance or dynamic typing. Then,
Section 5 presents Jalapeno’s scheme for interface method
dispatch. The JVM associates a small, fixed-sized interface
method table (IMT) with each class. The system hashes
each interface method signature to an IMT slot, with hash
collisions handled by custom-generated conflict resolution
stubs. In the usual case (no collision), the runtime cost of a



call through an interface is almost identical to a virtual me-
thod call. An IMT collision adds a little additional overhead
(roughly the same as a method prologue and epilogue).

Interface calls might hamper inlining or force extra run-
time tests to guard inlined method bodies. Section 6 de-
scribes Jalapeno’s mechanisms for inlining interface calls.
Jalapeno’s adaptive optimization system uses the same cri-
teria for inlining interface method calls as it does for vir-
tual calls. Moreover, the compiler usually employs the same
runtime checks to guard both types of inlined method bod-
ies. This section also shows how an optimizing compiler
can often eliminate the dynamic type check imposed by the
invokeinterface bytecode.

Section 7 presents experimental results evaluating the per-
formance impact of different interface dispatching mecha-
nisms. The experiments consider four alternatives: a naive
implementation of the language specification, two variations
on itables, and IMT-based dispatch. Micro-benchmark re-
sults verify that both IMTs and one of the two itable schemes
are not significantly more expensive than virtual method
dispatch. Results with a suite of larger applications exam-
ine the space and time tradeoffs of the four alternatives.
Overall, IMT-based dispatch and one of the itable schemes
achieve the best runtime performance, and have reasonably
low space costs. The experiments also illustrate that even
for applications that make only moderate use of interface
methods, the choice of interface dispatching mechanism can
significantly impact bottom line performance.

Section 8 describes several ways in which the implementa-
tion of IMT-based dispatch in Jalapeno could be improved.
Section 9 concludes that performance concerns should not
deter programmers from using Java interfaces.

2. JAVA INTERFACES

The Java interface construct provides a limited form of mul-
tiple inheritance [20]. A Java interface is a type whose mem-
bers are all either abstract methods or constants. A proper
Java class may implement zero or more interfaces, while it
extends exactly one class." Additionally, an interface can
extend other interfaces.

Most JVM implementations provide virtual method dispatch
through a table a associated with each class. This wvirtual
method table (VMT) holds a reference to the implementa-
tion of each method declared by the class. When the JVM
loads a class A, it assigns each virtual method in A a unique
offset in A’s VMT. Methods inherited from a superclass re-
tain the unique offset assigned by the superclass. So, each
new class that extends A inherits A’s VMT and offsets for in-
herited methods. If a class overrides an inherited method, it
simply overwrites the VMT entry of the inherited method’s
offset. The net result is that for a method foo() of class
A, a reference to a suitable foo() implementation resides at
the same offset in the VMT of class A as in the VMT for any
subclass of A. Furthermore, the VM can assign VMT offsets
densely, to minimize the size of each VMT.

!The one class with no superclass, java.lang.0Object, is not
proper in this sense.

Interfaces and multiple inheritance preclude this dispatch
mechanism. Suppose foo() is an abstract method of an
interface I. If two otherwise unrelated classes A and B both
implement I, then A and B must each provide a suitable
foo() method. However, there is no guarantee that A.foo()
and B.foo () will have been mapped to the same VMT offset,
since A and B share no inheritance relationship.

The interface method dispatch bytecode, invokeinterface,
also carries a greater runtime verification burden than does
its virtual counterpart, invokevirtual. The first time the
latter bytecode executes, it may force the specified class
to be loaded (with all of the potential for raising excep-
tions that this may entail). Thereafter, the JVM verifier
guarantees that “this” object for the virtual method will
have a suitable method at the appropriate slot in its VMT.
Conversely, the verifier allows an invokeinterface call to
an object of a class that does not actually implement the
interface. Should this happen, the JVM must throw an
IncompatibleClassChangeError.

Any implementation of interface dispatch in Java should
not compromise other optimizations enabled by Java’s sim-
ple object model. For example, Jalapeno exploits a two-
word object header for fast synchronization, hash codes, and
garbage collection. For this reason, some multiple inheri-
tance mechanisms employed for statically typed languages
with more complex object models (notably C++ [39]) are
not acceptable solutions for Java interface methods.

3. THE JALAPE NO JVM

Jalapenio [1] is a research Java virtual machine targeting
server applications. It is written in Java [2]. This design de-
cision allows Java optimization techniques, including those
described here, to apply to both application code and to
the JVM’s compilers, adaptive optimization system, thread
scheduler, garbage collector, and other subsystems.

Jalapeno employs a compile-only strategy; it compiles each
method to native code before the method executes. Two dif-
ferent compilers address distinct design points. The baseline
compiler produces poor quality code quickly. The optimiz-
ing compiler provides several levels of optimization for meth-
ods deemed to require better performance. All optimization
levels include linear scan register allocation [35] and BURS-
based instruction selection [36]. Optimization level 0, the
lowest, consists mainly of a set of on-the-fly optimizations
performed during intermediate representation (IR) gener-

2This error is specified as a Runtime Ezception in the second
edition of the virtual machine specification [32], but not in
the first edition [31]. A source-to-bytecode compiler would
refuse to compile such a program, but if one file changes
after an initial compilation, subsequent compilation of the
file could create the offending class files (hence the name
of the exception). Something similar could happen with
invokevirtual, but, in that case, the incompatibility would
be detected at class-loading. Since the interfaces a class
implements are not necessarily loaded with the class itself,
and since interfaces can extend other interfaces, the fact that
a class does, or does not, implement an interface cannot be
determined until the first time an instance of the class is
tested against an interface.



ation. Level 1 augments level 0 with aggressive inlining
(driven by both static heuristics and online profile infor-
mation) and a number of other local and intra-procedural
flow-insensitive optimizations. Level 2 augments level 1 with
a suite of intra-procedural static single assignment (SSA)
based optimizations.

Jalapeno’s adaptive optimization system [5] maintains sta-
tistical samples of the dynamic call graph. Using this infor-
mation it schedules frequently called and/or computation-
ally intensive methods for recompilation at an appropriate
level of optimization. The adaptive system also relies on the
on-line profile data to guide inlining decisions.

Jalapefio supports a variety of configurations; this paper
assumes the following configuration. The JVM runs on a
PowerPC-based SMP running the AIX operating system. It
uses a parallel, non-generational copying garbage collector.
The optimizing compiler statically compiles the methods of
system classes (at optimization level 2), as part of Jalapefio’s
boot image. The baseline compiler initially compiles each
application method just before the method executes for the
first time. The adaptive optimization recompiles hot meth-
ods for improved performance.

Objects in Jalapeno each have a two word header. The first
header word points to a Type Information Block (TIB) for
the type of the object. The TIB is a Java array of objects 3.
A TIB consists of a fixed-size header section, and a variable-
size VMT. The first slot of a TIB header contains a refer-
ence to an object that describes the type. Three more slots
are used to provide an efficient implementation of dynamic
type checking [3]. As discussed in the previous section, the
test that the class of an object implements an interface con-
tributes to the overhead of using interface methods. One of
these three TIB slots points to a data structure  an array
of bytes called an Implements Trits Vector (ITV) — that
allows Jalapeno to answer just such questions quickly. Each
interface is assigned a unique integer index into the ITV.
Consider the ITV for a class C, supposing interface I has
been assigned ITV index n. The value of C’s ITV entry at
index n caches the result of a test that C implements I. This
ITV entry holds 0 if C is known to mot implement the I, 1
if C does implements I, and 2 if the test has not yet been
made.

