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ABSTRACTSingle super
lass inheritan
e enables simple and eÆ
ienttable-driven virtual method dispat
h. However, virtual me-thod table dispat
h does not handle multiple inheritan
eand interfa
es. This 
ompli
ation has led to a widespreadmisimpression that interfa
e method dispat
h is inherentlyineÆ
ient. This paper argues that with proper implemen-tation te
hniques, Java interfa
es need not be a sour
e ofsigni�
ant performan
e degradation.We present an eÆ
ient interfa
e method dispat
h me
ha-nism, asso
iating a �xed-sized interfa
e method table (IMT)with ea
h 
lass that implements an interfa
e. Interfa
e me-thod signatures hash to an IMT slot, with any hashing 
olli-sions handled by 
ustom-generated 
on
i
t resolution stubs.The dispat
h me
hanism is eÆ
ient in both time and spa
e.Furthermore, with stati
 analysis and online pro�le data, anoptimizing 
ompiler 
an inline the dominant target(s) of anyfrequently exe
uted interfa
e 
all.Mi
ro-ben
hmark results demonstrate that the expe
ted 
ostof an interfa
e method 
all dispat
hed via an IMT is 
om-parable to the 
ost of a virtual method 
all. Experimentalevaluation of a number of interfa
e dispat
h me
hanismson a suite of larger appli
ations demonstrates that, even forappli
ations that make only moderate use of interfa
e meth-ods, the 
hoi
e of interfa
e dispat
hing me
hanism 
an sig-ni�
antly impa
t overall performan
e. Fortunately, severalme
hanisms provide good performan
e at a modest spa
e
ost.
1. INTRODUCTIONMultiple inheritan
e adds power, expressiveness, and per-haps 
omplexity and 
ontroversy to an obje
t-oriented pro-

gramming model. Whether multiple inheritan
e simpli�esor 
ompli
ates the programming model remains a matterof debate. The designers of Java opted to avoid potentialproblems by providing only a limited form of multiple in-heritan
e, with the interfa
e 
onstru
t. Java allows onlysingle super
lass inheritan
e; a 
lass 
an inherit method im-plementations from at most one dire
t super
lass. However,a 
lass may implement any number of interfa
es. Ea
h 
lassmust expli
itly provide implementations of the method sig-natures de
lared by its interfa
es.Single inheritan
e enables simple and eÆ
ient virtual me-thod dispat
h using virtual method tables (VMTs). How-ever, a single VMT 
annot support interfa
e method dis-pat
h due to potential multiple inheritan
e. This has ledto a widespread impression that interfa
e method dispat
hin Java is inherently ineÆ
ient. A na��ve interfa
e dispat
hme
hanism 
an indeed introdu
e tremendous overhead. Forexample, Vallee-Rai reported that the Ka�e JIT Compilerinvokeinterfa
e byte
ode 
osts approximately 50 times aninvokevirtual [43℄. The initial implementation of interfa
einvo
ation in the Jalape~no JVM performed similarly poorly(see Se
tion 7).There are three sour
es of potential ineÆ
ien
y with inter-fa
e methods: dynami
 type 
he
ks, method dispat
h, andinhibition of 
ompiler optimizations. This paper des
ribeste
hniques to over
ome all three of these obsta
les.Se
tion 2 
onsiders the semanti
s of Java interfa
es, elu
i-dating the dynami
 type 
he
king requirements imposed bythe Java virtual ma
hine spe
i�
ation. Se
tion 3 reviewsthe Jalape~no virtual ma
hine, in
luding its me
hanism forqui
kly determining if a 
lass implements an interfa
e.Se
tion 4 des
ribes prior s
hemes for interfa
e method dis-pat
h and more generally for dispat
hing methods in thepresen
e of multiple inheritan
e or dynami
 typing. Then,Se
tion 5 presents Jalape~no's s
heme for interfa
e methoddispat
h. The JVM asso
iates a small, �xed-sized interfa
emethod table (IMT) with ea
h 
lass. The system hashesea
h interfa
e method signature to an IMT slot, with hash
ollisions handled by 
ustom-generated 
on
i
t resolutionstubs. In the usual 
ase (no 
ollision), the runtime 
ost of a




all through an interfa
e is almost identi
al to a virtual me-thod 
all. An IMT 
ollision adds a little additional overhead(roughly the same as a method prologue and epilogue).Interfa
e 
alls might hamper inlining or for
e extra run-time tests to guard inlined method bodies. Se
tion 6 de-s
ribes Jalape~no's me
hanisms for inlining interfa
e 
alls.Jalape~no's adaptive optimization system uses the same 
ri-teria for inlining interfa
e method 
alls as it does for vir-tual 
alls. Moreover, the 
ompiler usually employs the sameruntime 
he
ks to guard both types of inlined method bod-ies. This se
tion also shows how an optimizing 
ompiler
an often eliminate the dynami
 type 
he
k imposed by theinvokeinterfa
e byte
ode.Se
tion 7 presents experimental results evaluating the per-forman
e impa
t of di�erent interfa
e dispat
hing me
ha-nisms. The experiments 
onsider four alternatives: a na��veimplementation of the language spe
i�
ation, two variationson itables, and IMT-based dispat
h. Mi
ro-ben
hmark re-sults verify that both IMTs and one of the two itable s
hemesare not signi�
antly more expensive than virtual methoddispat
h. Results with a suite of larger appli
ations exam-ine the spa
e and time tradeo�s of the four alternatives.Overall, IMT-based dispat
h and one of the itable s
hemesa
hieve the best runtime performan
e, and have reasonablylow spa
e 
osts. The experiments also illustrate that evenfor appli
ations that make only moderate use of interfa
emethods, the 
hoi
e of interfa
e dispat
hing me
hanism 
ansigni�
antly impa
t bottom line performan
e.Se
tion 8 des
ribes several ways in whi
h the implementa-tion of IMT-based dispat
h in Jalape~no 
ould be improved.Se
tion 9 
on
ludes that performan
e 
on
erns should notdeter programmers from using Java interfa
es.
2. JAVA INTERFACESThe Java interfa
e 
onstru
t provides a limited form of mul-tiple inheritan
e [20℄. A Java interfa
e is a type whose mem-bers are all either abstra
t methods or 
onstants. A properJava 
lass may implement zero or more interfa
es, while itextends exa
tly one 
lass.1 Additionally, an interfa
e 
anextend other interfa
es.Most JVM implementations provide virtual method dispat
hthrough a table a asso
iated with ea
h 
lass. This virtualmethod table (VMT) holds a referen
e to the implementa-tion of ea
h method de
lared by the 
lass. When the JVMloads a 
lass A, it assigns ea
h virtual method in A a uniqueo�set in A's VMT. Methods inherited from a super
lass re-tain the unique o�set assigned by the super
lass. So, ea
hnew 
lass that extends A inherits A's VMT and o�sets for in-herited methods. If a 
lass overrides an inherited method, itsimply overwrites the VMT entry of the inherited method'so�set. The net result is that for a method foo() of 
lassA, a referen
e to a suitable foo() implementation resides atthe same o�set in the VMT of 
lass A as in the VMT for anysub
lass of A. Furthermore, the VM 
an assign VMT o�setsdensely, to minimize the size of ea
h VMT.1The one 
lass with no super
lass, java.lang.Obje
t, is notproper in this sense.

Interfa
es and multiple inheritan
e pre
lude this dispat
hme
hanism. Suppose foo() is an abstra
t method of aninterfa
e I. If two otherwise unrelated 
lasses A and B bothimplement I, then A and B must ea
h provide a suitablefoo() method. However, there is no guarantee that A.foo()and B.foo() will have been mapped to the same VMT o�set,sin
e A and B share no inheritan
e relationship.The interfa
e method dispat
h byte
ode, invokeinterfa
e,also 
arries a greater runtime veri�
ation burden than doesits virtual 
ounterpart, invokevirtual. The �rst time thelatter byte
ode exe
utes, it may for
e the spe
i�ed 
lassto be loaded (with all of the potential for raising ex
ep-tions that this may entail). Thereafter, the JVM veri�erguarantees that \this" obje
t for the virtual method willhave a suitable method at the appropriate slot in its VMT.Conversely, the veri�er allows an invokeinterfa
e 
all toan obje
t of a 
lass that does not a
tually implement theinterfa
e. Should this happen, the JVM must throw anIn
ompatibleClassChangeError.2Any implementation of interfa
e dispat
h in Java shouldnot 
ompromise other optimizations enabled by Java's sim-ple obje
t model. For example, Jalape~no exploits a two-word obje
t header for fast syn
hronization, hash 
odes, andgarbage 
olle
tion. For this reason, some multiple inheri-tan
e me
hanisms employed for stati
ally typed languageswith more 
omplex obje
t models (notably C++ [39℄) arenot a

