
Quick Introduction to Type Systems
David B. MacQueen, 2012

A type is a description that characterizes the expected form of the result of a computation. In particular, if e
is an expression, a typing

e : int

is an assertion that when e is evaluated, its value will be an integer. We call this assertion a typing judgment.
But beyond predicting the form of the ultimate value of e, this typing judgment also requires that e be well-
typed, meaning that it is internally consistent, and consistent with its context or environment in the case where
it contains free variables.

For instance, what does

2 + 1 : int

mean? It means that evaluation of 2 + 1 is expected to produce an integer. But it also requires that the +
operator is used properly, i.e. it has two arguments, here 2 and 1, which must both be integers.

Let us assume that there is another basic type bool and that true is a constant having type bool. Here is an
invalid typing judgment (meaning it is not provable using the rules to be introduced below):

true : int

and here is another:

2 + true : int

The first is invalid because it mischaracterizes the value true as an integer. The second is invalid because
2 + true is not consistent: + is improperly applied to an integer and a boolean and not two integers as it
should be. We can consider an expression like 2 + true to be a kind of nonsense, and we want to use valid
typing judgments to weed out such nonsensical expressions.

How do we establish which typing judgments are valid and which are invalid? We use a system of rules to
derive the valid typing judgments. These rules constitute a specialized logic whose statements are typing
judgments that relate expressions and types. If we can prove a judgment of the form

e : τ

is should be the case that

1. e is well-typed, meaning that its components fit together properly according to the rules (e.g. , operators
are applied to the right kinds of arguments), and

2. when e is evaluated, and its evaluation terminates, it produces a value described by τ .

Note that the proviso of termination in (2) is necessary, because a type system is generally not able to answer
the question of whether an expression terminates. Typing judgments that cannot be derived by our rules are
deemed invalid.

Here are some sample typing rules that can be used to derive typing judgments:

Integer constants:

(1)
n : int

(where n is an integer constant)

This rule simply says that an integer constant like 3 has the type int. The rule is schematic, since it contains
a metavariable “n” that ranges over arbitrary integer constants. Here is a trivial, one-step derivation using
rule (1):
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(1)
2 : int

Function applications:

(2)
e1 : τ1 → τ2 e2 : τ1

e1 e2 : τ2

This rule has a conclusion “e1 e2 : τ2” concerning a function application which appears below the horizonal
line, where e1 denotes the function being applied, and e2 denotes its argument. To derive this conclusion, we
have to first derive to premises, the judgments above the line:

e1 : τ1 → τ2 – e1 denotes a function mapping τ1 to τ2
e2 : τ1 – e2 denotes a value of type τ1

The rule expresses the fact that to be well typed, the type of the argument must agree with the domain (τ1) of
the function being applied. This constraint is expressed by the fact that the same type metavariable τ1 appears
in both the premises.

Like (1), this is also a rule schema containing metavariables e1 and e2 ranging over expressions, and τ1 and
τ2 ranging over types. A particular use of the rule instantiates these metavariables with particular expressions
and types.

Rule (2) also illustrates another common property of expression typing rules – it is compositional. This means
that the type of a compound construct, such as the application expression e1e2 in this case, is derived from the
types of its constituent subexpressions, e1 and e2. This is a very useful property, particularly when we want
to implement a type checker (see below). But for more complex type systems, compositionality is sometimes
sacrificed for the sake of a more flexible or expressive type system (e.g. when subtyping is introduced).

To illustrate how these rules are used in a derivation, assume we have the rule (axiom) that

(3)
+ : int→ int→ int

(this just asserts the known type of +, where + is taken to be a curried operator). Now to derive the judgment
2 + 1 : int (which translates to +21 : int) we construct the following derivation:

(3)
+ : int→ int→ int

(1)
2 : int

(2)
+ 2 : int→ int

(1)
1 : int

(2)
+ 2 1 : int

The derivation takes the form of a tree of rule instances, where each rule instance is labelled with its rule
number. This derivation contains one instance of rule (3), two instances of rule (1) and two instances of rule
(2). The conclusion shows that the expresion +21 is internally consistent, given the types of its constituent
symbols +, 2, and 1, and the type of its value is int (assuming it terminates).

If we try to construct such a derivation for 2 + true (or + 2 true), we will fail. Assume rule (4) for boolean
constants:

(4)
true : bool

We attempt to construct a derivation as follows:

(3)
+ : int→ int→ int

(1)
2 : int

(2)
+ 2 : int→ int

(1)
1 : int

(2?)
?
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But we can’t complete the derivation with an instance of rule (2) because the type of the argument true,
namely bool, does not agree with the domain of the function (+ 2), namely int.

You might ask if there is some more clever and devious way to construct a valid derivation, but it turns out
(for this particular set of rules) that we don’t have any real choice in how the derivation is structured – the
rules are such that the structure of a derivation is always a direct reflection of structure of the expression being
typed. Such a rule system is called ”syntax directed”.

[Note: This property of being syntax directed is not preserved in some more complicated type systems,
for instance when subtyping is included, but the desirable property of the type system being deterministic
is usually maintained, on way or another (see, e.g, Chapter 16 of Pierce, Types for Programming
Languages).]