As there is no a priori bound on the number of interfaces
that a JVM may encounter during its execution, the JVM
must have the ability to grow the ITVs. To this end, the im-
plementation logically partitions the ITV into two sections.
The first section does not require an array bounds check,
while the second section requires a check in case the ITV in
question needs to grow. Those interfaces with indices less
than the initial size of all ITVs never require a bounds check.

In any event, the first test that a class implements an inter-
face is moderately expensive. However, subsequent tests for
the same class and interface obtain the cached result of the
first test from the class’s ITV fairly cheaply.

3Some of the performance implications of requiring the TIB
to be a legal Java array are considered in Section 7.4

4. PRIOR TECHNIQUES FOR INTERFACE
DISPATCH

The first subsection describes interface tables (itables), prob-
ably the most commonly used mechanism for interface me-
thod dispatch in high performance Java implementations.
The problem of dispatching Java interface methods is closely
related to that of virtual method dispatch in other object-
oriented languages with dynamic typing. The following two
subsections review previous work in caching and method sig-
nature (selector) indexed dispatch tables and describe how
these techniques have been adapted for Java. Finally, the
last subsection discusses mechanisms to implement virtual
method dispatch in the presence of multiple inheritance in
C++ that are less amenable to adaptation to Java.

4.1 Interface tables

An itable is a virtual method table for a class, restricted to
those methods that match a particular interface the class im-
plementation. To dispatch an interface method, the system
must first locate the itable that corresponds to the appropri-
ate class/interface pair. The JVM can then load the desired
target method from a known offset in this itable. Typi-
cally, the system stores itables in an array reachable from
the class object. Sometimes a JIT compiler can determine
statically what itable applies at a particular interface me-
thod invocation site. If not, it must search for the relevant
itable at dispatch-time [37, 17]. In a straightforward imple-
mentation, search time increases with number of interfaces
implemented by the class. However, most systems augment
this basic searched itable approach with some form of itable
cache or move-to-front algorithm [14] to exploit temporal
locality in itable usage to reduce expected search times.

The CACAO JVM [29] implements a variant of the basic
itable scheme that avoids a dispatch-time search for the right
itable. Rather than storing a class’s itables in a list that
must be searched, it maintains an array of itables for each
class indexed by interface id. This (mostly empty) array
grows down from (the CACAQO analog of) the TIB, thus
making it easily accessible for dispatching. To dispatch an
interface method, CACAO simply loads the TIB from the
object, loads the itable for the interface at a constant offset
in the TIB, and obtains a pointer to the callee code from
a constant offset into the itable. With this mechanism, an
interface method dispatch introduces only one more depen-
dant load than a virtual method dispatch.

To somewhat reduce the space overhead of arrays of directly
indexed itables, CACAQO can safely truncate the interface
table for a class to end with its last non-empty entry, since
empty entries will never be accessed. This optimization
eliminates space overhead for classes that don’t implement
any interfaces. Nevertheless, in non-trivial programs, the
interface tables for classes that implement any interface will
be large and mostly empty, since most classes implement
only a tiny fraction of the total set of interfaces.

4.2 Caching

Early Smalltalk-80 systems used dynamic caching [30] to
avoid performing a full method lookup on every message
send. The runtime system began method lookup by first



consulting a global hash table (keyed by a class/selector®
pair) that cached the results of recent method lookups. Al-
though consulting the hash table was significantly cheaper
than a full method lookup, it was still relatively expensive.

Therefore, later Smalltalk systems added inline caches [13]
as a mechanism to mostly avoid consulting the global cache.
In an inline cache, the call to the method lookup routine is
overwritten with a direct call to the method most recently
called from the call site. The prologue of the callee method
is modified to check that the receiver’s type matches and
calls the method lookup routine when the check fails. Inline
caches are extremely effective if the call site is monomor-
phic, or at least exhibits good temporal locality, but perform
poorly at most polymorphic call sites.

Polymorphic inline caches (PICs) [22] were developed to
overcome this weakness. In a polymorphic inline cache, the
call site invokes a dynamically generated PIC stub that exe-
cutes a sequence of tests to see if the receiver object matches
previously seen cases. If a match is found, then the correct
target method is invoked; if a match is not found, the PIC
terminates with a call to the method lookup routine (which
may in turn choose to generate a new PIC stub for the call
site, extended to handle the new receiver object).

Similar ideas can be applied to interface method dispatch.
When an interface method is dispatched, the system can
cache some history information regarding the dynamic call.”
For interface method dispatch, the history consists of a key
and a VMT offset. The caching algorithm employed dic-
tates the nature of the key. The VMT offset represents the
offset of the dispatched method. The next time the system
encounters a similar invocation, it can re-use the old offset
if the new key matches the old one.

Any of dynamic caching, inline caches, or polymorphic in-
line caches could be used to dispatch interface methods. In
fact, the first edition of The Java Virtual Machine Specifi-
cation [31] defined a “quick bytecode” that acted as inline
cache by caching history with the invocation site. Other
caching schemes could be used as well. For example, if in-
vocations on the same object, or objects of the same class,
are considered similar, the key represents the signature of
the interface method and the information is cached either
in the object or its class object. Or, if invocations of the
same interface method signature are considered similar, the
key will be the class of the object on which the method is
invoked and the cache could be stored in a parallel structure
to the table of interface-method signatures.

“the selector, or signature, of a method is its name, the types
of its parameters, and its return type (if any).

®The system must take care when caching on SMP com-
puters. Unless the key-value pair is updated atomically, a
processor might see the first value of one pair and the sec-
ond value of another. In most circumstances, this spells
disaster! Since the cost of explicit synchronization is often
prohibitive, it may be beneficial to encode these pairs in a
single word to exploit atomic single-word memory access.
5The quick bytecodes have been dropped from the second
edition of the JVM specification [32].

A feature of any caching scheme is that it relies on temporal
locality and thus cannot guarantee efficient dispatching for
all programs. Polymorphic inline caches are less vulnerable
than simple inline caches, but they still can perform poorly
at “megamorphic” call sites. This paper’s experimental re-
sults indicate that cache mispredictions would be an issue
even for a polymorphic inline cache on some programs (jess
and possibly HyperlJ).

4.3 Selector Indexed Tables

For our purposes, the signature of a Java method is its name
together with the types of its arguments, if any, and its re-
turn type (possibly void). Signatures of interface methods
are assigned unique small integer identifiers called selectors.
Selector indexed dispatch tables [10] provide a straightfor-
ward but space-intensive solution to the interface method
dispatch problem. Each class maintains a (potentially large)
table indexed by selector. Entries corresponding to a me-
thod signature of an interface that the class actually imple-
ments point to the code for the matching virtual method;
all other entries are null. Selector indexed dispatch tables
were originally proposed to implement virtual method dis-
patch in dynamically typed object oriented languages, but
were considered too space-intensive to be practical.

Several approaches have been proposed to greatly reduce the
space costs of selector indexed tables. Driesen considered us-
ing a specialized sparse array data structure [16]. The Sable
VM also uses selector indexed dispatch tables for interface
method dispatch, but reduces the space impact by releasing
“gaps” in the dispatch tables to the allocator to reallocate as
small objects [18, 19]. Although clever, this trick can signif-
icantly complicate both allocation and garbage collection.”

Selector coloring [15] has been applied to reduce the size
of selector indexed dispatch tables. Just as in register al-
location [6], the assignment of identifiers to selectors can
be viewed as a graph coloring problem. Two selectors can
be assigned the same color if they are never implemented by
the same class. Using this approach, several algorithms have
been proposed that greatly reduce the size of the dispatch
tables [15, 4, 45, 44]. Unfortunately, all of these algorithms
assume that the set of selectors and the classes that im-
plement them are known a priori. Thus, previous selector
coloring algorithms are a poor match for Java, since the
JVM cannot know this information in advance.

