
A N T I - D I S A S S E M B L Y

Anti-disassembly uses specially crafted code or data in a 
program to cause disassembly analysis tools to produce 
an incorrect program listing. This technique is crafted 
by malware authors manually, with a separate tool in 
the build and deployment process or interwoven into 
their malware’s source code. 

All malware is designed with a particular goal in mind: keystroke logging, 
backdoor access, using a target system to send excessive email to cripple serv-
ers, and so on. Malware authors often go beyond this basic functionality to 
implement specific techniques to hide from the user or system administra-
tor, using rootkits or process injection, or to otherwise thwart analysis and 
detection.

Malware authors use anti-disassembly techniques to delay or prevent 
analysis of malicious code. Any code that executes successfully can be reverse-
engineered, but by armoring their code with anti-disassembly and anti-
debugging techniques, malware authors increase the level of skill required 
of the malware analyst. The time-sensitive investigative process is hindered by 
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the malware analyst’s inability to understand the malware’s capabilities, 
derive valuable host and network signatures, and develop decoding algo-
rithms. These additional layers of protection may exhaust the in-house skill 
level at many organizations and require expert consultants or large research 
project levels of effort to reverse-engineer. 

In addition to delaying or preventing human analysis, anti-disassembly is 
also effective at preventing certain automated analysis techniques. Many mal-
ware similarity detection algorithms and antivirus heuristic engines employ 
disassembly analysis to identify or classify malware. Any manual or automated 
process that uses individual program instructions will be susceptible to the 
anti-analysis techniques described in this chapter.

Understanding Anti-Disassembly

Disassembly is not a simple problem. Sequences of executable code can 
have multiple disassembly representations, some that may be invalid and 
obscure the real functionality of the program. When implementing anti-
disassembly, the malware author creates a sequence that tricks the disas-
sembler into showing a list of instructions that differ from those that will 
be executed. 

Anti-disassembly techniques work by taking advantage of the assump-
tions and limitations of disassemblers. For example, disassemblers can only 
represent each byte of a program as part of one instruction at a time. If the 
disassembler is tricked into disassembling at the wrong offset, a valid instruc-
tion could be hidden from view. For example, examine the following frag-
ment of disassembled code:

                jmp     short near ptr loc_2+1
; ---------------------------------------------------------------------------

loc_2:                                  ; CODE XREF: seg000:00000000j
                call    near ptr 15FF2A71h 
                or      [ecx], dl
                inc     eax
; ---------------------------------------------------------------------------
                db    0

This fragment of code was disassembled using the linear-disassembly 
technique, and the result is inaccurate. Reading this code, we miss the piece 
of information that its author is trying to hide. We see what appears to be a 
call instruction, but the target of the call is nonsensical . The first instruc-
tion is a jmp instruction whose target is invalid because it falls in the middle of 
the next instruction.



Ant i -Disassembly 329

Now examine the same sequence of bytes disassembled with a different 
strategy:

                jmp     short loc_3
; ---------------------------------------------------------------------------
                db 0E8h
; ---------------------------------------------------------------------------

loc_3:                                  ; CODE XREF: seg000:00000000j
                push    2Ah
                call    Sleep 

This fragment reveals a different sequence of assembly mnemonics, and 
it appears to be more informative. Here, we see a call to the API function 
Sleep at . The target of the first jmp instruction is now properly represented, 
and we can see that it jumps to a push instruction followed by the call to Sleep. 
The byte on the third line of this example is 0xE8, but this byte is not exe-
cuted by the program because the jmp instruction skips over it. 

This fragment was disassembled with a flow-oriented disassembler, 
rather than the linear disassembler used previously. In this case, the flow-
oriented disassembler was more accurate because its logic more closely mir-
rored the real program and did not attempt to disassemble any bytes that 
were not part of execution flow. We’ll discuss linear and flow-oriented dis-
assembly in more detail in the next section.

So, disassembly is not as simple as you may have thought. The disassem-
bly examples show two completely different sets of instructions for the same 
set of bytes. This demonstrates how anti-disassembly can cause the disassem-
bler to produce an inaccurate set of instructions for a given range of bytes. 

Some anti-disassembly techniques are generic enough to work on most 
disassemblers, while some target specific products.

Defeating Disassembly Algorithms

Anti-disassembly techniques are born out of inherent weaknesses in dis-
assembler algorithms. Any disassembler must make certain assumptions in 
order to present the code it is disassembling clearly. When these assumptions 
fail, the malware author has an opportunity to fool the malware analyst. 

There are two types of disassembler algorithms: linear and flow-oriented. 
Linear disassembly is easier to implement, but it’s also more error-prone. 

Linear Disassembly
The linear-disassembly strategy iterates over a block of code, disassembling 
one instruction at a time linearly, without deviating. This basic strategy is 
employed by disassembler writing tutorials and is widely used by debuggers. 



330 Chapter 15

Linear disassembly uses the size of the disassembled instruction to determine 
which byte to disassemble next, without regard for flow-control instructions. 

The following code fragment shows the use of the disassembly library 
libdisasm (http://sf.net/projects/bastard/files/libdisasm/) to implement a crude 
disassembler in a handful of lines of C using linear disassembly:

char buffer[BUF_SIZE];
int position = 0;

while (position < BUF_SIZE) {
   x86_insn_t insn;
   int size = x86_disasm(buf, BUF_SIZE, 0, position, &insn);
   
   if (size != 0) {
      char disassembly_line[1024];
        x86_format_insn(&insn, disassembly_line, 1024, intel_syntax);
        printf("%s\n", disassembly_line);

position += size;
   } else {
        /* invalid/unrecognized instruction */

position++;
      }
}
x86_cleanup();

In this example, a buffer of data named buffer contains instructions to 
be disassembled. The function x86_disasm will populate a data structure with 
the specifics of the instruction it just disassembled and return the size of the 
instruction. The loop increments the position variable by the size value  if 
a valid instruction was disassembled; otherwise, it increments by one . 