eptable solutions for Java interfa
e methods.
3. THE JALAPE ÑO JVMJalape~no [1℄ is a resear
h Java virtual ma
hine targetingserver appli
ations. It is written in Java [2℄. This design de-
ision allows Java optimization te
hniques, in
luding thosedes
ribed here, to apply to both appli
ation 
ode and tothe JVM's 
ompilers, adaptive optimization system, threads
heduler, garbage 
olle
tor, and other subsystems.Jalape~no employs a 
ompile-only strategy; it 
ompiles ea
hmethod to native 
ode before the method exe
utes. Two dif-ferent 
ompilers address distin
t design points. The baseline
ompiler produ
es poor quality 
ode qui
kly. The optimiz-ing 
ompiler provides several levels of optimization for meth-ods deemed to require better performan
e. All optimizationlevels in
lude linear s
an register allo
ation [35℄ and BURS-based instru
tion sele
tion [36℄. Optimization level 0, thelowest, 
onsists mainly of a set of on-the-
y optimizationsperformed during intermediate representation (IR) gener-2This error is spe
i�ed as a Runtime Ex
eption in the se
ondedition of the virtual ma
hine spe
i�
ation [32℄, but not inthe �rst edition [31℄. A sour
e-to-byte
ode 
ompiler wouldrefuse to 
ompile su
h a program, but if one �le 
hangesafter an initial 
ompilation, subsequent 
ompilation of the�le 
ould 
reate the o�ending 
lass �les (hen
e the nameof the ex
eption). Something similar 
ould happen withinvokevirtual, but, in that 
ase, the in
ompatibility wouldbe dete
ted at 
lass-loading. Sin
e the interfa
es a 
lassimplements are not ne
essarily loaded with the 
lass itself,and sin
e interfa
es 
an extend other interfa
es, the fa
t thata 
lass does, or does not, implement an interfa
e 
annot bedetermined until the �rst time an instan
e of the 
lass istested against an interfa
e.



ation. Level 1 augments level 0 with aggressive inlining(driven by both stati
 heuristi
s and online pro�le infor-mation) and a number of other lo
al and intra-pro
edural
ow-insensitive optimizations. Level 2 augments level 1 witha suite of intra-pro
edural stati
 single assignment (SSA)based optimizations.Jalape~no's adaptive optimization system [5℄ maintains sta-tisti
al samples of the dynami
 
all graph. Using this infor-mation it s
hedules frequently 
alled and/or 
omputation-ally intensive methods for re
ompilation at an appropriatelevel of optimization. The adaptive system also relies on theon-line pro�le data to guide inlining de
isions.Jalape~no supports a variety of 
on�gurations; this paperassumes the following 
on�guration. The JVM runs on aPowerPC-based SMP running the AIX operating system. Ituses a parallel, non-generational 
opying garbage 
olle
tor.The optimizing 
ompiler stati
ally 
ompiles the methods ofsystem 
lasses (at optimization level 2), as part of Jalape~no'sboot image. The baseline 
ompiler initially 
ompiles ea
happli
ation method just before the method exe
utes for the�rst time. The adaptive optimization re
ompiles hot meth-ods for improved performan
e.Obje
ts in Jalape~no ea
h have a two word header. The �rstheader word points to a Type Information Blo
k (TIB) forthe type of the obje
t. The TIB is a Java array of obje
ts 3.A TIB 
onsists of a �xed-size header se
tion, and a variable-size VMT. The �rst slot of a TIB header 
ontains a refer-en
e to an obje
t that des
ribes the type. Three more slotsare used to provide an eÆ
ient implementation of dynami
type 
he
king [3℄. As dis
ussed in the previous se
tion, thetest that the 
lass of an obje
t implements an interfa
e 
on-tributes to the overhead of using interfa
e methods. One ofthese three TIB slots points to a data stru
ture | an arrayof bytes 
alled an Implements Trits Ve
tor (ITV) | thatallows Jalape~no to answer just su
h questions qui
kly. Ea
hinterfa
e is assigned a unique integer index into the ITV.Consider the ITV for a 
lass C, supposing interfa
e I hasbeen assigned ITV index n. The value of C's ITV entry atindex n 
a
hes the result of a test that C implements I. ThisITV entry holds 0 if C is known to not implement the I, 1if C does implements I, and 2 if the test has not yet beenmade.As there is no a priori bound on the number of interfa
esthat a JVM may en
ounter during its exe
ution, the JVMmust have the ability to grow the ITVs. To this end, the im-plementation logi
ally partitions the ITV into two se
tions.The �rst se
tion does not require an array bounds 
he
k,while the se
ond se
tion requires a 
he
k in 
ase the ITV inquestion needs to grow. Those interfa
es with indi
es lessthan the initial size of all ITVs never require a bounds 
he
k.In any event, the �rst test that a 
lass implements an inter-fa
e is moderately expensive. However, subsequent tests forthe same 
lass and interfa
e obtain the 
a
hed result of the�rst test from the 
lass's ITV fairly 
heaply.3Some of the performan
e impli
ations of requiring the TIBto be a legal Java array are 
onsidered in Se
tion 7.4

4. PRIOR TECHNIQUES FOR INTERFACE
DISPATCHThe �rst subse
tion des
ribes interfa
e tables (itables), prob-ably the most 
ommonly used me
hanism for interfa
e me-thod dispat
h in high performan
e Java implementations.The problem of dispat
hing Java interfa
e methods is 
loselyrelated to that of virtual method dispat
h in other obje
t-oriented languages with dynami
 typing. The following twosubse
tions review previous work in 
a
hing and method sig-nature (sele
tor) indexed dispat
h tables and des
ribe howthese te
hniques have been adapted for Java. Finally, thelast subse
tion dis
usses me
hanisms to implement virtualmethod dispat
h in the presen
e of multiple inheritan
e inC++ that are less amenable to adaptation to Java.

4.1 Interface tablesAn itable is a virtual method table for a 
lass, restri
ted tothose methods that mat
h a parti
ular interfa
e the 
lass im-plementation. To dispat
h an interfa
e method, the systemmust �rst lo
ate the itable that 
orresponds to the appropri-ate 
lass/interfa
e pair. The JVM 
an then load the desiredtarget method from a known o�set in this itable. Typi-
ally, the system stores itables in an array rea
hable fromthe 
lass obje
t. Sometimes a JIT 
ompiler 
an determinestati
ally what itable applies at a parti
ular interfa
e me-thod invo
ation site. If not, it must sear
h for the relevantitable at dispat
h-time [37, 17℄. In a straightforward imple-mentation, sear
h time in
reases with number of interfa
esimplemented by the 
lass. However, most systems augmentthis basi
 sear
hed itable approa
h with some form of itable
a
he or move-to-front algorithm [14℄ to exploit temporallo
ality in itable usage to redu
e expe
ted sear
h times.The CACAO JVM [29℄ implements a variant of the basi
itable s
heme that avoids a dispat
h-time sear
h for the rightitable. Rather than storing a 
lass's itables in a list thatmust be sear
hed, it maintains an array of itables for ea
h
lass indexed by interfa
e id. This (mostly empty) arraygrows down from (the CACAO analog of) the TIB, thusmaking it easily a

essible for dispat
hing. To dispat
h aninterfa
e method, CACAO simply loads the TIB from theobje
t, loads the itable for the interfa
e at a 
onstant o�setin the TIB, and obtains a pointer to the 
allee 
ode froma 
onstant o�set into the itable. With this me
hanism, aninterfa
e method dispat
h introdu
es only one more depen-dant load than a virtual method dispat
h.To somewhat redu
e the spa
e overhead of arrays of dire
tlyindexed itables, CACAO 
an safely trun
ate the interfa
etable for a 
lass to end with its last non-empty entry, sin
eempty entries will never be a

essed. This optimizationeliminates spa
e overhead for 
lasses that don't implementany interfa
es. Nevertheless, in non-trivial programs, theinterfa
e tables for 
lasses that implement any interfa
e willbe large and mostly empty, sin
e most 
lasses implementonly a tiny fra
tion of the total set of interfa
es.
4.2 CachingEarly Smalltalk-80 systems used dynami
 
a
hing [30℄ toavoid performing a full method lookup on every messagesend. The runtime system began method lookup by �rst




onsulting a global hash table (keyed by a 
lass/sele
tor4pair) that 
a
hed the results of re
ent method lookups. Al-though 
onsulting the hash table was signi�
antly 
heaperthan a full method lookup, it was still relatively expensive.Therefore, later Smalltalk systems added inline 
a
hes [13℄as a me
hanism to mostly avoid 
onsulting the global 
a
he.In an inline 
a
he, the 
all to the method lookup routine isoverwritten with a dire
t 
all to the method most re
ently
alled from the 
all site. The prologue of the 
allee methodis modi�ed to 
he
k that the re
eiver's type mat
hes and
alls the method lookup routine when the 
he
k fails. Inline
a
hes are extremely e�e
tive if the 
all site is monomor-phi
, or at least exhibits good temporal lo
ality, but performpoorly at most polymorphi
 