CACAQOQ’s second scheme for interface method dispatch is se-
lector coloring [29]. This second scheme improves over their
directly indexed itable scheme described above by eliminat-
ing the need for an extra indirection (and thus virtual and
interface invocations cost exactly the same), but the space
implications still could be severe in some programs. How-
ever, this scheme is only applicable if all interfaces and all
classes that implement interfaces are known to the JVM
in advance. An optimistic coloring scheme with a recov-
ery mechanism to recolor the selectors and patch previously

"However, the Sable VM puts a limit (1000) on the number
of interface signatures that are dispatched in this fashion.
After the limit is exceeded it falls back to a slower dispatch
mechanism.



compiled interface invocation sites has been considered for
CACAO, but has not been implemented [28].

4.4 Multiple Inheritance in C++

Statically-typed object-oriented languages have faced simi-
lar problems with multiple inheritance. The usual solution
in C++ [39] uses multiple dispatch tables for each type,
one corresponding to each superclass. An object pointer in-
dicates the dispatch table corresponding to the static type
of the object reference. Virtual dispatch may require this-
pointer adjustment to force the object pointer to refer to the
appropriate offset in the object header.

The C++ solution uses significantly more space in the ob-
ject than necessary for Java, which does not have multiple
implementation inheritance. Myers [33] presented a sophis-
ticated algorithm to reduce the space overhead by merging
dispatch tables for compatible types and exploiting bidirec-
tional layout in the object header.

Both of these techniques rely on complete knowledge of an
object’s superclasses at compile-time. Unfortunately, this
knowledge is not necessarily available in Java, since the
class loader may not load the full interface hierarchy be-
fore compiling a class’s methods. Furthermore, even with
bidirectional layout, these mechanisms may increase the ob-
ject header size and add runtime overhead for this-pointer
adjustment.

5. IMT-BASED INTERFACE DISPATCH
Jalapeno implements a new interface dispatch mechanism,
called the interface method table (IMT). IMT-based dis-
patch aims to match the efficiency of selector indexed dis-
patch tables while avoiding both the potentially large space
costs and the a priori knowledge requirements of selector
coloring. The key idea is to include a mechanism to handle
color collisions. By being able to tolerate color collisions,
IMT-based interface method dispatch obtains most of the
benefits of selector coloring without having to know all in-
terface method signatures in advance, and without commit-
ting to making all dispatch tables large enough to be able
to obtain a perfect coloring for every program.

Each selector (interface method signature id) is hashed into
an IMT offset. The system assigns interface method ids
sequentially as new interface method signatures are discov-
ered, either by loading interfaces or by compiling references
to interface methods. In the current implementation, Jala-
peno maps ids directly to IMT slots, modulo the size of the
IMT, a fixed constant.

Figure 1 depicts the virtual and IMT-based interface dis-
patching sequences on a PowerPC. The extra instruction in
the IMT dispatch sequence prepares for the possibility of a
collision by loading the id of the interface signature being
dispatched into a hidden parameter. If there is no collision,
then the IMT entry holds a reference to the executable code
for the callee method, and the system would branch directly
to it (the hidden parameter being ignored). If there is a
collision, then the IMT entry holds a reference to a custom-
generated conflict resolution stub. The stub uses the hid-

den parameter to determine which of the several signatures
that share this slot in the receiver class’s IMT is the desired
target, and then loads the VMT offset for the appropriate
method, and transfers control to the code referenced at this
offset in the VMT.

Conflict stub code generation must proceed carefully, due
to the restricted context in which the stub must execute.
Before executing it, the calling sequence has already stored
the caller’s return address and call parameters in the loca-
tions dictated by the calling convention. The conflict resolu-
tion stub must respect the calling convention, and thus may
use only a small number of registers without introducing
save/restore overhead.

Figure 2 shows a conflict resolution stub for an IMT slot
with four possible target methods. The processor’s link reg-
ister contains the return address in the calling method. The
non-volatile registers cannot be used until the callee saves
them. The volatile registers cannot be used because they
may contain parameters to the method being called. Only
Jalapeno’s three PowerPC scratch registers (s0, s1, and r0)
are readily available for use by the stub.® Although the de-
tails of the stub are highly architecture dependent, similar
ideas apply on other platforms.®

It remains to explain how the virtual machine populates
IMTs. The simplest scheme would be to create the IMT for a
class when the class is loaded. Unfortunately, Jalapeno does
not know when a class is loaded which of its public virtual
methods are interface methods since a class’s interfaces are
not loaded with the class. Jalapeno could conservatively
assume that all such methods are interface methods, but
this would lead to excessive false IMT conflicts.

Instead the system can build the IMTs incrementally as the
program runs. When the virtual machine discovers that a
class implements an interface, it adds that interface’s meth-
ods to the class’s IMT. If this process reveals an IMT con-
flict, the system dynamically generates the appropriate con-
flict resolution stubs. Since the virtual machine must always
perform the relevant type check before the interface method
dispatch (either at runtime or at compile time, as discussed
in the next section), the IMT will always contain the re-
quired methods by the time of invocation.

6. INLINING INTERFACE INVOCATIONS

The previous sections describe efficient schemes for interface
method dispatch. However, interfaces could conceivably also
inhibit compiler optimizations, method inlining in particu-
lar. This section discusses optimizations performed by the

8These registers are used by Jalapefio method prologues
(and epilogues) to allocate (free) the stack frame for the
called method. They are also used as temporary registers
between method calls. Register 0 (r0) is of limited utility
since many PowerPC instructions treat what would be a
reference to it as a literal 0.

9 Jalapefio’s register conventions for Intel’s IA32 architecture
do not provide a free scratch register for the hidden parame-
ter, so the interface method signature id is passed by storing
it at a prearranged location in thread-specific memory.



L1:

L2:

L3:

//
//

MTLR
BLRL

//
//

MTLR
BLRL

//
//
//
//
//

CMPI
BLT
BGT

MTCTR
BCTR

MTCTR
BCTR
CMPI
BGT

MTCTR
BCTR

MTCTR
BCTR

virtual invocation sequence
t0 contains a reference to the receiver object

s2,
s2,
s2

tib0ffset (t0)
vmtO0ffset(s2)

//
//
//
//

s2 := TIB of the receiver

s2 := VMT entry for method being dispatched
move target address to the link register
branch to it (setting LR to return address)

IMT-based interface invocation sequence
t0 contains a reference to the receiver object

s2,
s2,
si,
s2

tib0ffset(t0) //
imtO0ffset(s2) //
signatureld //
//

//

Figure

s2 := TIB of the receiver

s2 := IMT entry for signature being dispatched
put signature id in hidden parameter register
move target address to the link register
branch to it (setting LR to return address)

1: Sequences for virtual and IMT-based interface dispatch

idl < id2 < id3 < id4

contains the address of the receiving object ("this" parameter)
contains the interface method signature id ("hidden" parameter)
contains the return address in the caller

t0
sl
LR

s0,
si,
L1
L2
s0,
s0

s0,
s0

s1,

s0,
s0

s0,
s0

tib0ffset (t0) //

id2

offset2(s0)

offset1(s0)

id3

offset3(s0)

offset4(s0)

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

s0 := TIB of the receiver

compare hidden parameter to id of second method
if less than branch to (idl..id1) search tree

if greater than branch to (id3..id4) search tree
load VMT entry for second method

move this address to the count register

branch to it (preserving contents of the LR)
load VMT entry for the first method

move this address to the count register

branch to it (preserving contents of the LR)
compare hidden parameter to id of third method
if greater than branch to (id4..id4) search tree
load VMT entry for the third method

move this address to the count register

branch to it (preserving contents of the LR)
load VMT entry for the fourth method

move this address to the count register

branch to it (preserving contents of the LR)

Figure 2: A conflict resolution stub with four entries.