This algorithm will disassemble most code without a problem, but it will 
introduce occasional errors even in nonmalicious binaries. The main draw-
back to this method is that it will disassemble too much code. The algorithm 
will keep blindly disassembling until the end of the buffer, even if flow-control 
instructions will cause only a small portion of the buffer to execute. 

In a PE-formatted executable file, the executable code is typically con-
tained in a single section. It is reasonable to assume that you could get away 
with just applying this linear-disassembly algorithm to the .text section con-
taining the code, but the problem is that the code section of nearly all bina-
ries will also contain data that isn’t instructions. 

One of the most common types of data items found in a code section is 
a pointer value, which is used in a table-driven switch idiom. The following 
disassembly fragment (from a nonlinear disassembler) shows a function that 
contains switch pointers immediately following the function code.
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          jmp     ds:off_401050[eax*4] ; switch jump

          ; switch cases omitted ...

          xor     eax, eax
          pop     esi
          retn
; ---------------------------------------------------------------------------
off_401050 dd offset loc_401020    ; DATA XREF: _main+19r

dd offset loc_401027    ; jump table for switch statement
dd offset loc_40102E
dd offset loc_401035

The last instruction in this function is retn. In memory, the bytes imme-
diately following the retn instruction are the pointer values beginning with 
401020 at , which in memory will appear as the byte sequence 20 10 40 00 
in hex. These four pointer values shown in the code fragment make up 
16 bytes of data inside the .text section of this binary. They also happen to 
disassemble to valid instructions. The following disassembly fragment would 
be produced by a linear-disassembly algorithm when it continues disassem-
bling instructions beyond the end of the function:

and [eax],dl
inc eax
add [edi],ah
adc [eax+0x0],al
adc cs:[eax+0x0],al
xor eax,0x4010

Many of instructions in this fragment consist of multiple bytes. The key 
way that malware authors exploit linear-disassembly algorithms lies in plant-
ing data bytes that form the opcodes of multibyte instructions. For example, 
the standard local call instruction is 5 bytes, beginning with the opcode 0xE8. 
If the 16 bytes of data that compose the switch table end with the value 0xE8, 
the disassembler would encounter the call instruction opcode and treat the 
next 4 bytes as an operand to that instruction, instead of the beginning of 
the next function. 

Linear-disassembly algorithms are the easiest to defeat because they are 
unable to distinguish between code and data.

Flow-Oriented Disassembly
A more advanced category of disassembly algorithms is the flow-oriented dis-
assembler. This is the method used by most commercial disassemblers such as 
IDA Pro. 

The key difference between flow-oriented and linear disassembly is that 
the disassembler doesn’t blindly iterate over a buffer, assuming the data is 
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nothing but instructions packed neatly together. Instead, it examines each 
instruction and builds a list of locations to disassemble.

The following fragment shows code that can be disassembled correctly 
only with a flow-oriented disassembler.

                test    eax, eax
jz      short loc_1A
push    Failed_string
call    printf
jmp     short loc_1D

; ---------------------------------------------------------------------------
Failed_string:  db 'Failed',0
; ---------------------------------------------------------------------------
loc_1A:  
                xor     eax, eax
loc_1D:
                retn

This example begins with a test and a conditional jump. When the flow-
oriented disassembler reaches the conditional branch instruction jz at , it 
notes that at some point in the future it needs to disassemble the location 
loc_1A at . Because this is only a conditional branch, the instruction at  
is also a possibility in execution, so the disassembler will disassemble this 
as well. 

The lines at  and  are responsible for printing the string Failed to the 
screen. Following this is a jmp instruction at . The flow-oriented disassem-
bler will add the target of this, loc_1D, to the list of places to disassemble in 
the future. Since jmp is unconditional, the disassembler will not automatically 
disassemble the instruction immediately following in memory. Instead, it will 
step back and check the list of places it noted previously, such as loc_1A, and 
disassemble starting from that point. 

In contrast, when a linear disassembler encounters the jmp instruction, 
it will continue blindly disassembling instructions sequentially in memory, 
regardless of the logical flow of the code. In this case, the Failed string 
would be disassembled as code, inadvertently hiding the ASCII string and 
the last two instructions in the example fragment. For example, the follow-
ing fragment shows the same code disassembled with a linear-disassembly 
algorithm.

                test    eax, eax
                jz      short near ptr loc_15+5
                push    Failed_string
                call    printf
                jmp     short loc_15+9
Failed_string:
                inc     esi
                popa
loc_15:
                imul    ebp, [ebp+64h], 0C3C03100h
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In linear disassembly, the disassembler has no choice to make about which 
instructions to disassemble at a given time. Flow-oriented disassemblers make 
choices and assumptions. Though assumptions and choices might seem 
unnecessary, simple machine code instructions are complicated by the 
addition of problematic code aspects such as pointers, exceptions, and 
conditional branching.

Conditional branches give the flow-oriented disassembler a choice of 
two places to disassemble: the true or the false branch. In typical compiler-
generated code, there would be no difference in output if the disassembler 
processes the true or false branch first. In handwritten assembly code and 
anti-disassembly code, however, the two branches can often produce differ-
ent disassembly for the same block of code. When there is a conflict, most 
disassemblers trust their initial interpretation of a given location first. Most 
flow-oriented disassemblers will process (and thus trust) the false branch of 
any conditional jump first.

Figure 15-1 shows a sequence of bytes and their corresponding machine 
instructions. Notice the string hello in the middle of the instructions. When 
the program executes, this string is skipped by the call instruction, and its 6 
bytes and NULL terminator are never executed as instructions.

Figure 15-1: call instruction followed by a string

The call instruction is another place where the disassembler must make 
a decision. The location being called is added to the future disassembly list, 
along with the location immediately after the call. Just as with the conditional 
jump instructions, most disassemblers will disassemble the bytes after the call 
instruction first and the called location later. In handwritten assembly, pro-
grammers will often use the call instruction to get a pointer to a fixed piece 
of data instead of actually calling a subroutine. In this example, the call 
instruction is used to create a pointer for the string hello on the stack. The 
pop instruction following the call then takes this value off the top of the stack 
and puts it into a register (EAX in this case).