all sites.Polymorphi
 inline 
a
hes (PICs) [22℄ were developed toover
ome this weakness. In a polymorphi
 inline 
a
he, the
all site invokes a dynami
ally generated PIC stub that exe-
utes a sequen
e of tests to see if the re
eiver obje
t mat
hespreviously seen 
ases. If a mat
h is found, then the 
orre
ttarget method is invoked; if a mat
h is not found, the PICterminates with a 
all to the method lookup routine (whi
hmay in turn 
hoose to generate a new PIC stub for the 
allsite, extended to handle the new re
eiver obje
t).Similar ideas 
an be applied to interfa
e method dispat
h.When an interfa
e method is dispat
hed, the system 
an
a
he some history information regarding the dynami
 
all.5For interfa
e method dispat
h, the history 
onsists of a keyand a VMT o�set. The 
a
hing algorithm employed di
-tates the nature of the key. The VMT o�set represents theo�set of the dispat
hed method. The next time the systemen
ounters a similar invo
ation, it 
an re-use the old o�setif the new key mat
hes the old one.Any of dynami
 
a
hing, inline 
a
hes, or polymorphi
 in-line 
a
hes 
ould be used to dispat
h interfa
e methods. Infa
t, the �rst edition of The Java Virtual Ma
hine Spe
i�-
ation [31℄ de�ned a \qui
k byte
ode" that a
ted as inline
a
he by 
a
hing history with the invo
ation site.6 Other
a
hing s
hemes 
ould be used as well. For example, if in-vo
ations on the same obje
t, or obje
ts of the same 
lass,are 
onsidered similar, the key represents the signature ofthe interfa
e method and the information is 
a
hed eitherin the obje
t or its 
lass obje
t. Or, if invo
ations of thesame interfa
e method signature are 
onsidered similar, thekey will be the 
lass of the obje
t on whi
h the method isinvoked and the 
a
he 
ould be stored in a parallel stru
tureto the table of interfa
e-method signatures.4the sele
tor, or signature, of a method is its name, the typesof its parameters, and its return type (if any).5The system must take 
are when 
a
hing on SMP 
om-puters. Unless the key-value pair is updated atomi
ally, apro
essor might see the �rst value of one pair and the se
-ond value of another. In most 
ir
umstan
es, this spellsdisaster! Sin
e the 
ost of expli
it syn
hronization is oftenprohibitive, it may be bene�
ial to en
ode these pairs in asingle word to exploit atomi
 single-word memory a

ess.6The qui
k byte
odes have been dropped from the se
ondedition of the JVM spe
i�
ation [32℄.

A feature of any 
a
hing s
heme is that it relies on temporallo
ality and thus 
annot guarantee eÆ
ient dispat
hing forall programs. Polymorphi
 inline 
a
hes are less vulnerablethan simple inline 
a
hes, but they still 
an perform poorlyat \megamorphi
" 
all sites. This paper's experimental re-sults indi
ate that 
a
he mispredi
tions would be an issueeven for a polymorphi
 inline 
a
he on some programs (jessand possibly HyperJ).
4.3 Selector Indexed TablesFor our purposes, the signature of a Java method is its nametogether with the types of its arguments, if any, and its re-turn type (possibly void). Signatures of interfa
e methodsare assigned unique small integer identi�ers 
alled sele
tors.Sele
tor indexed dispat
h tables [10℄ provide a straightfor-ward but spa
e-intensive solution to the interfa
e methoddispat
h problem. Ea
h 
lass maintains a (potentially large)table indexed by sele
tor. Entries 
orresponding to a me-thod signature of an interfa
e that the 
lass a
tually imple-ments point to the 
ode for the mat
hing virtual method;all other entries are null. Sele
tor indexed dispat
h tableswere originally proposed to implement virtual method dis-pat
h in dynami
ally typed obje
t oriented languages, butwere 
onsidered too spa
e-intensive to be pra
ti
al.Several approa
hes have been proposed to greatly redu
e thespa
e 
osts of sele
tor indexed tables. Driesen 
onsidered us-ing a spe
ialized sparse array data stru
ture [16℄. The SableVM also uses sele
tor indexed dispat
h tables for interfa
emethod dispat
h, but redu
es the spa
e impa
t by releasing\gaps" in the dispat
h tables to the allo
ator to reallo
ate assmall obje
ts [18, 19℄. Although 
lever, this tri
k 
an signif-i
antly 
ompli
ate both allo
ation and garbage 
olle
tion.7Sele
tor 
oloring [15℄ has been applied to redu
e the sizeof sele
tor indexed dispat
h tables. Just as in register al-lo
ation [6℄, the assignment of identi�ers to sele
tors 
anbe viewed as a graph 
oloring problem. Two sele
tors 
anbe assigned the same 
olor if they are never implemented bythe same 
lass. Using this approa
h, several algorithms havebeen proposed that greatly redu
e the size of the dispat
htables [15, 4, 45, 44℄. Unfortunately, all of these algorithmsassume that the set of sele
tors and the 
lasses that im-plement them are known a priori. Thus, previous sele
tor
oloring algorithms are a poor mat
h for Java, sin
e theJVM 
annot know this information in advan
e.CACAO's se
ond s
heme for interfa
e method dispat
h is se-le
tor 
oloring [29℄. This se
ond s
heme improves over theirdire
tly indexed itable s
heme des
ribed above by eliminat-ing the need for an extra indire
tion (and thus virtual andinterfa
e invo
ations 
ost exa
tly the same), but the spa
eimpli
ations still 
ould be severe in some programs. How-ever, this s
heme is only appli
able if all interfa
es and all
lasses that implement interfa
es are known to the JVMin advan
e. An optimisti
 
oloring s
heme with a re
ov-ery me
hanism to re
olor the sele
tors and pat
h previously7However, the Sable VM puts a limit (1000) on the numberof interfa
e signatures that are dispat
hed in this fashion.After the limit is ex
eeded it falls ba
k to a slower dispat
hme
hanism.




ompiled interfa
e invo
ation sites has been 
onsidered forCACAO, but has not been implemented [28℄.
4.4 Multiple Inheritance in C++Stati
ally-typed obje
t-oriented languages have fa
ed simi-lar problems with multiple inheritan
e. The usual solutionin C++ [39℄ uses multiple dispat
h tables for ea
h type,one 
orresponding to ea
h super
lass. An obje
t pointer in-di
ates the dispat
h table 
orresponding to the stati
 typeof the obje
t referen
e. Virtual dispat
h may require this-pointer adjustment to for
e the obje
t pointer to refer to theappropriate o�set in the obje
t header.The C++ solution uses signi�
antly more spa
e in the ob-je
t than ne
essary for Java, whi
h does not have multipleimplementation inheritan
e. Myers [33℄ presented a sophis-ti
ated algorithm to redu
e the spa
e overhead by mergingdispat
h tables for 
ompatible types and exploiting bidire
-tional layout in the obje
t header.Both of these te
hniques rely on 
omplete knowledge of anobje
t's super
lasses at 
ompile-time. Unfortunately, thisknowledge is not ne
essarily available in Java, sin
e the
lass loader may not load the full interfa
e hierar
hy be-fore 
ompiling a 
lass's methods. Furthermore, even withbidire
tional layout, these me
hanisms may in
rease the ob-je
t header size and add runtime overhead for this-pointeradjustment.
5. IMT-BASED INTERFACE DISPATCHJalape~no implements a new interfa
e dispat
h me
hanism,
alled the interfa
e method table (IMT). IMT-based dis-pat
h aims to mat
h the eÆ
ien
y of sele
tor indexed dis-pat
h tables while avoiding both the potentially large spa
e
osts and the a priori knowledge requirements of sele
tor
oloring. The key idea is to in
lude a me
hanism to handle
olor 
ollisions. By being able to tolerate 
olor 
ollisions,IMT-based interfa
e method dispat
h obtains most of thebene�ts of sele
tor 
oloring without having to know all in-terfa
e method signatures in advan
e, and without 
ommit-ting to making all dispat
h tables large enough to be ableto obtain a perfe
t 
oloring for every program.Ea
h sele
tor (interfa
e method signature id) is hashed intoan IMT o�set. The system assigns interfa
e method idssequentially as new interfa
e method signatures are dis
ov-ered, either by loading interfa
es or by 
ompiling referen
esto interfa
e methods. In the 
urrent implementation, Jala-pe~no maps ids dire
tly to IMT slots, modulo the size of theIMT, a �xed 
onstant.Figure 1 depi
ts the virtual and IMT-based interfa
e dis-pat
hing sequen
es on a PowerPC. The extra instru
tion inthe IMT dispat
h sequen
e prepares for the possibility of a
ollision by loading the id of the interfa
e signature beingdispat
hed into a hidden parameter. If there is no 
ollision,then the IMT entry holds a referen
e to the exe
utable 
odefor the 
allee method, and the system would bran
h dire
tlyto it (the hidden parameter being ignored). If there is a
ollision, then the IMT entry holds a referen
e to a 
ustom-generated 
on
i
t resolution stub. The stub uses the hid-