Jalapefo optimizing compiler to inline interface calls and
further reduce the costs of dynamic dispatching.

interface I { public void foo(); }

class B implements I {
void foo() {...}

}
class C extends B {
}
class A {
void bar(I i, I i2) {
if (I instanceof B) {
i.foo();
} else {
i2.foo0();
}
I i3 = (I) new BQ);
i3.foo0();
}
}

Figure 3: Some example interface usage patterns.

Deuvirtualization is a well-known technique that converts a
virtual dispatch to a statically-bound (direct) call when the
target of the dispatch can be uniquely determined at compile
time. Similarly, the Jalapeno optimizing compiler performs
virtualization, reducing an interface invocation to a virtual
method call.

Consider, for example, the code for method A.bar() in Fig-
ure 3. This code can be transformed as follows:

1. The compiler can virtualize the call to i.foo(), since
it can determine that at that program point, i must be
a sub-class of B. Therefore, i.foo() can be dispatched
as a virtual method call to B: :foo().

2. The compiler cannot virtualize the call to i2.foo(),
lacking any conclusive information on the type of i2.

3. The compiler can first virtualize and then even devir-
tualize the call i3.foo (), since intra-procedural type
analysis [27, 9] determines that i3 can only contain
objects with concrete type B.

The optimizing compiler can inline devirtualized method
calls, virtual calls, and interface invocations. The compiler
can inline a devirtualized call directly (without guarding),
since analysis has revealed the exact target. To inline se-
lected potential targets of a virtual call, compilers can per-
form various forms of guarded inlining. The compiler can de-
cide which targets to speculatively inline at a call site using
static heuristics [13, 8], profile information [24, 21], and/or
static examination of the program’s class hierarchy [7, 11].

Jalapefio uses both class tests and method tests [12] to per-
form guarded inlining of virtual calls based on both class
hierarchy analysis and on-line profile information.'?

In addition to determining which calls are legal to inline,
the compiler must identify a set of call sites as attractive
candidates to inline. Jalapeno’s optimizing compiler uses
a mix of static heuristics and on-line profile information to
make these decisions. The static heuristics identify candi-
dates based on size estimates of the caller and callee, and
data-flow properties known at the call site. Furthermore,
the static heuristics elect to perform a guarded inline of a
virtual or interface call only if analysis of the current class
hierarchy of the program reveals that there is only one possi-
ble target for the call. Note that the adaptive optimization
system generally does not optimize a method until it be-
comes a hot spot in the program’s execution. We expect
most dynamic class loading that affects such a call site to
happen before Jalapeno optimizes and speculatively inlines
it.

These static heuristics will not identify many of the most
common interface methods as inline candidates. The most
common interfaces (e.g. Serializable, Enumeration, etc.)
have many different implementations. In general, a compiler
would have to resort to context-sensitive inter-procedural
analysis to virtualize or devirtualize call sites for methods
of these interfaces. Such analysis usually costs too much
for a JIT or runtime compiler, which must normally rely on
less expensive, solely intra-procedural analysis. As a result,
a JIT will likely fail to statically determine one target for
many interface calls.

Jalapeno’s adaptive optimization system solves this problem
using on-line profile-directed inlining to identify candidates
to be inlined with guards at hot call sites. Normally, the me-
thod test guards inlined interface methods, just as it guards
inlined virtual methods.*

Profile-directed inlining naturally tends to minimize the over-
head of conflict resolution stub execution. If a particular
conflict resolution stub executes frequently, the adaptive op-
timization system will tend to flag at least one target method
as “hot”. The adaptive system heuristics would then likely
inline that method into hot call sites. This optimization will
reduce the frequency of conflict resolution stub execution. If
the heuristics do not inline a hot target method, deeming it

10Tf class hierarchy analysis determines that a non-
devirtualized call site can currently only invoke a single tar-
get method (but the callee method is not declared to be fi-
nal), then it could be inlined without a guard by relying on
invalidation mechanisms such as on-stack-replacement [23]
or code patching [26] to undo the inlining if a future class
loading event invalidates it. Neither of these recovery mech-
anisms have been implemented in Jalapeno. However, Jala-
petio does use pre-existence [12] as a partial substitute for a
full-fledged invalidation mechanism.

"1n exceedingly rare cases, the compiler may speculatively
inline a method from a class that cannot be proven, at com-
pile time, to implement the target interface (for example,
figure 5). In this case, the compiler must insert a dynamic
type check to ensure that the receiver implements the inter-
face before executing the inlined body.



Enumeration e = getEnumeration();
while (e.hasMoreElements()) {
use(e.next());

}

Figure 4: A common interface idiom requiring a sin-
gle dynamic type check.

class A {
public int foo() { ... }
}

class B extends A implements I {}

interface I {
public int foo();
}

class Test {
int test() {
I i = createI();
return i.foo();
}
I createI() { return createA(); }
A createA() { ... return new B(); }
}

Figure 5: An anomalous example; after inlining
createl, the compiler can virtualize i.foo(), but can-
not remove the dynamic type check to ensure that
the object referred to by i actually implements I.
This situation can arise when the class A was modi-
fied to no longer implement I after the class files for
Test and B were produced.

too big to inline, then its execution cost likely dominates
overhead imposed by the conflict resolution stub.

As discussed in section 2, both guarded interface invocation
and the normal interface dispatch scheme require a dynamic
type check. The compiler can reduce the overhead of this
type check in two ways. First, if the compiler can use type
analysis to statically verify that the receiver implements
the target interface, the runtime check can be eliminated.
Secondly, the optimizing compiler represents dynamic type
checks as binary operators in the low-level intermediate rep-
resentation used to drive code motion and redundancy elim-
ination. If the compiler can identify multiple type checks of
the same object against a particular interface, it can remove
the redundant checks. Partial redundancy elimination can,
for example, hoist the loop-invariant type checks from the
loop in figure 4. Similarly, the compiler will optimize redun-
dant loads in the dispatch sequence; the TIB base pointer
load for object e in the figure can also be hoisted from the
loop.

As discussed in Section 2, the virtual machine specification
generates some fringe cases that the compiler must handle
correctly. For example, in Figure 5, the compiler might suc-

cessfully virtualize an interface call, but still fail to eliminate
the dynamic type check for the dispatch. Suppose the com-
piler analyzes Test.test(), with only intra-procedural in-
formation and inlining. Further suppose the compiler inlines
createl into test (), but doesn’t choose to inline createA()
(perhaps because it is too big). The compiler can virtualize
the call to foo(), since type propagation determines that i
is a subclass of A. However, it cannot remove the dynamic
type check, since A doesn’t implement I. The dynamic type
check is required to detect and raise an IncompatibleClass-
ChangeError if createA should ever return a subclass of A
that does not implement I.

7. EXPERIMENTAL RESULTS

This section empirically assesses four interface method dis-
patch schemes: a naive implementation, two itable variants,
and IMTs. It also explores the effectiveness of the vari-
ous optimizing compiler techniques described in Section 6.
The next subsection precisely describes the implementation
details of the four alternative schemes. The following sub-
section presents micro-benchmark results that focus on the
direct costs of virtual and interface dispatch under each al-
ternative scheme. The third subsection describes our suite
of larger benchmarks and presents data on the dynamic fre-
quency of interface invocation in each program. The final
subsection first assesses the effectiveness of the compiler
techniques for avoiding interface dispatching entirely, and
then presents data comparing the various dispatching tech-
niques focusing on their impact on application runtime and
the space implications of each alternative.