When we disassemble this binary with IDA Pro, we see that it has pro-
duced disassembly that is not what we expected:

E8 06 00 00 00       call    near ptr loc_4011CA+1
68 65 6C 6C 6F push    6F6C6C65h

                     loc_4011CA:
00 58 C3             add     [eax-3Dh], bl

As it turns out, the first letter of the string hello is the letter h, which is 
0x68 in hexadecimal. This is also the opcode of the 5-byte instruction  push 
DWORD. The null terminator for the hello string turned out to also be the first 

RETh     e     l      l     o
E8

CALL POP
06 00 00 00 68 65 6c 00 58 C36c 6F
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byte of another legitimate instruction. The flow-oriented disassembler in IDA 
Pro decided to process the thread of disassembly at  (immediately follow-
ing the call instruction) before processing the target of the call instruction, 
and thus produced these two erroneous instructions. Had it processed the 
target first, it still would have produced the first push instruction, but the 
instruction following the push would have conflicted with the real instructions 
it disassembled as a result of the call target. 

If IDA Pro produces inaccurate results, you can manually switch bytes 
from data to instructions or instructions to data by using the C or D keys on 
the keyboard, as follows:

 Pressing the C key turns the cursor location into code.

 Pressing the D key turns the cursor location into data. 

Here is the same function after manual cleanup:

E8 06 00 00 00                       call    loc_4011CB
68 65 6C 6C 6F 00    aHello          db 'hello',0
                                     loc_4011CB:                             
58                                   pop     eax
C3                                   retn

Anti-Disassembly Techniques

The primary way that malware can force a disassembler to produce inaccu-
rate disassembly is by taking advantage of the disassembler’s choices and 
assumptions. The techniques we will examine in this chapter exploit the 
most basic assumptions of the disassembler and are typically easily fixed by 
a malware analyst. More advanced techniques involve taking advantage of 
information that the disassembler typically doesn’t have access to, as well as 
generating code that is impossible to disassemble completely with conven-
tional assembly listings.

Jump Instructions with the Same Target
The most common anti-disassembly technique seen in the wild is two back-to-
back conditional jump instructions that both point to the same target. For 
example, if a jz loc_512 is followed by jnz loc_512, the location loc_512 will 
always be jumped to. The combination of jz with jnz is, in effect, an uncondi-
tional jmp, but the disassembler doesn’t recognize it as such because it only 
disassembles one instruction at a time. When the disassembler encounters 
the jnz, it continues disassembling the false branch of this instruction, 
despite the fact that it will never be executed in practice.
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The following code shows IDA Pro’s first interpretation of a piece of 
code protected with this technique:

74 03                  jz      short near ptr loc_4011C4+1
75 01                  jnz     short near ptr loc_4011C4+1

loc_4011C4:                     ; CODE XREF: sub_4011C0
                                                       ; sub_4011C0+2j
E8 58 C3 90 90        call    near ptr 90D0D521h

In this example, the instruction immediately following the two condi-
tional jump instructions appears to be a call instruction at , beginning 
with the byte 0xE8. This is not the case, however, as both conditional jump 
instructions actually point 1 byte beyond the 0xE8 byte. When this fragment 
is viewed with IDA Pro, the code cross-references shown at  loc_4011C4 will 
appear in red, rather than the standard blue, because the actual references 
point inside the instruction at this location, instead of the beginning of the 
instruction. As a malware analyst, this is your first indication that anti-
disassembly may be employed in the sample you are analyzing. 

The following is disassembly of the same code, but this time fixed with 
the D key, to turn the byte immediately following the jnz instruction into 
data, and the C key to turn the bytes at loc_4011C5 into instructions.

74 03                  jz      short near ptr loc_4011C5
75 01                  jnz     short near ptr loc_4011C5

; -------------------------------------------------------------------
E8                     db 0E8h

; -------------------------------------------------------------------
                       loc_4011C5:                     ; CODE XREF: sub_4011C0
                                                       ; sub_4011C0+2j
58                     pop     eax
C3                     retn

The column on the left in these examples shows the bytes that consti-
tute the instruction. Display of this field is optional, but it’s important when 
learning anti-disassembly. To display these bytes (or turn them off), select 
OptionsGeneral. The Number of Opcode Bytes option allows you to enter 
a number for how many bytes you would like to be displayed.

Figure 15-2 shows the sequence of bytes in this example graphically.

Figure 15-2: A jz instruction followed by a jnz instruction

JNZ POP RET

CALL

74 03 75 01 E8 58 C3

JZ
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A Jump Instruction with a Constant Condition
Another anti-disassembly technique commonly found in the wild is com-
posed of a single conditional jump instruction placed where the condition 
will always be the same. The following code uses this technique:

33 C0                  xor     eax, eax
74 01                  jz      short near ptr loc_4011C4+1

loc_4011C4:                             ; CODE XREF: 004011C2j
; DATA XREF: .rdata:004020ACo

E9 58 C3 68 94         jmp     near ptr 94A8D521h

Notice that this code begins with the instruction xor eax, eax. This instruc-
tion will set the EAX register to zero and, as a byproduct, set the zero flag. The 
next instruction is a conditional jump that will jump if the zero flag is set. In 
reality, this is not conditional at all, since we can guarantee that the zero flag 
will always be set at this point in the program. 