den parameter to determine whi
h of the several signaturesthat share this slot in the re
eiver 
lass's IMT is the desiredtarget, and then loads the VMT o�set for the appropriatemethod, and transfers 
ontrol to the 
ode referen
ed at thiso�set in the VMT.Con
i
t stub 
ode generation must pro
eed 
arefully, dueto the restri
ted 
ontext in whi
h the stub must exe
ute.Before exe
uting it, the 
alling sequen
e has already storedthe 
aller's return address and 
all parameters in the lo
a-tions di
tated by the 
alling 
onvention. The 
on
i
t resolu-tion stub must respe
t the 
alling 
onvention, and thus mayuse only a small number of registers without introdu
ingsave/restore overhead.Figure 2 shows a 
on
i
t resolution stub for an IMT slotwith four possible target methods. The pro
essor's link reg-ister 
ontains the return address in the 
alling method. Thenon-volatile registers 
annot be used until the 
allee savesthem. The volatile registers 
annot be used be
ause theymay 
ontain parameters to the method being 
alled. OnlyJalape~no's three PowerPC s
rat
h registers (s0, s1, and r0)are readily available for use by the stub.8 Although the de-tails of the stub are highly ar
hite
ture dependent, similarideas apply on other platforms.9It remains to explain how the virtual ma
hine populatesIMTs. The simplest s
heme would be to 
reate the IMT for a
lass when the 
lass is loaded. Unfortunately, Jalape~no doesnot know when a 
lass is loaded whi
h of its publi
 virtualmethods are interfa
e methods sin
e a 
lass's interfa
es arenot loaded with the 
lass. Jalape~no 
ould 
onservativelyassume that all su
h methods are interfa
e methods, butthis would lead to ex
essive false IMT 
on
i
ts.Instead the system 
an build the IMTs in
rementally as theprogram runs. When the virtual ma
hine dis
overs that a
lass implements an interfa
e, it adds that interfa
e's meth-ods to the 
lass's IMT. If this pro
ess reveals an IMT 
on-
i
t, the system dynami
ally generates the appropriate 
on-
i
t resolution stubs. Sin
e the virtual ma
hine must alwaysperform the relevant type 
he
k before the interfa
e methoddispat
h (either at runtime or at 
ompile time, as dis
ussedin the next se
tion), the IMT will always 
ontain the re-quired methods by the time of invo
ation.
6. INLINING INTERFACE INVOCATIONSThe previous se
tions des
ribe eÆ
ient s
hemes for interfa
emethod dispat
h. However, interfa
es 
ould 
on
eivably alsoinhibit 
ompiler optimizations, method inlining in parti
u-lar. This se
tion dis
usses optimizations performed by the8These registers are used by Jalape~no method prologues(and epilogues) to allo
ate (free) the sta
k frame for the
alled method. They are also used as temporary registersbetween method 
alls. Register 0 (r0) is of limited utilitysin
e many PowerPC instru
tions treat what would be areferen
e to it as a literal 0.9Jalape~no's register 
onventions for Intel's IA32 ar
hite
turedo not provide a free s
rat
h register for the hidden parame-ter, so the interfa
e method signature id is passed by storingit at a prearranged lo
ation in thread-spe
i�
 memory.



// virtual invo
ation sequen
e// t0 
ontains a referen
e to the re
eiver obje
tL s2, tibOffset(t0) // s2 := TIB of the re
eiverL s2, vmtOffset(s2) // s2 := VMT entry for method being dispat
hedMTLR s2 // move target address to the link registerBLRL // bran
h to it (setting LR to return address)// IMT-based interfa
e invo
ation sequen
e// t0 
ontains a referen
e to the re
eiver obje
tL s2, tibOffset(t0) // s2 := TIB of the re
eiverL s2, imtOffset(s2) // s2 := IMT entry for signature being dispat
hedL s1, signatureId // put signature id in hidden parameter registerMTLR s2 // move target address to the link registerBLRL // bran
h to it (setting LR to return address)Figure 1: Sequen
es for virtual and IMT-based interfa
e dispat
h
// id1 < id2 < id3 < id4// t0 
ontains the address of the re
eiving obje
t ("this" parameter)// s1 
ontains the interfa
e method signature id ("hidden" parameter)// LR 
ontains the return address in the 
aller//L s0, tibOffset(t0) // s0 := TIB of the re
eiverCMPI s1, id2 // 
ompare hidden parameter to id of se
ond methodBLT L1 // if less than bran
h to (id1..id1) sear
h treeBGT L2 // if greater than bran
h to (id3..id4) sear
h treeL s0, offset2(s0) // load VMT entry for se
ond methodMTCTR s0 // move this address to the 
ount registerBCTR // bran
h to it (preserving 
ontents of the LR)L1: L s0, offset1(s0) // load VMT entry for the first methodMTCTR s0 // move this address to the 
ount registerBCTR // bran
h to it (preserving 
ontents of the LR)L2: CMPI s1, id3 // 
ompare hidden parameter to id of third methodBGT L3 // if greater than bran
h to (id4..id4) sear
h treeL s0, offset3(s0) // load VMT entry for the third methodMTCTR s0 // move this address to the 
ount registerBCTR // bran
h to it (preserving 
ontents of the LR)L3: L s0, offset4(s0) // load VMT entry for the fourth methodMTCTR s0 // move this address to the 
ount registerBCTR // bran
h to it (preserving 
ontents of the LR)Figure 2: A 
on
i
t resolution stub with four entries.



Jalape~no optimizing 
ompiler to inline interfa
e 
alls andfurther redu
e the 
osts of dynami
 dispat
hing.interfa
e I { publi
 void foo(); }
lass B implements I {void foo() {...}}
lass C extends B {}
lass A {void bar(I i, I i2) {if (I instan
eof B) {i.foo();} else {i2.foo();}I i3 = (I) new B();i3.foo();}}Figure 3: Some example interfa
e usage patterns.Devirtualization is a well-known te
hnique that 
onverts avirtual dispat
h to a stati
ally-bound (dire
t) 
all when thetarget of the dispat
h 
an be uniquely determined at 
ompiletime. Similarly, the Jalape~no optimizing 
ompiler performsvirtualization, redu
ing an interfa
e invo
ation to a virtualmethod 
all.Consider, for example, the 
ode for method A.bar() in Fig-ure 3. This 
ode 
an be transformed as follows:1. The 
ompiler 
an virtualize the 
all to i.foo(), sin
eit 
an determine that at that program point, i must bea sub-
lass of B. Therefore, i.foo() 
an be dispat
hedas a virtual method 
all to B::foo().2. The 
ompiler 
annot virtualize the 
all to i2.foo(),la
king any 
on
lusive information on the type of i2.3. The 
ompiler 
an �rst virtualize and then even devir-tualize the 
all i3.foo(), sin
e intra-pro
edural typeanalysis [27, 9℄ determines that i3 
an only 
ontainobje
ts with 
on
rete type B.The optimizing 
ompiler 
an inline devirtualized method
alls, virtual 
alls, and interfa
e invo
ations. The 
ompiler
an inline a devirtualized 
all dire
tly (without guarding),sin
e analysis has revealed the exa
t target. To inline se-le
ted potential targets of a virtual 
all, 
ompilers 
an per-form various forms of guarded inlining. The 
ompiler 
an de-
ide whi
h targets to spe
ulatively inline at a 
all site usingstati
 heuristi
s [13, 8℄, pro�le information [24, 21℄, and/orstati
 examination of the program's 
lass hierar
hy [7, 11℄.