All performance results reported below were obtained on
an IBM RS/6000 Enterprise Server F80 running AIX v4.3.
The machine has 4GB of main memory and six 500MHz
PowerPC RS64 III processors each with 4MB of L2 cache.

7.1 Interface Dispatch Implementations

The alternative implementations of interface method dis-
patch are as follows.

o Class Object Search: a naive implementation of the
invokeinterface specification. On every interface me-
thod dispatch, the VM invokes a runtime service to
find the target method. The service routine takes the
receiver object and a description of the desired inter-
face method, and searches the class hierarchy to find
a matching virtual method. The search routine also
performs the required dynamic type check.

o Searched ITables: the VM searches a per-class list of
itables to find the appropriate itable, and then indexes
into the itable to find the target method. On every in-
terface method dispatch, a runtime service routine is
invoked to find the desired itable. The service rou-
tine takes the receiver object and the id of the desired
interface. It searches the class’s list of itables (reach-
able from the TIB of the object); if it finds the itable
then it simply returns it. If it fails to find the itable,
then it must perform a dynamic type check to ensure
that the class actually implements the interface. As a



side-effect of performing the dynamic type check, the
itable for the target interface is added to the class’s list
of itables. The search routine employs a move-to-front
algorithm [14] to exploit temporal locality of interface
usage and partially mitigate the search overhead when
a class implements a large number of interfaces.

o Directly Indezed ITables: a per-class array of itables is
loaded from the TIB and indexed into by interface id to
find the appropriate itable, which is then indexed into
to find the target method. This is one of the interface
dispatching schemes used in the CACAO JVM [29].
The interface dispatch must be preceeded (either at
compile-time or at run-time) by a dynamic type check
to ensure that the class of the receiver object actually
implements the target interface. As a side-effect, the
dynamic type check adds the itable for the interface to
the class’s itables array. This mechanism ensures that
the required type check has been performed for every
populated itable.

e IMT: interface method tables as described in Section 5.
Asin the directly indexed itables, the IMT is lazily ini-
tialized as a side-effect of dynamic type checking. Data
is reported for two different IMT sizes: 5 entries and
40 entries (IMT-5 and IMT-40).

The fact that Jalapeno is implemented in Java adds an extra
indirection of overhead to the itable and IMT dispatch im-
plementations. The Jalapeno TIB is implemented as a Java
array in the run-time system. As such, the TIB itself must
conform to the object model, like any other Java object in
the VM. As a result, Jalapefio does not have the ability to
grow the TIB in two directions. So, Jalapeho cannot ref-
erence two variable-size tables (eg. the VMT and IMT, or
VMT and itable list) with just one pointer in the object
header. So, in all schemes described, the current implemen-
tation adds an extra indirection from a TIB entry to acquire
the first level of interface dispatch data structure. We could
eliminate this extra indirection by circumventing the Java
object model for TIBs, and allow these structures to grow
in two directions. We evaluate the cost of the extra indi-
rection with a microbenchmark in the next section. A JVM
implemented in C would not face this difficulty.

7.2 Micro-benchmarks

This Sections presents several micro-benchmarks to com-
pare the direct costs of interface and virtual dispatching in
Jalapeno. The core of each micro-benchmark consists of a
loop that in each iteration performs a method invocation 20
times. The loop executes 1,000,000 times, and the total wall
clock time spent executing the loop is reported. Thus, these
results include the cost of the method body, and so provide
an upper bound on the cost of interface dispatch. Method
inlining was disabled for these experiments.

The micro-benchmarks exercise three categories of invoca-
tion: virtual method invocation, interface invocation where
the interface has only one method, and interface invocation
where the interface has many (100) methods. The final cat-
egory illuminates the costs of conflict resolution stubs.

The micro-benchmarks call one of two target methods. The
first target (7rival Callee) simply returns the integer con-
stant 1. For this trivial method, Jalapeno’s optimizing com-
piler applies leaf method optimizations which avoid the nor-
mal method prologue and epilogue sequences. In fact, the
generated code for the callee method contains only two ma-
chine instructions. The second example (Normal Callee) in-
vokes a slightly more complex target method. This callee
method conditionally either returns 1 or invokes another
method, based on the value of a static field. The bench-
mark sets the value of this static field at runtime such that
the method always returns 1; however, the compiler cannot
statically fold the branch and does not apply leaf method
optimizations.

Table 1 presents the results of these experiments. In ad-
dition to the four interface dispatching schemes previously
described, a fifth, Embedded IMT, is also included just for
the micro-benchmarks. The Embedded IMT configuration
simulates a runtime system in which the extra indirection
imposed by Jalapeno’s restriction to using Java objects for
TIBs could be eliminated by growing the TIB in both direc-
tions, thus supporting a variable-size VMT and a fixed-size
IMT that is only present for those classes that actually use
the interfaces they implement. Based on the differences be-
tween the Embedded IMT and IMT data, it appears that
the extra dependent load in the dispatching sequence adds
approximately two cycles to the dispatching cost. This is
further supported by the observation that the primary dif-
ference between a conflict-free IMT dispatch and a dispatch
through a directly indexed itable is a single dependent load,
and these data points also differ by approximately two cy-
cles.

Overall, a conflict-free IMT-based interface method dispatch
is the most efficient mechanism, followed closely by directly
indexed itables. The difference between the conflict-free dis-
patch through an Embedded IMT and a virtual dispatch is
insignificant (0.1 cycles). The hardware successfully over-
laps the extra register move immediate to set up the hidden
parameter with other operations, resulting in almost zero
observed overhead.

Dispatch through a conflict resolution stub is surprisingly
inexpensive. The cost of dispatching through a conflict res-
olution stub (even one with 20 entries) is roughly equivalent
to the cost of a prologue/epilogue sequence. The difference
between Trivial Callee and Normal Callee on virtualis 11 cy-
cles; the difference on IMT-5 between a 1 method interface
and 100 method interface is 12 cycles. IMT-based dispatch
with conflicts is not as efficient as interface dispatch through
a directly indexed itable. But, in a fairly typical case where
the callee is non-trivial and the conflict stub only has to me-
diate between a small number of candidate methods (IMT-
40, 100, Normal), the difference is only 5 cycles.

Both Searched ITables and Class Object Search are relatively
slow interface dispatching mechanisms. But only Class Ob-
ject Search is truly pathological with costs of 214x and 92x
greater than a virtual dispatch. An interface dispatch using
Searched ITables is only 9.5x and 4.6x slower than the equiv-



Dispatching Mechanism | Number of Methods in Interface Trivial Callee | Normal Callee
virtual Not applicable 8.13 19.18
Embedded IMT-5 interface with 1 method (no IMT conflict) 8.23 19.25
Embedded IMT-5 interface with 100 methods (20 element stub) 20.25 32.28
Embedded IMT-40 interface with 1 method (no IMT conflict) 8.23 19.25
Embedded IMT-40 interface with 100 methods (2 or 3 element stub) 14.23 27.40
IMT-5 interface with 1 method (no IMT conflict) 10.18 21.20
IMT-5 interface with 100 methods (20 element stub) 22.20 32.23
IMT-40 interface with 1 method (no IMT conflict) 10.18 21.20
IMT-40 interface with 100 methods (2 or 3 element stub) 18.20 28.23
Directly Indexed ITables | interface with 1 method 12.18 23.20
Directly Indexed ITables | interface with 100 methods 12.18 23.20
Searched ITables interface with 1 method 77.45 88.50
Searched ITables interface with 100 methods 77.45 88.50
Class Object Search interface with 1 method 352.55 362.73
Class Object Search interface with 100 methods 1,743.13 1,759.48

Table 1: Cost, in clock cycles, of round-trip method dispatch in Jalapeno, under each alternative interface

dispatching mechanism.

alent virtual dispatch. This could potentially be improved
further with inline caching techniques.