So far, we have only considered simple expressions that do not contain variables or variable bindings, but this
is not realistic. So how to we establish judgments like the following?

(a) x+ 1 : int

Well first of all, this should only be valid if the variable x represents (or ranges over) integers. If x is bound
to true, for instance, this judgment should be considered false.

So typing judgments where the expression contains free variables have to be considered with respect to some
context that tells us what the types of those free variables are. We will represent such contexts as a sequence
of associations of variables and types, e.g.

Γ1 = x : int

Γ2 = f : int→ bool, y : int

These typing contexts are also known as type environments, and we can think of them as finite functions
mapping variables to types.

Now we need to revise the notion of a typing judgment to include a typing context that specifies the types of
any free variables in the expression:

Γ ` e : τ

This modified judgment asserts that e has the type τ under the assumption that free variables occuring in e
have the types specified in Γ. So (a) needs to be changed to something like:

(b) x : int ` x+ 1 : int

A new typing rule is needed to allow us to use the typing context when we need to determine the type of a
variable:

(5)
Γ ` x : τ

(where x : τ ∈ Γ)

or equivalently,

(5)
Γ ` x : Γ(x)

Note that in the second version of this rule, we are interpreting the context Γ as a (finite) function mapping
variables to types and denoting the type that it assigns to x by Γ(x).

Now a derivation of (b) will look like this, assuming Γ0 = x : int :

(3)
Γ0 ` + : int→ int→ int

(5)
Γ0 ` x : int

(2)
Γ0 ` + 2 : int→ int

(1)
Γ0 ` 1 : int

(2)
Γ0 ` + 2 1 : int
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Notice that all the earlier rules we used before have to be modified to add type contexts:

(1)
Γ ` n : int

(where n is an integer constant)

meaning the conclusion judgment holds for arbitrary type contexts and arbitrary integer constants n.

(2)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

e1 e2 : τ2

where the same context Γ must be used in all three judgments in the rule, and so on for the other rules.

But where do contexts come from? Do we arbitrarily conjure them from thin air? No, contexts may be
supplied as initial assumptions about variables and primitive operators, but they can also evolve as part of
derivations of certain kinds of compound expressions involving variable bindings. An example where a
context grows by the addition of a new variable typing, we have the rule for function expressions (commonly
known as λ-expressions):

(6)
Γ, x : τ1 ` e : τ2

Γ ` (λx : τ1. e) : τ1 → τ2

(λx : τ1. e is an expression denoting a function whose formal parameter is x, constrained to be of type τ1, and
whose body is e. A typical such expression is: λx : int. x + 1, denoting the function that takes an integer
argument and returns its successor.)

Here in the premise of the rule, we are allowed to use the additional assumption that x : τ1 while deriving the
type of the body e. The notation Γ, x : τ1 represents an extension of the context Γ with a new mapping from
x to τ1. If Γ already contained a typing for x, this new mapping overrides the existing one.

A similar rule for typing let-expressions would be:

(7)
Γ ` e1 : τ1 Γ, x : τ1 ` e : τ2

Γ ` let x : τ1 = e1 in e2 : τ1 → τ2

We often start with a base context Γ0 that includes type assignments for the basic operators like + and ∗, and
other global constants.

Γ0 = + : int→ int→ int, ∗ : int→ int→ int, . . .

This global context eliminates the need for special typing axioms like rule (3) for typing primitive operators.
Then as we unwind binding constructs like and let, type assignment for local bound variable get added to
the context for use in the scope of the respective bindings. If we want to type an expression e that contains
free variables as well as global constants, we must provide an appropriate context Γ that extends Γ0 with type
assignments for all the free variables that occur in e. Thus:

Γ0, x : int ` x+ 2 : int

Here are a couple of questions one can ask about a type system presented as a set of typing rules of the sort
we have considered above.

1. Uniqueness: For any expression e and typing context Γ, is there at most one type τ such that one can
derive the typing judgment Γ ` e : τ? Of course we know that for some ill-typed expressions such as
2 + true, there will be no such τ .

2. Assuming that there is a unique τ such that Γ ` e : τ , is there a unique derivation of that judgment,
or could there be multiple derivations.

3. Is there an algorithm for deciding, given Γ and e, whether Γ ` e : τ is derivable for some τ , i.e. is
typability decidable?
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Type checking. The process of type checking takes an expression e and a context Γ and computes a type
τ such that Γ ` e : τ , reporting a type error if such does not exist. For cases where the typing rules are
compositional, this is usually fairly straightforward to implement, since one can recurse over the structure
of e, computing the types of is components, and using them to construct the type of e, providing some
consistency tests are passed (like agreement of function and argument types for rule (2) above).

Type checking gets more complicated when non-compositional rules are involved, as in the case where sub-
typing is used, or in the case of polymorphic type inference in ML or Haskell. But it is still highly desirable
that there be a decidable (that is, always terminating) type checking algorithm that either computes the type
of an expression or reports an error indicating that the expression is ill-typed.
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