Jalape~no uses both 
lass tests and method tests [12℄ to per-form guarded inlining of virtual 
alls based on both 
lasshierar
hy analysis and on-line pro�le information.10In addition to determining whi
h 
alls are legal to inline,the 
ompiler must identify a set of 
all sites as attra
tive
andidates to inline. Jalape~no's optimizing 
ompiler usesa mix of stati
 heuristi
s and on-line pro�le information tomake these de
isions. The stati
 heuristi
s identify 
andi-dates based on size estimates of the 
aller and 
allee, anddata-
ow properties known at the 
all site. Furthermore,the stati
 heuristi
s ele
t to perform a guarded inline of avirtual or interfa
e 
all only if analysis of the 
urrent 
lasshierar
hy of the program reveals that there is only one possi-ble target for the 
all. Note that the adaptive optimizationsystem generally does not optimize a method until it be-
omes a hot spot in the program's exe
ution. We expe
tmost dynami
 
lass loading that a�e
ts su
h a 
all site tohappen before Jalape~no optimizes and spe
ulatively inlinesit.These stati
 heuristi
s will not identify many of the most
ommon interfa
e methods as inline 
andidates. The most
ommon interfa
es (e.g. Serializable, Enumeration, et
.)have many di�erent implementations. In general, a 
ompilerwould have to resort to 
ontext-sensitive inter-pro
eduralanalysis to virtualize or devirtualize 
all sites for methodsof these interfa
es. Su
h analysis usually 
osts too mu
hfor a JIT or runtime 
ompiler, whi
h must normally rely onless expensive, solely intra-pro
edural analysis. As a result,a JIT will likely fail to stati
ally determine one target formany interfa
e 
alls.Jalape~no's adaptive optimization system solves this problemusing on-line pro�le-dire
ted inlining to identify 
andidatesto be inlined with guards at hot 
all sites. Normally, the me-thod test guards inlined interfa
e methods, just as it guardsinlined virtual methods.11Pro�le-dire
ted inlining naturally tends to minimize the over-head of 
on
i
t resolution stub exe
ution. If a parti
ular
on
i
t resolution stub exe
utes frequently, the adaptive op-timization system will tend to 
ag at least one target methodas \hot". The adaptive system heuristi
s would then likelyinline that method into hot 
all sites. This optimization willredu
e the frequen
y of 
on
i
t resolution stub exe
ution. Ifthe heuristi
s do not inline a hot target method, deeming it10If 
lass hierar
hy analysis determines that a non-devirtualized 
all site 
an 
urrently only invoke a single tar-get method (but the 
allee method is not de
lared to be �-nal), then it 
ould be inlined without a guard by relying oninvalidation me
hanisms su
h as on-sta
k-repla
ement [23℄or 
ode pat
hing [26℄ to undo the inlining if a future 
lassloading event invalidates it. Neither of these re
overy me
h-anisms have been implemented in Jalape~no. However, Jala-pe~no does use pre-existen
e [12℄ as a partial substitute for afull-
edged invalidation me
hanism.11In ex
eedingly rare 
ases, the 
ompiler may spe
ulativelyinline a method from a 
lass that 
annot be proven, at 
om-pile time, to implement the target interfa
e (for example,�gure 5). In this 
ase, the 
ompiler must insert a dynami
type 
he
k to ensure that the re
eiver implements the inter-fa
e before exe
uting the inlined body.



Enumeration e = getEnumeration();while (e.hasMoreElements()) {use(e.next());}Figure 4: A 
ommon interfa
e idiom requiring a sin-gle dynami
 type 
he
k.
lass A {publi
 int foo() { ... }}
lass B extends A implements I {}interfa
e I {publi
 int foo();}
lass Test {int test() {I i = 
reateI();return i.foo();}I 
reateI() { return 
reateA(); }A 
reateA() { ... return new B(); }}Figure 5: An anomalous example; after inlining
reateI, the 
ompiler 
an virtualize i.foo(), but 
an-not remove the dynami
 type 
he
k to ensure thatthe obje
t referred to by i a
tually implements I.This situation 
an arise when the 
lass A was modi-�ed to no longer implement I after the 
lass �les forTest and B were produ
ed.too big to inline, then its exe
ution 
ost likely dominatesoverhead imposed by the 
on
i
t resolution stub.As dis
ussed in se
tion 2, both guarded interfa
e invo
ationand the normal interfa
e dispat
h s
heme require a dynami
type 
he
k. The 
ompiler 
an redu
e the overhead of thistype 
he
k in two ways. First, if the 
ompiler 
an use typeanalysis to stati
ally verify that the re
eiver implementsthe target interfa
e, the runtime 
he
k 
an be eliminated.Se
ondly, the optimizing 
ompiler represents dynami
 type
he
ks as binary operators in the low-level intermediate rep-resentation used to drive 
ode motion and redundan
y elim-ination. If the 
ompiler 
an identify multiple type 
he
ks ofthe same obje
t against a parti
ular interfa
e, it 
an removethe redundant 
he
ks. Partial redundan
y elimination 
an,for example, hoist the loop-invariant type 
he
ks from theloop in �gure 4. Similarly, the 
ompiler will optimize redun-dant loads in the dispat
h sequen
e; the TIB base pointerload for obje
t e in the �gure 
an also be hoisted from theloop.As dis
ussed in Se
tion 2, the virtual ma
hine spe
i�
ationgenerates some fringe 
ases that the 
ompiler must handle
orre
tly. For example, in Figure 5, the 
ompiler might su
-


essfully virtualize an interfa
e 
all, but still fail to eliminatethe dynami
 type 
he
k for the dispat
h. Suppose the 
om-piler analyzes Test.test(), with only intra-pro
edural in-formation and inlining. Further suppose the 
ompiler inlines
reateI into test(), but doesn't 
hoose to inline 
reateA()(perhaps be
ause it is too big). The 
ompiler 
an virtualizethe 
all to foo(), sin
e type propagation determines that iis a sub
lass of A. However, it 
annot remove the dynami
type 
he
k, sin
e A doesn't implement I. The dynami
 type
he
k is required to dete
t and raise an In
ompatibleClass-ChangeError if 
reateA should ever return a sub
lass of Athat does not implement I.
7. EXPERIMENTAL RESULTSThis se
tion empiri
ally assesses four interfa
e method dis-pat
h s
hemes: a na��ve implementation, two itable variants,and IMTs. It also explores the e�e
tiveness of the vari-ous optimizing 
ompiler te
hniques des
ribed in Se
tion 6.The next subse
tion pre
isely des
ribes the implementationdetails of the four alternative s
hemes. The following sub-se
tion presents mi
ro-ben
hmark results that fo
us on thedire
t 
osts of virtual and interfa
e dispat
h under ea
h al-ternative s
heme. The third subse
tion des
ribes our suiteof larger ben
hmarks and presents data on the dynami
 fre-quen
y of interfa
e invo
ation in ea
h program. The �nalsubse
tion �rst assesses the e�e
tiveness of the 
ompilerte
hniques for avoiding interfa
e dispat
hing entirely, andthen presents data 
omparing the various dispat
hing te
h-niques fo
using on their impa
t on appli
ation runtime andthe spa
e impli
ations of ea
h alternative.All performan
e results reported below were obtained onan IBM RS/6000 Enterprise Server F80 running AIX v4.3.The ma
hine has 4GB of main memory and six 500MHzPowerPC RS64 III pro
essors ea
h with 4MB of L2 
a
he.
7.1 Interface Dispatch ImplementationsThe alternative implementations of interfa
e method dis-pat
h are as follows.� Class Obje
t Sear
h: a na��ve implementation of theinvokeinterfa
e spe
i�
ation. On every interfa
e me-thod dispat
h, the VM invokes a runtime servi
e to�nd the target method. The servi
e routine takes there
eiver obje
t and a des
ription of the desired inter-fa
e method, and sear
hes the 
lass hierar
hy to �nda mat
hing virtual method. The sear
h routine alsoperforms the required dynami
 type 
he
k.� Sear
hed ITables: the VM sear
hes a per-
lass list ofitables to �nd the appropriate itable, and then indexesinto the itable to �nd the target method. On every in-terfa
e method dispat
h, a runtime servi
e routine isinvoked to �nd the desired itable. The servi
e rou-tine takes the re
eiver obje
t and the id of the desiredinterfa
e. It sear
hes the 
lass's list of itables (rea
h-able from the TIB of the obje
t); if it �nds the itablethen it simply returns it. If it fails to �nd the itable,then it must perform a dynami
 type 
he
k to ensurethat the 
lass a
tually implements the interfa
e. As a