7.3 Application Characteristics

Table 2 describes the application benchmark suite, com-
prising the SPECjvm98 [41] benchmarks and several larger
codes. Improving interface invocation will only help an
application with non-negligible overhead due to interfaces.
Therefore, let us begin by trying to quantify the importance
of interface method invocation in each benchmark. In this
experiment, the system does not employ the techniques de-
scribed in this paper; in particular, the compiler does not
virtualize, devirtualize, or inline interface invocations. How-
ever, it may inline and devirtualize static, special, and vir-
tual calls.

Using instrumentation capability in Jalapeno’s adaptive op-
timization system, the optimizing compiler inserted counters
into the generated code to count and categorize the dynamic
non-inlined invocations during benchmark execution.'? All
macro-benchmarks run in a testing harness that executes the
benchmark ten times, printing and clearing the counters at
the start of each run.

Figure 6 shows the rate of non-inlined invocations per second
on the tenth run for each of the four different invoke byte-
codes. The bar for compress appears invisible because after
inlining, compress makes only 249 method calls per second.
Based on this data, we can expect little benefit on mpegau-
dio and absolutely no benefit on compress and mirt. In fact,
both compress and mirt make exactly one interface method
invocation per iteration. Therefore, results for compress,
mpegaudio, and mirt will not be reported hereafter. The
potential for improvement on db, opt-compiler, HyperJ and
DOMCount appears significant; calls to interface methods

120nly invocations in methods that are executed frequently
enough to be selected for optimizing recompilation will be
counted. However, the calling behavior of infrequently exe-
cuted methods should not substantially impact performance.

represent a substantial portion of their non-inlined invoca-
tions.

7.4 Application Performance

Figure 7 provides data on the effectiveness of the various
compiler techniques to avoid performing a full interface dis-
patch. It shows the dynamic percentage of interface invoca-
tions handled by each dispatching mechanism. The system
dispatches each interface method call by one of the following
mechanisms:

o Virtualized and inlined: Based on the results of type
analysis, the optimizing compiler virtualized the inter-
face call. The compiler then inlined the virtual call.
With the exception of a tiny fraction of the virtualized
and inlined calls in HyperJ, the compiler consistently
further devirtualized, and could omit the method test
to guard the inlined method body.

o Virtualized: The optimizing compiler succeeded in vir-
tualizing the call through type analysis, but was ei-
ther unable or unwilling to inline it. The compiler
might not inline a virtual call for any of number of
reasons. Prime candidates include: a) the adaptive
system compiled the caller method at its lowest opti-
mization level, with all inlining disabled, b) the inlin-
ing heuristics deem the callee method too big to inline
into the calling context given the call site’s dynamic
frequency, and c¢) the call graph profile identifies multi-
ple possible targets at a dynamically polymorphic call
site, but does not identify any of the receivers as a
dominant target profitable to inline.

e Static guarded inline: The optimizing compiler failed
to virtualize the call with type analysis. But, at the
time the method was optimized, the set of loaded classes
defined only one implementation of the interface me-
thod. The compiler, based exclusively on size heuris-
tics (without profile information), speculatively inlined



| Benchmark | Description | Classes | Methods | Bytecodes |
compress Lempel-Ziv compression algorithm 48 489 19,480
jess Java expert shell system 176 1101 35,316
db Memory-resident database exercises 41 510 20,495
javac JDK 1.0.2 Java compiler 176 1496 56,282
mpegaudio Decompression of audio files 85 712 51,308
mtrt Two-thread raytracing algorithm 62 629 24,435
jack Java parser generator 86 743 36,253
SPECjbb2000 | simulated transaction processing [42] 132 1778 73,608
opt-compiler | Jalapefio optimizing compiler 414 5030 139,004
HyperJ Hyper-J [34, 25] composition tool 421 5003 136,957
DOMCount Xerces v1.2.3 [40] XML parser 142 1880 88,134

Table 2: Benchmark characteristics. For each benchmark, the Table gives the number of classes loaded, the
number of methods compiled at runtime, and the number of bytecodes compiled at runtime. The statistics
include both application code and library code loaded at runtime. The first seven rows comprise the suite of
SPECjvm98 benchmarks.
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Figure 7: Dynamic percentage of interface invocations handled by each dispatch mechanism.

the single static target, guarded by a runtime check.'®

o Profile-directed guarded inline: Class hierarchy analy-
sis determines that the interface method has multiple
possible implementations. However, the online profile
information identifies one or more dominant targets
for the call site. Based on this information, the com-
piler speculatively inlined the dominant target(s) with
a runtime guard.

o Mispredicted profile-directed guarded inline: The run-
time guard at a profile-directed inline site failed, and
the code fell back to an IMT dispatch. This occurs
either due to inaccurate profile information, or at call
sites that have one or more dominant targets but oc-
casionally invoke other targets. In other words, the
call site is dynamically polymorphic, but the compiler
does not inline all receivers.

o Interface dispatch: No other technique applied, and
the compiler resorted to a full-blown run-time method
dispath.

The mix of dispatching mechanisms varies widely from pro-
gram to program. For example, the fraction of invoca-
tions dispatched as full-blown run-time calls ranged from 0%
to 73%. In several cases, type analysis effectively virtualized
interface invocations, covering 89% on SPECjbb, 76% on opt-
compiler and 18% on HyperJ. We expected this on the opt-
compiler, since we initially implemented the optimization to

13In principle, this runtime check could fail, if a class loaded
in the future defines a new receiver method for the call site.
However, in our experiments, this case never occurred. The
adaptive system delays compilation and optimization of each
method until profile information indicates the method is hot.
In practice, by the time the adaptive system flags a method
as hot, all relevant classes have been loaded.

handle the most common patterns of interface usage in our
own compiler. However, we were pleasantly surprised with
the virtualization success on HyperJ and SPECjbb. Note
that in these results, the optimizing compiler relies almost
exclusively on intra-procedural analysis. We expect even
better virtualization and devirtualization results using more
aggressive inter-procedural type analysis.

The static guarded inlining heuristic succeeded for only three
of the benchmarks; it had the most impact on HyperJ, where
it applied to 21% of the interface invocations. In practice,
we expect the static heuristic to apply to programs that use
only a single implementation of an interface from a general
component architecture or library. The static heuristic does
not work for the more heavily used interfaces in the Java
standard library, such as java.util.Enumeration; the com-
piler must rely on profile-directed inlining or type analysis
to handle these cases.

Of all the benchmarks, jess stands out for its high (19%)
rate of mispredicted profile-directed inlined calls. We inves-
tigated this phenomenon a bit further, and discovered that
jess contains one frequently executed interface invocation
call site. This site calls an interface method with 96 im-
plementations. Of these 96, the call site invokes 14 distinct
receivers during the size 100 benchmark run. The top four
most frequent targets account for 52%, 18%, 13%, and 8%
of the dynamic invocations, respectively. Each of the other
targets accounts for less than 3% of the dynamic invocations.
The compiler heuristics inline only the two most frequently
invoked targets. Thus, any calls to the other 12 targets at
that call site are mispredicted.

Figure 8 depicts the performance impact from alternative
interface dispatching mechanisms. The Figure shows that
the naive ClassObjectSearch scheme can indeed significantly
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Figure 8: Performance impact of alternative interface method dispatching schemes. Speeds are normalized

to that of SearchedITable.

hurt performance, slowing down HyperJ by a factor of 10.
Among the two itable variants and the two IMT variants,
each performs the best on at least one benchmark, and rel-
ative performance varies depending on the application.