As discussed previously, the disassembler will process the false branch 
first, which will produce conflicting code with the true branch, and since it 
processed the false branch first, it trusts that branch more. As you’ve learned, 
you can use the D key on the keyboard while your cursor is on a line of code 
to turn the code into data, and pressing the C key will turn the data into 
code. Using these two keyboard shortcuts, a malware analyst could fix this 
fragment and have it show the real path of execution, as follows:

33 C0                  xor     eax, eax
74 01                  jz      short near ptr loc_4011C5

; --------------------------------------------------------------------
E9                     db 0E9h

; --------------------------------------------------------------------
loc_4011C5:                             ; CODE XREF: 004011C2j

; DATA XREF: .rdata:004020ACo
58                     pop     eax
C3                     retn

In this example, the 0xE9 byte is used exactly as the 0xE8 byte in the 
previous example. E9 is the opcode for a 5-byte jmp instruction, and E8 is the 
opcode for a 5-byte call instruction. In each case, by tricking the disassem-
bler into disassembling this location, the 4 bytes following this opcode are 
effectively hidden from view. Figure 15-3 shows this example graphically.

Figure 15-3: False conditional of xor followed by a jz instruction

XOR JZ POP RET

JMP

33 C0 74 01 E9 58 C3
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Impossible Disassembly
In the previous sections, we examined code that was improperly disassem-
bled by the first attempt made by the disassembler, but with an interactive 
disassembler like IDA Pro, we were able to work with the disassembly and 
have it produce accurate results. However, under some conditions, no tradi-
tional assembly listing will accurately represent the instructions that are exe-
cuted. We use the term impossible disassembly for such conditions, but the term 
isn’t strictly accurate. You could disassemble these techniques, but you would 
need a vastly different representation of code than what is currently provided 
by disassemblers. 

The simple anti-disassembly techniques we have discussed use a data byte 
placed strategically after a conditional jump instruction, with the idea that 
disassembly starting at this byte will prevent the real instruction that follows 
from being disassembled because the byte that is inserted is the opcode for a 
multibyte instruction. We’ll call this a rogue byte because it is not part of the 
program and is only in the code to throw off the disassembler. In all of these 
examples, the rogue byte can be ignored.

But what if the rogue byte can’t be ignored? What if it is part of a legiti-
mate instruction that is actually executed at runtime? Here, we encounter a 
tricky scenario where any given byte may be a part of multiple instructions 
that are executed. No disassembler currently on the market will represent a 
single byte as being part of two instructions, yet the processor has no such 
limitation. 

Figure 15-4 shows an example. The first instruction in this 4-byte sequence 
is a 2-byte jmp instruction. The target of the jump is the second byte of itself. 
This doesn’t cause an error, because the byte FF is the first byte of the next 
2-byte instruction, inc eax.

Figure 15-4: Inward-pointing jmp instruction

The predicament when trying to represent this sequence in disassembly 
is that if we choose to represent the FF byte as part of the jmp instruction, 
then it won’t be available to be shown as the beginning of the inc eax instruc-
tion. The FF byte is a part of both instructions that actually execute, and our 
modern disassemblers have no way of representing this. This 4-byte sequence 
increments EAX, and then decrements it, which is effectively a complicated 
NOP sequence. It could be inserted at almost any location within a program 
to break the chain of valid disassembly. To solve this problem, a malware ana-
lyst could choose to replace this entire sequence with NOP instructions using 
an IDC or IDAPython script that calls the PatchByte function. Another alterna-
tive is to simply turn it all into data with the D key, so that disassembly will 
resume as expected at the end of the 4 bytes.

JMP −1

INC EAX DEC EAX

EB FF C0 48
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For a glimpse of the complexity that can be achieved with these sorts of 
instruction sequences, let’s examine a more advanced specimen. Figure 15-5 
shows an example that operates on the same principle as the prior one, where 
some bytes are part of multiple instructions.

Figure 15-5: Multilevel inward-jumping sequence

The first instruction in this sequence is a 4-byte mov instruction. The last 
2 bytes have been highlighted because they are both part of this instruction 
and are also their own instruction to be executed later. The first instruction 
populates the AX register with data. The second instruction, an xor, will zero 
out this register and set the zero flag. The third instruction is a conditional 
jump that will jump if the zero flag is set, but it is actually unconditional, 
since the previous instruction will always set the zero flag. The disassembler 
will decide to disassemble the instruction immediately following the jz 
instruction, which will begin with the byte 0xE8, the opcode for a 5-byte 
call instruction. The instruction beginning with the byte E8 will never 
execute in reality. 

The disassembler in this scenario can’t disassemble the target of the jz 
instruction because these bytes are already being accurately represented as 
part of the mov instruction. The code that the jz points to will always be exe-
cuted, since the zero flag will always be set at this point. The jz instruction 
points to the middle of the first 4-byte mov instruction. The last 2 bytes of this 
instruction are the operand that will be moved into the register. When dis-
assembled or executed on their own, they form a jmp instruction that will 
jump forward 5 bytes from the end of the instruction.

When first viewed in IDA Pro, this sequence will look like the following:

66 B8 EB 05            mov     ax, 5EBh
31 C0                  xor     eax, eax
74 F9                  jz      short near ptr sub_4011C0+1
                loc_4011C8:                        
E8 58 C3 90 90         call    near ptr 98A8D525h

Since there is no way to clean up the code so that all executing instruc-
tions are represented, we must choose the instructions to leave in. The net 
side effect of this anti-disassembly sequence is that the EAX register is set to 
zero. If you manipulate the code with the D and C keys in IDA Pro so that the 
only instructions visible are the xor instruction and the hidden instructions, 
your result should look like the following.

MOV ax, 05EBh XOR eax, eax JZ -7

JMP 5

Fake CALL

Real Code

66 B8 EB 05 31 C0 74 F9 E8
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66                   byte_4011C0     db 66h
B8                                   db 0B8h
EB                                   db 0EBh
05                                   db    5

; ------------------------------------------------------------
31 C0                                xor     eax, eax

; ------------------------------------------------------------
74                                   db 74h
F9                                   db 0F9h 
E8                                   db 0E8h

; ------------------------------------------------------------
58                                   pop     eax
C3                                   retn  

This is a somewhat acceptable solution because it shows only the instruc-
tions that are relevant to understanding the program. However, this solution 
may interfere with analysis processes such as graphing, since it’s difficult to 
tell exactly how the xor instruction or the pop and retn sequences are executed. 
A more complete solution would be to use the PatchByte function from the 
IDC scripting language to modify remaining bytes so that they appear as NOP 
instructions. 