side-e�e
t of performing the dynami
 type 
he
k, theitable for the target interfa
e is added to the 
lass's listof itables. The sear
h routine employs a move-to-frontalgorithm [14℄ to exploit temporal lo
ality of interfa
eusage and partially mitigate the sear
h overhead whena 
lass implements a large number of interfa
es.� Dire
tly Indexed ITables: a per-
lass array of itables isloaded from the TIB and indexed into by interfa
e id to�nd the appropriate itable, whi
h is then indexed intoto �nd the target method. This is one of the interfa
edispat
hing s
hemes used in the CACAO JVM [29℄.The interfa
e dispat
h must be pre
eeded (either at
ompile-time or at run-time) by a dynami
 type 
he
kto ensure that the 
lass of the re
eiver obje
t a
tuallyimplements the target interfa
e. As a side-e�e
t, thedynami
 type 
he
k adds the itable for the interfa
e tothe 
lass's itables array. This me
hanism ensures thatthe required type 
he
k has been performed for everypopulated itable.� IMT : interfa
e method tables as des
ribed in Se
tion 5.As in the dire
tly indexed itables, the IMT is lazily ini-tialized as a side-e�e
t of dynami
 type 
he
king. Datais reported for two di�erent IMT sizes: 5 entries and40 entries (IMT-5 and IMT-40).The fa
t that Jalape~no is implemented in Java adds an extraindire
tion of overhead to the itable and IMT dispat
h im-plementations. The Jalape~no TIB is implemented as a Javaarray in the run-time system. As su
h, the TIB itself must
onform to the obje
t model, like any other Java obje
t inthe VM. As a result, Jalape~no does not have the ability togrow the TIB in two dire
tions. So, Jalape~no 
annot ref-eren
e two variable-size tables (eg. the VMT and IMT, orVMT and itable list) with just one pointer in the obje
theader. So, in all s
hemes des
ribed, the 
urrent implemen-tation adds an extra indire
tion from a TIB entry to a
quirethe �rst level of interfa
e dispat
h data stru
ture. We 
ouldeliminate this extra indire
tion by 
ir
umventing the Javaobje
t model for TIBs, and allow these stru
tures to growin two dire
tions. We evaluate the 
ost of the extra indi-re
tion with a mi
roben
hmark in the next se
tion. A JVMimplemented in C would not fa
e this diÆ
ulty.
7.2 Micro-benchmarksThis Se
tions presents several mi
ro-ben
hmarks to 
om-pare the dire
t 
osts of interfa
e and virtual dispat
hing inJalape~no. The 
ore of ea
h mi
ro-ben
hmark 
onsists of aloop that in ea
h iteration performs a method invo
ation 20times. The loop exe
utes 1,000,000 times, and the total wall
lo
k time spent exe
uting the loop is reported. Thus, theseresults in
lude the 
ost of the method body, and so providean upper bound on the 
ost of interfa
e dispat
h. Methodinlining was disabled for these experiments.The mi
ro-ben
hmarks exer
ise three 
ategories of invo
a-tion: virtual method invo
ation, interfa
e invo
ation wherethe interfa
e has only one method, and interfa
e invo
ationwhere the interfa
e has many (100) methods. The �nal 
at-egory illuminates the 
osts of 
on
i
t resolution stubs.

The mi
ro-ben
hmarks 
all one of two target methods. The�rst target (Trival Callee) simply returns the integer 
on-stant 1. For this trivial method, Jalape~no's optimizing 
om-piler applies leaf method optimizations whi
h avoid the nor-mal method prologue and epilogue sequen
es. In fa
t, thegenerated 
ode for the 
allee method 
ontains only two ma-
hine instru
tions. The se
ond example (Normal Callee) in-vokes a slightly more 
omplex target method. This 
alleemethod 
onditionally either returns 1 or invokes anothermethod, based on the value of a stati
 �eld. The ben
h-mark sets the value of this stati
 �eld at runtime su
h thatthe method always returns 1; however, the 
ompiler 
annotstati
ally fold the bran
h and does not apply leaf methodoptimizations.Table 1 presents the results of these experiments. In ad-dition to the four interfa
e dispat
hing s
hemes previouslydes
ribed, a �fth, Embedded IMT, is also in
luded just forthe mi
ro-ben
hmarks. The Embedded IMT 
on�gurationsimulates a runtime system in whi
h the extra indire
tionimposed by Jalape~no's restri
tion to using Java obje
ts forTIBs 
ould be eliminated by growing the TIB in both dire
-tions, thus supporting a variable-size VMT and a �xed-sizeIMT that is only present for those 
lasses that a
tually usethe interfa
es they implement. Based on the di�eren
es be-tween the Embedded IMT and IMT data, it appears thatthe extra dependent load in the dispat
hing sequen
e addsapproximately two 
y
les to the dispat
hing 
ost. This isfurther supported by the observation that the primary dif-feren
e between a 
on
i
t-free IMT dispat
h and a dispat
hthrough a dire
tly indexed itable is a single dependent load,and these data points also di�er by approximately two 
y-
les.Overall, a 
on
i
t-free IMT-based interfa
e method dispat
his the most eÆ
ient me
hanism, followed 
losely by dire
tlyindexed itables. The di�eren
e between the 
on
i
t-free dis-pat
h through an Embedded IMT and a virtual dispat
h isinsigni�
ant (0.1 
y
les). The hardware su

essfully over-laps the extra register move immediate to set up the hiddenparameter with other operations, resulting in almost zeroobserved overhead.Dispat
h through a 
on
i
t resolution stub is surprisinglyinexpensive. The 
ost of dispat
hing through a 
on
i
t res-olution stub (even one with 20 entries) is roughly equivalentto the 
ost of a prologue/epilogue sequen
e. The di�eren
ebetween Trivial Callee and Normal Callee on virtual is 11 
y-
les; the di�eren
e on IMT-5 between a 1 method interfa
eand 100 method interfa
e is 12 
y
les. IMT-based dispat
hwith 
on
i
ts is not as eÆ
ient as interfa
e dispat
h througha dire
tly indexed itable. But, in a fairly typi
al 
ase wherethe 
allee is non-trivial and the 
on
i
t stub only has to me-diate between a small number of 
andidate methods (IMT-40, 100, Normal), the di�eren
e is only 5 
y
les.Both Sear
hed ITables and Class Obje
t Sear
h are relativelyslow interfa
e dispat
hing me
hanisms. But only Class Ob-je
t Sear
h is truly pathologi
al with 
osts of 214x and 92xgreater than a virtual dispat
h. An interfa
e dispat
h usingSear
hed ITables is only 9.5x and 4.6x slower than the equiv-



Dispat
hing Me
hanism Number of Methods in Interfa
e Trivial Callee Normal Calleevirtual Not appli
able 8.13 19.18Embedded IMT-5 interfa
e with 1 method (no IMT 
on
i
t) 8.23 19.25Embedded IMT-5 interfa
e with 100 methods (20 element stub) 20.25 32.28Embedded IMT-40 interfa
e with 1 method (no IMT 
on
i
t) 8.23 19.25Embedded IMT-40 interfa
e with 100 methods (2 or 3 element stub) 14.23 27.40IMT-5 interfa
e with 1 method (no IMT 
on
i
t) 10.18 21.20IMT-5 interfa
e with 100 methods (20 element stub) 22.20 32.23IMT-40 interfa
e with 1 method (no IMT 
on
i
t) 10.18 21.20IMT-40 interfa
e with 100 methods (2 or 3 element stub) 18.20 28.23Dire
tly Indexed ITables interfa
e with 1 method 12.18 23.20Dire
tly Indexed ITables interfa
e with 100 methods 12.18 23.20Sear
hed ITables interfa
e with 1 method 77.45 88.50Sear
hed ITables interfa
e with 100 methods 77.45 88.50Class Obje
t Sear
h interfa
e with 1 method 352.55 362.73Class Obje
t Sear
h interfa
e with 100 methods 1,743.13 1,759.48Table 1: Cost, in 
lo
k 
y
les, of round-trip method dispat
h in Jalape~no, under ea
h alternative interfa
edispat
hing me
hanism.alent virtual dispat
h. This 
ould potentially be improvedfurther with inline 
a
hing te
hniques.
7.3 Application CharacteristicsTable 2 des
ribes the appli
ation ben
hmark suite, 
om-prising the SPECjvm98 [41℄ ben
hmarks and several larger
odes. Improving interfa
e invo
ation will only help anappli
ation with non-negligible overhead due to interfa
es.Therefore, let us begin by trying to quantify the importan
eof interfa
e method invo
ation in ea
h ben
hmark. In thisexperiment, the system does not employ the te
hniques de-s
ribed in this paper; in parti
ular, the 
ompiler does notvirtualize, devirtualize, or inline interfa
e invo
ations. How-ever, it may inline and devirtualize stati
, spe
ial, and vir-tual 
alls.Using instrumentation 
apability in Jalape~no's adaptive op-timization system, the optimizing 
ompiler inserted 
ountersinto the generated 
ode to 
ount and 
ategorize the dynami
non-inlined invo
ations during ben
hmark exe
ution.12 Allma
ro-ben
hmarks run in a testing harness that exe
utes theben
hmark ten times, printing and 
learing the 
ounters atthe start of ea
h run.Figure 6 shows the rate of non-inlined invo
ations per se
ondon the tenth run for ea
h of the four di�erent invoke byte-
odes. The bar for 
ompress appears invisible be
ause afterinlining, 
ompress makes only 249 method 
alls per se
ond.Based on this data, we 
an expe
t little bene�t on mpegau-dio and absolutely no bene�t on 
ompress and mtrt. In fa
t,both 
ompress and mtrt make exa
tly one interfa
e methodinvo
ation per iteration. Therefore, results for 
ompress,mpegaudio, and mtrt will not be reported hereafter. Thepotential for improvement on db, opt-
ompiler, HyperJ andDOMCount appears signi�
ant; 
alls to interfa
e methods12Only invo
ations in methods that are exe
uted frequentlyenough to be sele
ted for optimizing re
ompilation will be
ounted. However, the 
alling behavior of infrequently exe-
uted methods should not substantially impa
t performan
e.