The interface dispatch mechanism impacts performance most
on the three largest benchmarks, opt-compiler, HyperJ, and
DOMCount. On opt-compiler and HyperJ, directly-indexed
itables and the IMTSs significantly outperform the searched
itable. Several factors could account for this difference;
namely, polymorphic call sites that defeat the move-to-front
search heuristic, along with fairly rich interface hierarchies.
Note that the searched itable also under-performs on jess,
which was previously discussed as having a hot polymorphic
call site.

On the other hand, searched itables outperform the others
on the DomCount XML parser benchmark. Possibly, the
searched itable wins by combining the dynamic type check
with the interface dispatch. Section 8 discusses a possible
enhancement to the IMT dispatch sequence to gain the same
benefit.

The db performance result is anomalous, since Figure 7 re-
ports that practically all interface calls were inlined. We
have occasionally observed unstable db performance on Jala-
peno, possibly due to instability of TLB conflicts resulting
from differences in memory layout [38].

Regarding IMT conflicts: on HyperJ, DOMCount and opt-
compiler, 45%, 16%, and 1.5%, respectively, of dispatches
through the IMT went through a conflict resolution stub.
The other benchmarks never dispatched through conflict res-
olution stubs.

Figure 9 shows the space costs of the alternative interface
dispatch schemes. The figure shows three categories of space
usage:

1. Data Structures: This category represents the space
allocated to data structures introduced to support in-
terface dispatch. These data structures include itables,
IMTs, itable dictionaries, and TIB slots holding point-
ers to interface dispatch structures.

2. Conflict Stubs: This category represents the space al-
located to conflict resolution stub code in the IMT
variants.

3. Invocation Sequence: This category represents space
allocated for inline code inserted into compiled ma-
chine code to support interface invocation. This in-
cludes inline code for dynamic type checks, as well as
inlined interface dispatch sequences.

The naiveClassObjectSearch scheme introduces no extra data
structure overhead, over and above class loader data struc-
tures required for other purposes.

The figure shows that in most cases, the space allocated for
the inline invocation sequence exceeds space costs for the
other two categories. Jess is an exception; as discussed pre-
viously, jess relies on few (only one hot) interface call sites,
but uses a fairly large number of classes which implement
an interface. This results in substantial space costs for the
direct itable scheme. IMTs with 40 entries waste space com-
pared to IMTs with only 5 entries, since most IMT entries
are blank.
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was deducted from the bars for each benchmark, so that the bars for each benchmark represent the space
usage induced by the application code over and above the cost for a bare Jalapeno VM.

HyperJ stands out for its large space usage. Both IMT-5
and IMT-40 pay a significant space cost for conflict resolu-
tion stubs. It turns out that some classes in HyperJ imple-
ment interfaces with over 100 methods. For these cases, no
coloring scheme will avoid saturating even the 40-slot TIB,
resulting in conflicts at every TIB slot. So, both IMT-40 and
IMT-5 result in the same number of total targets embodied
in conflict resolution stubs. However, IMT-40 results in con-
flict stubs with fewer entries, resulting in improved run-time
performance in Figure 8. HyperJ also demonstrates some of
scalability problems with direct itable dispatch, as the direct
itable data structure space cost is significant. However, this
cost is dominated by the inlined invocation sequence space;
so, the direct itable scheme appears to be practical on this
platform for at least medium-sized applications.

8. FUTURE WORK

The IMT mechanism enjoys fixed-size tables, at the cost of
extra space and time for conflict resolution stubs. Jalapeno
could improve on its current (trivial) algorithm for selec-
tor coloring by analyzing off-line a collection of standard
Java classes to discover sets of interfaces that are simulta-
neously implemented by classes. Based on this information
and profile data, a standard register allocation algorithm
could minimize the expected dynamic number of collisions in
a fixed IMT size. During JVM execution new (unexpected)
interface method signatures could be assigned to empty (or
infrequently-used) slots in an ezpanded IMT that would only
be associated with those classes that implemented the un-

expected interfaces.

This approach would naturally be limited by the set of classes
available for off-line analysis. Alternatively, the adaptive op-
timization system could color interface method signatures
based on on-line profile information, although removing the
assignment of a selector to a color on-line could entail sig-
nificant code-patching.

An anonymous reviewer, borrowing an idea from polymor-
phic inline caches, proposed folding the dynamic type check
into the conflict resolution stubs. The stub shown in Fig-
ure 2 assumes that the only possible values for the hidden
parameter are the four interface method signatures that it
was generated to handle. The stub could instead be gener-
ated to treat unexpected values of the hidden parameter as
a signal that a dynamic type check needs to be performed
and the stub extended.

This approach would require all interface method dispatches
to go through conflict resolution stubs, even if only one me-
thod was actually mapped to a slot. Although the expected
cost of a stub and a dynamic type check are similar, the
conflict stub is invisible to the compiler and thus not easily
amenable to optimizations such as code motion and partial
redundancy elimination. On the other hand, in our experi-
ments Jalapeno’s optimizing compiler was able to eliminate
the dynamic type check from fewer than 20% of the interface
calls that were actually dispatched through the IMT.



While our profile-directed inlining handles interfaces as ef-
fectively as virtual calls, both suffer the overhead of a run-
time guard. We are also currently implementing an inval-
idation mechanism to allow us to omit the guards on in-
lined interface and virtual call sites, in order to mitigate the
penalty of failed devirtualization.

9. CONCLUSIONS

An early conference paper on the Jalapeno runtime [2] ad-
mitted that “[w]e don’t make much use of interfaces be-
cause the performance overhead was too high to use it to call
frequently executed methods.” This was particularly damn-
ing since part of the stated rationale for writing Jalapeno
in Java was the hope that doing so would “give us more
experience with the language, help us identify some of its
problematic features, and give some insight into how to im-
plement them efficiently.” An anonymous reviewer observed

“The comment about not using interfaces is sad.
And invites the question: if they had been used,
would the performance of interface invocations
now be better?”

That remark provided the impetus for the work reported
here.

This paper investigates three potential sources of interface
inefficiency: implicit dynamic type checking, actual interface
method dispatch overhead, and possible opportunity costs
of forgone optimizations. Type checking overhead is real,
but quite small, and can often be optimized away (usually
in conjunction with other optimizations). The interface me-
thod table (IMT) mechanism for dispatching interface meth-
ods is only a few cycles more expensive than its counterpart
for virtual methods. The third problem proved illusory: the
Jalapeno optimizing compiler performs similar optimization
at both virtual and interface method dispatch sites.

A number of different interface dispatch mechanisms were
compared. Both IMTs and direct itables provide good per-
formance with a moderate space overhead. Only the naive
class-object search scheme provided truly atrocious perfor-
mance.

Although early implementations of Java interfaces did not
perform well, their reputation as being inherently inefficient
is undeserved. A Java programmer, or program generating
system, should feel free to fully exploit interfaces without
concern for performance degradation.

Acknowledgments

This work would not have been possible without the efforts
of the entire Jalapefio team. Thanks especially to David
Bacon and Peter Sweeney for invaluable feedback, and to
Harold Ossher for contributing the HyperJ benchmark. We
are also indebted to anonymous reviewers of this and of an
earlier paper. Thanks also to the OTI VAME team for pro-
viding an implementation of the Java class libraries.

10. REFERENCES

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J.
Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeno virtual
machine. IBM Systems Journal, 39(1), 2000.

[2] B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi,
D. Lieber, S. Smith, and T. Ngo. Implementing
Jalapeno in Java. In ACM Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 314 324, 1999.