This example has two areas of undisassembled bytes that we need to con-
vert into NOP instructions: 4 bytes starting at memory address 0x004011C0 
and 3 bytes starting at memory address 0x004011C6. The following IDAPython 
script will convert these bytes into NOP bytes (0x90):

def NopBytes(start, length):
   for i in range(0, length):
     PatchByte(start + i, 0x90)
   MakeCode(start)

NopBytes(0x004011C0, 4)
NopBytes(0x004011C6, 3)

This code takes the long approach by making a utility function called 
NopBytes to NOP-out a range of bytes. It then uses that utility function against 
the two ranges that we need to fix. When this script is executed, the resulting 
disassembly is clean, legible, and logically equivalent to the original:

90                       nop
90                       nop
90                       nop
90                       nop
31 C0                    xor     eax, eax
90                       nop
90                       nop
90                       nop
58                       pop     eax
C3                       retn
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The IDAPython script we just crafted worked beautifully for this sce-
nario, but it is limited in its usefulness when applied to new challenges. To 
reuse the previous script, the malware analyst must decide which offsets and 
which length of bytes to change to NOP instructions, and manually edit the 
script with the new values. 

NOP-ing Out Instructions with IDA Pro
With a little IDA Python knowledge, we can develop a script that allows 
malware analysts to easily NOP-out instructions as they see fit. The following 
script establishes the hotkey ALT-N. Once this script is executed, whenever 
the user presses ALT-N, IDA Pro will NOP-out the instruction that is currently 
at the cursor location. It will also conveniently advance the cursor to the next 
instruction to facilitate easy NOP-outs of large blocks of code.

import idaapi

idaapi.CompileLine('static n_key() { RunPythonStatement("nopIt()"); }')

AddHotkey("Alt-N", "n_key")

def nopIt():
   
      start = ScreenEA()
      end = NextHead(start)
      for ea in range(start, end):
            PatchByte(ea, 0x90)
      Jump(end)
      Refresh()

Obscuring Flow Control

Modern disassemblers such as IDA Pro do an excellent job of correlating 
function calls and deducing high-level information based on the knowledge 
of how functions are related to each other. This type of analysis works well 
against code written in a standard programming style with a standard com-
piler, but is easily defeated by the malware author. 

The Function Pointer Problem
Function pointers are a common programming idiom in the C programming 
language and are used extensively behind the scenes in C++. Despite this, 
they still prove to be problematic to a disassembler.

Using function pointers in the intended fashion in a C program can 
greatly reduce the information that can be automatically deduced about pro-
gram flow. If function pointers are used in handwritten assembly or crafted 
in a nonstandard way in source code, the results can be difficult to reverse-
engineer without dynamic analysis. 

The following assembly listing shows two functions. The second function 
uses the first through a function pointer.
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004011C0 sub_4011C0      proc near               ; DATA XREF: sub_4011D0+5o
004011C0
004011C0 arg_0           = dword ptr  8
004011C0
004011C0                 push    ebp
004011C1                 mov     ebp, esp
004011C3                 mov     eax, [ebp+arg_0]
004011C6                 shl     eax, 2
004011C9                 pop     ebp
004011CA                 retn
004011CA sub_4011C0      endp

004011D0 sub_4011D0      proc near               ; CODE XREF: _main+19p
004011D0                                         ; sub_401040+8Bp
004011D0
004011D0 var_4           = dword ptr -4
004011D0 arg_0           = dword ptr  8
004011D0
004011D0                 push    ebp
004011D1                 mov     ebp, esp
004011D3                 push    ecx
004011D4                 push    esi
004011D5                 mov   [ebp+var_4], offset sub_4011C0
004011DC                 push    2Ah
004011DE                 call  [ebp+var_4]
004011E1                 add     esp, 4
004011E4                 mov     esi, eax
004011E6                 mov     eax, [ebp+arg_0]
004011E9                 push    eax
004011EA                 call  [ebp+var_4]
004011ED                 add     esp, 4
004011F0                 lea     eax, [esi+eax+1]
004011F4                 pop     esi
004011F5                 mov     esp, ebp
004011F7                 pop     ebp
004011F8                 retn
004011F8 sub_4011D0      endp

While this example isn’t particularly difficult to reverse-engineer, it does 
expose one key issue. The function sub_4011C0 is actually called from two dif-
ferent places ( and ) within the sub_4011D0 function, but it shows only one 
cross-reference at . This is because IDA Pro was able to detect the initial 
reference to the function when its offset was loaded into a stack variable on 
line 004011D5. What IDA Pro does not detect, however, is the fact that this 
function is then called twice from the locations  and . Any function pro-
totype information that would normally be autopropagated to the calling 
function is also lost. 

When used extensively and in combination with other anti-disassembly 
techniques, function pointers can greatly compound the complexity and dif-
ficulty of reverse-engineering. 
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Adding Missing Code Cross-References in IDA Pro
All of the information not autopropagated upward, such as function argu-
ment names, can be added manually as comments by the malware analyst. 
In order to add actual cross-references, we must use the IDC language (or 
IDAPython) to tell IDA Pro that the function sub_4011C0 is actually called 
from the two locations in the other function. 

The IDC function we use is called AddCodeXref. It takes three arguments: 
the location the reference is from, the location the reference is to, and a flow 
type. The function can support several different flow types, but for our pur-
poses, the most useful are either fl_CF for a normal call instruction or a fl_JF 
for a jump instruction. To fix the previous example assembly code listing in 
IDA Pro, the following script was executed:

AddCodeXref(0x004011DE, 0x004011C0, fl_CF);
AddCodeXref(0x004011EA, 0x004011C0, fl_CF);

Return Pointer Abuse
The call and jmp instructions are not the only instructions to transfer control 
within a program. The counterpart to the call instruction is retn (also repre-
sented as ret). The call instruction acts just like the jmp instruction, except it 
pushes a return pointer on the stack. The return point will be the memory 
address immediately following the end of the call instruction itself. 