represent a substantial portion of their non-inlined invo
a-tions.
7.4 Application PerformanceFigure 7 provides data on the e�e
tiveness of the various
ompiler te
hniques to avoid performing a full interfa
e dis-pat
h. It shows the dynami
 per
entage of interfa
e invo
a-tions handled by ea
h dispat
hing me
hanism. The systemdispat
hes ea
h interfa
e method 
all by one of the followingme
hanisms:� Virtualized and inlined : Based on the results of typeanalysis, the optimizing 
ompiler virtualized the inter-fa
e 
all. The 
ompiler then inlined the virtual 
all.With the ex
eption of a tiny fra
tion of the virtualizedand inlined 
alls in HyperJ, the 
ompiler 
onsistentlyfurther devirtualized, and 
ould omit the method testto guard the inlined method body.� Virtualized : The optimizing 
ompiler su

eeded in vir-tualizing the 
all through type analysis, but was ei-ther unable or unwilling to inline it. The 
ompilermight not inline a virtual 
all for any of number ofreasons. Prime 
andidates in
lude: a) the adaptivesystem 
ompiled the 
aller method at its lowest opti-mization level, with all inlining disabled, b) the inlin-ing heuristi
s deem the 
allee method too big to inlineinto the 
alling 
ontext given the 
all site's dynami
frequen
y, and 
) the 
all graph pro�le identi�es multi-ple possible targets at a dynami
ally polymorphi
 
allsite, but does not identify any of the re
eivers as adominant target pro�table to inline.� Stati
 guarded inline: The optimizing 
ompiler failedto virtualize the 
all with type analysis. But, at thetime the method was optimized, the set of loaded 
lassesde�ned only one implementation of the interfa
e me-thod. The 
ompiler, based ex
lusively on size heuris-ti
s (without pro�le information), spe
ulatively inlined



Ben
hmark Des
ription Classes Methods Byte
odes
ompress Lempel-Ziv 
ompression algorithm 48 489 19,480jess Java expert shell system 176 1101 35,316db Memory-resident database exer
ises 41 510 20,495java
 JDK 1.0.2 Java 
ompiler 176 1496 56,282mpegaudio De
ompression of audio �les 85 712 51,308mtrt Two-thread raytra
ing algorithm 62 629 24,435ja
k Java parser generator 86 743 36,253SPECjbb2000 simulated transa
tion pro
essing [42℄ 132 1778 73,608opt-
ompiler Jalape~no optimizing 
ompiler 414 5030 139,004HyperJ Hyper-J [34, 25℄ 
omposition tool 421 5003 136,957DOMCount Xer
es v1.2.3 [40℄ XML parser 142 1880 88,134Table 2: Ben
hmark 
hara
teristi
s. For ea
h ben
hmark, the Table gives the number of 
lasses loaded, thenumber of methods 
ompiled at runtime, and the number of byte
odes 
ompiled at runtime. The statisti
sin
lude both appli
ation 
ode and library 
ode loaded at runtime. The �rst seven rows 
omprise the suite ofSPECjvm98 ben
hmarks.
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Figure 6: Dynami
 rate of non-inlined invo
ations 
ategorized by invoke byte
ode. Optimizing interfa
e invo-
ation will only improve the performan
e of those appli
ations with a signi�
ant rate of interfa
e invo
ation(the bottom white portion of ea
h bar).
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Figure 7: Dynami
 per
entage of interfa
e invo
ations handled by ea
h dispat
h me
hanism.the single stati
 target, guarded by a runtime 
he
k.13� Pro�le-dire
ted guarded inline: Class hierar
hy analy-sis determines that the interfa
e method has multiplepossible implementations. However, the online pro�leinformation identi�es one or more dominant targetsfor the 
all site. Based on this information, the 
om-piler spe
ulatively inlined the dominant target(s) witha runtime guard.� Mispredi
ted pro�le-dire
ted guarded inline: The run-time guard at a pro�le-dire
ted inline site failed, andthe 
ode fell ba
k to an IMT dispat
h. This o

urseither due to ina

urate pro�le information, or at 
allsites that have one or more dominant targets but o
-
asionally invoke other targets. In other words, the
all site is dynami
ally polymorphi
, but the 
ompilerdoes not inline all re
eivers.� Interfa
e dispat
h: No other te
hnique applied, andthe 
ompiler resorted to a full-blown run-time methoddispath.The mix of dispat
hing me
hanisms varies widely from pro-gram to program. For example, the fra
tion of invo
a-tions dispat
hed as full-blown run-time 
alls ranged from 0%to 73%. In several 
ases, type analysis e�e
tively virtualizedinterfa
e invo
ations, 
overing 89% on SPECjbb, 76% on opt-
ompiler and 18% on HyperJ. We expe
ted this on the opt-
ompiler, sin
e we initially implemented the optimization to13In prin
iple, this runtime 
he
k 
ould fail, if a 
lass loadedin the future de�nes a new re
eiver method for the 
all site.However, in our experiments, this 
ase never o

urred. Theadaptive system delays 
ompilation and optimization of ea
hmethod until pro�le information indi
ates the method is hot.In pra
ti
e, by the time the adaptive system 
ags a methodas hot, all relevant 
lasses have been loaded.

handle the most 
ommon patterns of interfa
e usage in ourown 
ompiler. However, we were pleasantly surprised withthe virtualization su

ess on HyperJ and SPECjbb. Notethat in these results, the optimizing 
ompiler relies almostex
lusively on intra-pro
edural analysis. We expe
t evenbetter virtualization and devirtualization results using moreaggressive inter-pro
edural type analysis.The stati
 guarded inlining heuristi
 su

eeded for only threeof the ben
hmarks; it had the most impa
t on HyperJ, whereit applied to 21% of the interfa
e invo
ations. In pra
ti
e,we expe
t the stati
 heuristi
 to apply to programs that useonly a single implementation of an interfa
e from a general
omponent ar
hite
ture or library. The stati
 heuristi
 doesnot work for the more heavily used interfa
es in the Javastandard library, su
h as java.util.Enumeration; the 
om-piler must rely on pro�le-dire
ted inlining or type analysisto handle these 
ases.Of all the ben
hmarks, jess stands out for its high (19%)rate of mispredi
ted pro�le-dire
ted inlined 
alls. We inves-tigated this phenomenon a bit further, and dis
overed thatjess 
ontains one frequently exe
uted interfa
e invo
ation
all site. This site 
alls an interfa
e method with 96 im-plementations. Of these 96, the 
all site invokes 14 distin
tre
eivers during the size 100 ben
hmark run. The top fourmost frequent targets a

ount for 52%, 18%, 13%, and 8%of the dynami
 invo
ations, respe
tively. Ea
h of the othertargets a

ounts for less than 3% of the dynami
 invo
ations.The 
ompiler heuristi
s inline only the two most frequentlyinvoked targets. Thus, any 
alls to the other 12 targets atthat 
all site are mispredi
ted.Figure 8 depi
ts the performan
e impa
t from alternativeinterfa
e dispat
hing me
hanisms. The Figure shows thatthe na��ve ClassObje
tSear
h s
heme 
an indeed signi�
antly
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Figure 8: Performan
e impa
t of alternative interfa
e method dispat
hing s
hemes. Speeds are normalizedto that of Sear
hedITable.hurt performan
e, slowing down HyperJ by a fa
tor of 10.Among the two itable variants and the two IMT variants,ea
h performs the best on at least one ben
hmark, and rel-ative performan
e varies depending on the appli
ation.The interfa
e dispat
h me
hanism impa
ts performan
e moston the three largest ben
hmarks, opt-
ompiler, HyperJ, andDOMCount. On opt-
ompiler and HyperJ, dire
tly-indexeditables and the IMTs signi�
antly outperform the sear
heditable. Several fa
tors 
ould a

ount for this di�eren
e;namely, polymorphi
 
all sites that defeat the move-to-frontsear
h heuristi
, along with fairly ri
h interfa
e hierar
hies.Note that the sear
hed itable also under-performs on jess,whi
h was previously dis
ussed as having a hot polymorphi

all site.On the other hand, sear
hed itables outperform the otherson the DomCount XML parser ben
hmark. Possibly, thesear
hed itable wins by 
ombining the dynami
 type 
he
kwith the interfa
e dispat
h. Se
tion 8 dis
usses a possibleenhan
ement to the IMT dispat
h sequen
e to gain the samebene�t.The db performan
e result is anomalous, sin
e Figure 7 re-ports that pra
ti
ally all interfa
e 
alls were inlined. Wehave o

asionally observed unstable db performan
e on Jala-pe~no, possibly due to instability of TLB 
on
i
ts resultingfrom di�eren
es in memory layout [38℄.Regarding IMT 
on
i
ts: on HyperJ, DOMCount and opt-
ompiler, 45%, 16%, and 1.5%, respe
tively, of dispat
hesthrough the IMT went through a 
on
i
t resolution stub.The other ben
hmarks never dispat
hed through 
on
i
t res-olution stubs.