[3] B. Alpern, A. Cocchi, and D. Grove. Dynamic type
checking in Jalapeno. In USENIX Java Virtual
Machine Research and Technology Symposium, Apr.
2001.

[4] P. André and J.-C. Royer. Optimizing method search
with lookup caches and incremental coloring. In
Proceedings OOPSLA 92, pages 110 126, Oct. 1992.
Published as ACM SIGPLAN Notices, volume 27,
number 10.

[6] M. Arnold, S. Fink, D. Grove, M. Hind, and
P. Sweeney. Adaptive optimization in the Jalapeinio
JVM. In ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications,
Oct. 2000.

[6] G. J. Chaitin, M. Auslander, A. Chandra, J. Cocke,
M. Hopkins, and P. Markstein. Register allocation via
coloring. Computer Languages 6, pages 47 57, 1981.

[7] C. Chambers, J. Dean, and D. Grove. Whole-program
optimization of object-oriented languages. Technical
Report UW-CSE-96-06-02, Department of Computer
Science and Engineering. University of Washington,
June 1996.

[8] C. Chambers and D. Ungar. Customization:
Optimizing compiler technology for Self, a
dynamically-typed object-oriented programming
language. In ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 146 160, July 1989. SIGPLAN Notices, 24(7).

[9] C. Chambers and D. Ungar. Iterative type analysis
and extended message splitting: Optimizating
dynamically-typed object-oriented programs. In ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 150 164, 1990.

[10] B. J. Cox. Object Oriented Programming: An
Evolutionary Approach. Addison-Wesley, 1987.

[11] J. Dean. Whole Program Optimization of
Object-Oriented Languages. PhD thesis, University of
Washington, Nov. 1996. TR-96-11-05.

[12] D. Detlefs and O. Agesen. Inlining of virtual methods.
In 138th European Conference on Object-Oriented
Programming, 1999.



[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

[23]

24]

L. P. Deutsch and A. M. Schiffman. Efficient
implementation of the Smalltalk-80 system. In 11th
Annual ACM Symposium on the Principles of
Programming Languages, pages 297 302, Jan. 1984.

P. F. Dietz and D. D. Sleator. Two algorithms for
maintaining order in a list. Proceedings of the
nineteenth annual ACM Symposium on Theory of
Computing, New York City, May 25-27, 1987, pages
365 372, May 1987.

R. Dixon, T. McKee, M. Vaughan, and P. Schweizer.
A fast method dispatcher for compiled languages with
multiple inheritance. In Proceedings OOPSLA 89,
pages 211 214, Oct. 1989. Published as ACM
SIGPLAN Notices, volume 24, number 10.

K. Driesen. Selector table indexing & sparse arrays. In
Proceedings OOPSLA ’93, pages 259-270, Oct. 1993.
Published as ACM SIGPLAN Notices, volume 28,
number 10.

R. Fitzgerald, T. B. Knoblock, E. Ruf,

B. Steensgaard, and D. Tarditi. Marmot: An
optimizing compiler for Java. Technical Report
MSR-TR-99-33, Microsoft Research, June 1999.

E. Gagnon and L. Hendren. SableVM: A research
framework for the efficient execution of Java bytecode.
Technical Report Sable Technical Report No. 2000-3,
School of Computer Science, McGill University, Nov.
2000.

E. Gagnon and L. Hendren. SableVM: A Research
Framework for the Efficient Execution of Java
Bytecode. In USENIX Java Virtual Machine Research
and Technology Symposium, Apr. 2001.

J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison Wesley, 1996.

D. Grove, J. Dean, C. Garrett, and C. Chambers.
Profile-guided receiver class prediction. In ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 108-123, Oct.
1995.

U. Hélzle, C. Chambers, and D. Ungar. Optimizing
dynamically-typed object-oriented languages with
polymorphic inline caches. In P. America, editor,
Proceedings ECOOP 91, LNCS 512, pages 21 38,
Geneva, Switzerland, July 15-19 1991.
Springer-Verlag.

U. Hélzle, C. Chambers, and D. Ungar. Debugging
optimized code with dynamic deoptimization. In
Proceedings of the ACM SIGPLAN ’92 Conference on
Programming Language Design and Implementation,
pages 32 43, June 1992.

U. Holzle and D. Ungar. Optimizing
dynamically-dispatched calls with run-time type
feedback. In SIGPLAN ’9j Conference on
Programming Language Design and Implementation,

pages 326 336, June 1994. SIGPLAN Notices, 29(6).

[25]

[26]

[27]

[28]

29]

[30]

31]

32]

33]

[34]

[35]

[36]

37]

[38]
[39]

[40]

[41]

IBM Research, 2001.
http://www.research.ibm.com/hyperspace/.

K. Ishizaki, M. Kawahito, T. Yasue, and H. K.
andToshio Nakatani. A study of devirtualization
techniques for a Java just-in-time compiler. In ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, Oct. 2000.

R. Johnson. TS: An optimizing compiler for Smalltalk.
In ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 18 26,
1988.

A. Krall. Personal Communication, Sept. 1999.

A. Krall and R. Grafl. CACAO - a 64 bit JavaVM
just-in-time compiler. Concurrency: Practice and
Ezxperience, 9(11):1017-1030, 1997.

G. Krasner. Smalltalk-80: Bits of History, Words of
Advice. Addison-Wesley, 1983.

T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. The Java Series. Addison-Wesley, 1996.

T. Lindholm and F. Yellin. The Java Virtual Machine
Specification Second Edition. The Java Series.
Addison-Wesley, 1999.

A. C. Myers. Bidirectional object layout for separate
compilation. ACM SIGPLAN Notices, 30(10):124 139,
Oct. 1995.

H. Ossher and P. Tarr. Multi-dimensional separation

of concerns and the hyperspace approach. In Software
Architectures and Component Technology: The State

of the Art in Research and Practice. Kluwer, 2001. to
appear.

M. Poletto and V. Sarkar. Linear scan register
allocation. ACM Transactions on Programming
Languages and Systems, 21(5):895 913, Sept. 1999.

T. A. Proebsting. imple and efficient burs table
generation. In SIGPLAN ’92 Conference on
Programming Language Design and Implementation,
pages 331 340, June 1992. SIGPLAN Notices 27(6).

G. Ramalingam and H. Srinivasan. Object model for
Java. Technical Report 20642, IBM Research Division,
Dec. 1996.

Y. Shuf. Personal Communication, 2001.

B. Stroustrup. Multiple inheritance for C++. In
Proceedings of the Spring 1987 European Uniz Users
Group Conference, Helsinki, 1987.

The Apache XML Project, 2001.
http://xml.apache.org/xerces-j.

The Standard Performance Evaluation Corporation.
SPEC JVM98 Benchmarks.
http://www.spec.org/osg/jvm98, 1998.



[42]

[43]

[44]

[45]

The Standard Performance Evaluation Corporation.
SPEC JBB 2000. http://www.spec.org/osg/jbb2000,
2000.

R. Vallee-Rai. Profiling the Kaffe JIT compiler.
Technical Report 1998-02, McGill University, Feb.
1998.

J. Vitek and N. Horspool. Compact dispatch tables for
dynamically typed object oriented languages. In
Proceedings of International Conference on Compiler
Construction (CC’96), pages 281-293, Apr. 1996.
Published as LNCS vol 1060.

J. Vitek and R. N. Horspool. Taming message passing:
Efficient method look-up for dynamically typed
languages. In M. Tokoro and R. Pareschi, editors,
Proceedings ECOOP ’94, LNCS 821, pages 432-449,
Bologna, Italy, July 1994. Springer-Verlag.