As call is a combination of jmp and push, retn is a combination of pop and 
jmp. The retn instruction pops the value from the top of the stack and jumps 
to it. It is typically used to return from a function call, but there is no archi-
tectural reason that it can’t be used for general flow control. 

When the retn instruction is used in ways other than to return from a 
function call, even the most intelligent disassemblers can be left in the dark. 
The most obvious result of this technique is that the disassembler doesn’t 
show any code cross-reference to the target being jumped to. Another key 
benefit of this technique is that the disassembler will prematurely terminate 
the function. 

Let’s examine the following assembly fragment: 

004011C0 sub_4011C0      proc near               ; CODE XREF: _main+19p
004011C0                                         ; sub_401040+8Bp
004011C0
004011C0 var_4           = byte ptr -4
004011C0
004011C0                 call    $+5
004011C5                 add     [esp+4+var_4], 5
004011C9                 retn
004011C9 sub_4011C0      endp ; sp-analysis failed
004011C9
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004011CA ; ------------------------------------------------------------
004011CA                 push    ebp
004011CB                 mov     ebp, esp
004011CD                 mov     eax, [ebp+8]
004011D0                 imul    eax, 2Ah
004011D3                 mov     esp, ebp
004011D5                 pop     ebp
004011D6                 retn

This is a simple function that takes a number and returns the product 
of that number times 42. Unfortunately, IDA Pro is unable to deduce any 
meaningful information about this function because it has been defeated 
by a rogue retn instruction. Notice that it has not detected the presence of 
an argument to this function. The first three instructions accomplish the 
task of jumping to the real start of the function. Let’s examine each of 
these instructions.

The first instruction in this function is call $+5. This instruction simply 
calls the location immediately following itself, which results in a pointer to 
this memory location being placed on the stack. In this specific example, the 
value 0x004011C5 will be placed at the top of the stack after this instruction 
executes. This is a common instruction found in code that needs to be self-
referential or position-independent, and will be covered in more detail in 
Chapter 19. 

The next instruction is add [esp+4+var_4], 5. If you are used to reading 
IDA Pro disassembly, you might think that this instruction is referencing a 
stack variable var_4. In this case, IDA Pro’s stack-frame analysis was incorrect, 
and this instruction was not referencing what would be a normal stack vari-
able, autonamed to var_4 in an ordinary function. This may seem confusing 
at first, but notice that at the top of the function, var_4 is defined as the con-
stant -4. This means that what is inside the brackets is [esp+4+(-4)], which can 
also be represented as [esp+0] or simply [esp]. This instruction is adding five 
to the value at the top of the stack, which was 0x004011C5. The result of the 
addition instruction is that the value at the top of the stack will be 0x004011CA.

The last instruction in this sequence is the retn instruction, which has the 
sole purpose of taking this value off the stack and jumping to it. If you exam-
ine the code at the location 0x004011CA, it appears to be the legitimate 
beginning of a rather normal-looking function. This “real” function was 
determined by IDA Pro to not be part of any function due to the presence 
of the rogue retn instruction.

To repair this example, we could patch over the first three instructions 
with NOP instructions and adjust the function boundaries to cover the real 
function. 

To adjust the function boundaries, place the cursor in IDA Pro inside 
the function you wish to adjust and press ALT-P. Adjust the function end 
address to the memory address immediately following the last instruction 
in the function. To replace the first few instructions with nop, refer to the 
script technique described in “NOP-ing Out Instructions with IDA Pro” on 
page 340.
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Misusing Structured Exception Handlers
The Structured Exception Handling (SEH) mechanism provides a method 
of flow control that is unable to be followed by disassemblers and will fool 
debuggers. SEH is a feature of the x86 architecture and is intended to pro-
vide a way for the program to handle error conditions intelligently. Program-
ming languages such as C++ and Ada rely heavily on exception handling and 
translate naturally to SEH when compiled on x86 systems.

Before exploring how to harness SEH to obscure flow control, let’s 
look at a few basic concepts about how it operates. Exceptions can be trig-
gered for a number of reasons, such as access to an invalid memory region 
or dividing by zero. Additional software exceptions can be raised by calling 
the RaiseException function. 

The SEH chain is a list of functions designed to handle exceptions 
within the thread. Each function in the list can either handle the exception 
or pass it to the next handler in the list. If the exception makes it all the 
way to the last handler, then it is considered to be an unhandled exception. 
The last exception handler is the piece of code responsible for triggering 
the familiar message box that informs the user that “an unhandled excep-
tion has occurred.” Exceptions happen regularly in most processes, but are 
handled silently before they make it to this final state of crashing the pro-
cess and informing the user. 

To find the SEH chain, the OS examines the FS segment register. This 
register contains a segment selector that is used to gain access to the Thread 
Environment Block (TEB). The first structure within the TEB is the Thread 
Information Block (TIB). The first element of the TIB (and consequently 
the first bytes of the TEB) is a pointer to the SEH chain. The SEH chain is a 
simple linked list of 8-byte data structures called EXCEPTION_REGISTRATION records.

struct _EXCEPTION_REGISTRATION {
   DWORD prev;
   DWORD handler;
};

The first element in the EXCEPTION_REGISTRATION record points to the previ-
ous record. The second field is a pointer to the handler function. 

This linked list operates conceptually as a stack. The first record to be 
called is the last record to be added to the list. The SEH chain grows and 
shrinks as layers of exception handlers in a program change due to subrou-
tine calls and nested exception handler blocks. For this reason, SEH records 
are always built on the stack. 