Figure 9 shows the spa
e 
osts of the alternative interfa
edispat
h s
hemes. The �gure shows three 
ategories of spa
eusage:1. Data Stru
tures: This 
ategory represents the spa
eallo
ated to data stru
tures introdu
ed to support in-terfa
e dispat
h. These data stru
tures in
lude itables,IMTs, itable di
tionaries, and TIB slots holding point-ers to interfa
e dispat
h stru
tures.2. Con
i
t Stubs: This 
ategory represents the spa
e al-lo
ated to 
on
i
t resolution stub 
ode in the IMTvariants.3. Invo
ation Sequen
e: This 
ategory represents spa
eallo
ated for inline 
ode inserted into 
ompiled ma-
hine 
ode to support interfa
e invo
ation. This in-
ludes inline 
ode for dynami
 type 
he
ks, as well asinlined interfa
e dispat
h sequen
es.The na��veClassObje
tSear
h s
heme introdu
es no extra datastru
ture overhead, over and above 
lass loader data stru
-tures required for other purposes.The �gure shows that in most 
ases, the spa
e allo
ated forthe inline invo
ation sequen
e ex
eeds spa
e 
osts for theother two 
ategories. Jess is an ex
eption; as dis
ussed pre-viously, jess relies on few (only one hot) interfa
e 
all sites,but uses a fairly large number of 
lasses whi
h implementan interfa
e. This results in substantial spa
e 
osts for thedire
t itable s
heme. IMTs with 40 entries waste spa
e 
om-pared to IMTs with only 5 entries, sin
e most IMT entriesare blank.
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Figure 9: Spa
e usage of alternative interfa
e method dispat
hing s
hemes. Five bars are plotted for ea
hben
hmark, showing from left to right the spa
e usage for Class Obje
t Sear
h, Sear
hed ITables, Dire
tlyIndexed ITables, IMT-5, and IMT-40. Ea
h bar is subdivided to show the 
ode spa
e 
onsumed by theinterfa
e dispat
hing sequen
e, the 
ode spa
e taken by 
on
i
t resolution stubs, and the data spa
e used forsupporting data stru
tures. The �rst set of bars labeled Jalape~no JVM reports the spa
e used to supportinterfa
e dispat
hing for the approximately 900 
lasses that 
omprise Jalape~no itself. This �xed spa
e 
ostwas dedu
ted from the bars for ea
h ben
hmark, so that the bars for ea
h ben
hmark represent the spa
eusage indu
ed by the appli
ation 
ode over and above the 
ost for a bare Jalape~no VM.HyperJ stands out for its large spa
e usage. Both IMT-5and IMT-40 pay a signi�
ant spa
e 
ost for 
on
i
t resolu-tion stubs. It turns out that some 
lasses in HyperJ imple-ment interfa
es with over 100 methods. For these 
ases, no
oloring s
heme will avoid saturating even the 40-slot TIB,resulting in 
on
i
ts at every TIB slot. So, both IMT-40 andIMT-5 result in the same number of total targets embodiedin 
on
i
t resolution stubs. However, IMT-40 results in 
on-
i
t stubs with fewer entries, resulting in improved run-timeperforman
e in Figure 8. HyperJ also demonstrates some ofs
alability problems with dire
t itable dispat
h, as the dire
titable data stru
ture spa
e 
ost is signi�
ant. However, this
ost is dominated by the inlined invo
ation sequen
e spa
e;so, the dire
t itable s
heme appears to be pra
ti
al on thisplatform for at least medium-sized appli
ations.
8. FUTURE WORKThe IMT me
hanism enjoys �xed-size tables, at the 
ost ofextra spa
e and time for 
on
i
t resolution stubs. Jalape~no
ould improve on its 
urrent (trivial) algorithm for sele
-tor 
oloring by analyzing o�-line a 
olle
tion of standardJava 
lasses to dis
over sets of interfa
es that are simulta-neously implemented by 
lasses. Based on this informationand pro�le data, a standard register allo
ation algorithm
ould minimize the expe
ted dynami
 number of 
ollisions ina �xed IMT size. During JVM exe
ution new (unexpe
ted)interfa
e method signatures 
ould be assigned to empty (orinfrequently-used) slots in an expanded IMT that would onlybe asso
iated with those 
lasses that implemented the un-

expe
ted interfa
es.This approa
h would naturally be limited by the set of 
lassesavailable for o�-line analysis. Alternatively, the adaptive op-timization system 
ould 
olor interfa
e method signaturesbased on on-line pro�le information, although removing theassignment of a sele
tor to a 
olor on-line 
ould entail sig-ni�
ant 
ode-pat
hing.An anonymous reviewer, borrowing an idea from polymor-phi
 inline 
a
hes, proposed folding the dynami
 type 
he
kinto the 
on
i
t resolution stubs. The stub shown in Fig-ure 2 assumes that the only possible values for the hiddenparameter are the four interfa
e method signatures that itwas generated to handle. The stub 
ould instead be gener-ated to treat unexpe
ted values of the hidden parameter asa signal that a dynami
 type 
he
k needs to be performedand the stub extended.This approa
h would require all interfa
e method dispat
hesto go through 
on
i
t resolution stubs, even if only one me-thod was a
tually mapped to a slot. Although the expe
ted
ost of a stub and a dynami
 type 
he
k are similar, the
on
i
t stub is invisible to the 
ompiler and thus not easilyamenable to optimizations su
h as 
ode motion and partialredundan
y elimination. On the other hand, in our experi-ments Jalape~no's optimizing 
ompiler was able to eliminatethe dynami
 type 
he
k from fewer than 20% of the interfa
e
alls that were a
tually dispat
hed through the IMT.



While our pro�le-dire
ted inlining handles interfa
es as ef-fe
tively as virtual 
alls, both su�er the overhead of a run-time guard. We are also 
urrently implementing an inval-idation me
hanism to allow us to omit the guards on in-lined interfa
e and virtual 
all sites, in order to mitigate thepenalty of failed devirtualization.
9. CONCLUSIONSAn early 
onferen
e paper on the Jalape~no runtime [2℄ ad-mitted that \[w℄e don't make mu
h use of interfa
es be-
ause the performan
e overhead was too high to use it to 
allfrequently exe
uted methods." This was parti
ularly damn-ing sin
e part of the stated rationale for writing Jalape~noin Java was the hope that doing so would \give us moreexperien
e with the language, help us identify some of itsproblemati
 features, and give some insight into how to im-plement them eÆ
iently." An anonymous reviewer observed\The 
omment about not using interfa
es is sad.And invites the question: if they had been used,would the performan
e of interfa
e invo
ationsnow be better?"That remark provided the impetus for the work reportedhere.This paper investigates three potential sour
es of interfa
eineÆ
ien
y: impli
it dynami
 type 
he
king, a
tual interfa
emethod dispat
h overhead, and possible opportunity 
ostsof forgone optimizations. Type 
he
king overhead is real,but quite small, and 
an often be optimized away (usuallyin 
onjun
tion with other optimizations). The interfa
e me-thod table (IMT) me
hanism for dispat
hing interfa
e meth-ods is only a few 
y
les more expensive than its 
ounterpartfor virtual methods. The third problem proved illusory: theJalape~no optimizing 
ompiler performs similar optimizationat both virtual and interfa
e method dispat
h sites.A number of di�erent interfa
e dispat
h me
hanisms were
ompared. Both IMTs and dire
t itables provide good per-forman
e with a moderate spa
e overhead. Only the naive
lass-obje
t sear
h s
heme provided truly atro
ious perfor-man
e.Although early implementations of Java interfa
es did notperform well, their reputation as being inherently ineÆ
ientis undeserved. A Java programmer, or program generatingsystem, should feel free to fully exploit interfa
es without
on
ern for performan
e degradation.
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