In order to use SEH to achieve covert flow control, we need not concern 
ourselves with how many exception records are currently in the chain. We 
just need to understand how to add our own handler to the top of this list, as 
shown in Figure 15-6.
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Figure 15-6: Structured Exception Handling (SEH) chain

To add a record to this list, we need to construct a new record on the 
stack. Since the record structure is simply two DWORDs, we can do this with two 
push instructions. The stack grows upward, so the first push will be the pointer 
to the handler function, and the second push will be the pointer to the next 
record. We are trying to add a record to the top of the chain, so the next 
record in the chain when we finish will be what is currently the top, which 
is pointed to by fs:[0]. The following code performs this sequence.

push ExceptionHandler
push fs:[0]
mov fs:[0], esp

The ExceptionHandler function will be called first whenever an exception 
occurs. This action will be subject to the constraints imposed by Microsoft’s 
Software Data Execution Prevention (Software DEP, also known as SafeSEH).

Software DEP is a security feature that prevents the addition of third-
party exception handlers at runtime. For purposes of handwritten assembly 
code, there are several ways to work around this technology, such as using an 
assembler that has support for SafeSEH directives. Using Microsoft’s C compil-
ers, an author can add /SAFESEH:NO to the linker command line to disable this.

When the ExceptionHandler code is called, the stack will be drastically 
altered. Luckily, it is not essential for our purposes to fully examine all the 
data that is added to the stack at this point. We must simply understand how 
to return the stack to its original position prior to the exception. Remember 
that our goal is to obscure flow control and not to properly handle program 
exceptions.

The OS adds another SEH handler when our handler is called. To return 
the program to normal operation, we need to unlink not just our handler, 
but this handler as well. Therefore, we need to pull our original stack pointer 
from esp+8 instead of esp. 

mov esp, [esp+8]
mov eax, fs:[0]
mov eax, [eax]
mov eax, [eax]
mov fs:[0], eax
add esp, 8

FS:[0] prev Handler Functionhandler

prev handler

prev handler

prev handler

Handler Function 

Handler Function

Handler Function
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Let’s bring all this knowledge back to our original goal of obscuring flow 
control. The following fragment contains a piece of code from a Visual C++ 
binary that covertly transfers flow to a subroutine. Since there is no pointer 
to this function and the disassembler doesn’t understand SEH, it appears as 
though the subroutine has no references, and the disassembler thinks the 
code immediately following the triggering of the exception will be executed.

00401050               mov     eax, (offset loc_40106B+1)
00401055                 add     eax, 14h
00401058                 push    eax
00401059                 push    large dword ptr fs:0 ; dwMilliseconds
00401060                 mov     large fs:0, esp
00401067                 xor     ecx, ecx
00401069               div     ecx
0040106B
0040106B loc_40106B:                             ; DATA XREF: sub_401050o
0040106B                 call    near ptr Sleep
00401070                 retn
00401070 sub_401050      endp ; sp-analysis failed
00401070
00401070 ; ------------------------------------------------------------------
00401071                 align 10h
00401080               dd 824648Bh, 0A164h, 8B0000h, 0A364008Bh, 0
00401094                 dd 6808C483h
00401098                 dd offset aMysteryCode  ; "Mystery Code"
0040109C                 dd 2DE8h, 4C48300h, 3 dup(0CCCCCCCCh)

In this example, IDA Pro has not only missed the fact that the subroutine 
at location 401080  was not called, but it also failed to even disassemble this 
function. This code sets up an exception handler covertly by first setting 
the register EAX to the value 40106C , and then adding 14h to it to build a 
pointer to the function 401080. A divide-by-zero exception is triggered by 
setting ECX to zero with xor ecx, ecx followed by div ecx at , which divides 
the EAX register by ECX.

Let’s use the C key in IDA Pro to turn the data at location 401080 into 
code and see what was hidden using this trick.

00401080                 mov     esp, [esp+8]
00401084                 mov     eax, large fs:0
0040108A                 mov     eax, [eax]
0040108C                 mov     eax, [eax]
0040108E                 mov     large fs:0, eax
00401094                 add     esp, 8
00401097                 push    offset aMysteryCode ; "Mystery Code"
0040109C                 call    printf
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Thwarting Stack-Frame Analysis

Advanced disassemblers can analyze the instructions in a function to deduce 
the construction of its stack frame, which allows them to display the local vari-
ables and parameters relevant to the function. This information is extremely 
valuable to a malware analyst, as it allows for the analysis of a single function 
at one time, and enables the analyst to better understand its inputs, outputs, 
and construction.

However, analyzing a function to determine the construction of its stack 
frame is not an exact science. As with many other facets of disassembly, the 
algorithms used to determine the construction of the stack frame must make 
certain assumptions and guesses that are reasonable but can usually be 
exploited by a knowledgeable malware author. 

Defeating stack-frame analysis will also prevent the operation of certain 
analytical techniques, most notably the Hex-Rays Decompiler plug-in for IDA 
Pro, which produces C-like pseudocode for a function. 

Let’s begin by examining a function that has been armored to defeat 
stack-frame analysis.

00401543     sub_401543      proc near           ; CODE XREF: sub_4012D0+3Cp
00401543                                         ; sub_401328+9Bp
00401543
00401543     arg_F4          = dword ptr  0F8h
00401543     arg_F8          = dword ptr  0FCh
00401543
00401543 000                 sub     esp, 8
00401546 008                 sub     esp, 4
00401549 00C                 cmp     esp, 1000h
0040154F 00C                 jl      short loc_401556
00401551 00C                 add     esp, 4
00401554 008                 jmp     short loc_40155C
00401556     ; --------------------------------------------------------------
00401556
00401556     loc_401556:                        ; CODE XREF: sub_401543+Cj
00401556 00C                 add     esp, 104h
0040155C
0040155C     loc_40155C:                        ; CODE XREF: sub_401543+11j
0040155C -F8 mov     [esp-0F8h+arg_F8], 1E61h
00401564 -F8                 lea     eax, [esp-0F8h+arg_F8]
00401568 -F8                 mov     [esp-0F8h+arg_F4], eax
0040156B -F8                 mov     edx, [esp-0F8h+arg_F4]
0040156E -F8                 mov     eax, [esp-0F8h+arg_F8]
00401572 -F8                 inc     eax
00401573 -F8                 mov     [edx], eax
00401575 -F8                 mov     eax, [esp-0F8h+arg_F4]
00401578 -F8                 mov     eax, [eax]
0040157A -F8                 add     esp, 8
0040157D -100                retn
0040157D     sub_401543      endp ; sp-analysis failed

Listing 15-1: A function that defeats stack-frame analysis
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Stack-frame anti-analysis techniques depend heavily on the compiler 
used. Of course, if the malware is entirely written in assembly, then the 
author is free to use more unorthodox techniques. However, if the malware 
is crafted with a higher-level language such as C or C++, special care must 
be taken to output code that can be manipulated. 

In Listing 15-1, the column on the far left is the standard IDA Pro line 
prefix, which contains the segment name and memory address for each 
function. The next column to the right displays the stack pointer. For each 

instruction, the stack pointer column shows the value of the ESP register rel-
ative to where it was at the beginning of the function. This view shows that 
this function is an ESP-based stack frame rather than an EBP-based one, 
like most functions. (This stack pointer column can be enabled in IDA Pro 
through the Options menu.)

At , the stack pointer begins to be shown as a negative number. This 
should never happen for an ordinary function because it means that this 
function could damage the calling function’s stack frame. In this listing, IDA 
Pro is also telling us that it thinks this function takes 62 arguments, of which 
it thinks 2 are actually being used. 

NOTE Press CTRL-K in IDA Pro to examine this monstrous stack frame in detail. If you 
attempt to press Y to give this function a prototype, you’ll be presented with one of 
the most ghastly abominations of a function prototype you’ve ever seen.

As you may have guessed, this function doesn’t actually take 62 argu-
ments. In reality, it takes no arguments and has two local variables. The code 
responsible for breaking IDA Pro’s analysis lies near the beginning of the 
function, between locations 00401546 and 0040155C. It’s a simple compari-
son with two branches. 

The ESP register is being compared against the value 0x1000. If it is less 
than 0x1000, then it executes the code at 00401556; otherwise, it executes the 
code at 00401551. Each branch adds some value to ESP—0x104 on the “less-
than” branch and 4 on the “greater-than-or-equal-to” branch. From a disas-
sembler’s perspective, there are two possible values of the stack pointer offset 
at this point, depending on which branch has been taken. The disassembler 
is forced to make a choice, and luckily for the malware author, it is tricked 
into making the wrong choice. 

Earlier, we discussed conditional branch instructions, which were not 
conditional at all because they exist where the condition is constant, such as 
a jz instruction immediately following an xor eax, eax instruction. Innovative 
disassembler authors could code special semantics in their algorithm to track 
such guaranteed flag states and detect the presence of such fake conditional 
branches. The code would be useful in many scenarios and would be very 
straightforward, though cumbersome, to implement. 

In Listing 15-1, the instruction cmp esp, 1000h will always produce a fixed 
result. An experienced malware analyst might recognize that the lowest 
memory page in a Windows process would not be used as a stack, and thus 
this comparison is virtually guaranteed to always result in the “greater-than-
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or-equal-to” branch being executed. The disassembly program doesn’t have 
this level of intuition. Its job is to show you the instructions. It’s not designed 
to evaluate every decision in the code against a set of real-world scenarios. 

The crux of the problem is that the disassembler assumed that the add 
esp, 104h instruction was valid and relevant, and adjusted its interpretation of 
the stack accordingly. The add esp, 4 instruction in the greater-than-or-equal-
to branch was there solely to readjust the stack after the sub esp, 4 instruction 
that came before the comparison. The net result in real time is that the ESP 
value will be identical to what it was prior to the beginning of the sequence at 
address 00401546. 

To overcome minor adjustments to the stack frame (which occur occa-
sionally due to the inherently fallible nature of stack-frame analysis), in IDA 
Pro, you can put the cursor on a particular line of disassembly and press 
ALT-K to enter an adjustment to the stack pointer. In many cases, such as in 
Listing 15-1, it may prove more fruitful to patch the stack-frame manipula-
tion instructions, as in the previous examples.

Conclusion

Anti-disassembly is not confined to the techniques discussed in this chapter. 
It is a class of techniques that takes advantage of the inherent difficulties in 
analysis. Advanced programs such as modern disassemblers do an excellent 
job of determining which instructions constitute a program, but they still 
require assumptions and choices to be made in the process. For each choice 
or assumption that can be made by a disassembler, there may be a corre-
sponding anti-disassembly technique. 

This chapter showed how disassemblers work and how linear and flow-
oriented disassembly strategies differ. Anti-disassembly is more difficult with 
a flow-oriented disassembler but still quite possible, once you understand 
that the disassembler is making certain assumptions about where the code 
will execute. Many anti-disassembly techniques used against flow-oriented 
disassemblers operate by crafting conditional flow-control instructions for 
which the condition is always the same at runtime but unknown by the disas-
sembler.

Obscuring flow control is a way that malware can cause the malware ana-
lyst to overlook portions of code or hide a function’s purpose by obscuring 
its relation to other functions and system calls. We examined several ways to 
accomplish this, ranging from using the ret instruction to using SEH han-
dlers as a general-purpose jump.

The goal of this chapter was to help you understand code from a tactical 
perspective. You learned how these types of techniques work, why they are 
useful, and how to defeat them when you encounter them in the field. More 
techniques are waiting to be discovered and invented. With this solid founda-
tion, you will be more than prepared to wage war in the anti-disassembly 
battlefield of the future.
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L A B S
Lab 15-1

Analyze the sample found in the file Lab15-01.exe. This is a command-line 
program that takes an argument and prints “Good Job!” if the argument 
matches a secret code.

Questions

1. What anti-disassembly technique is used in this binary?

2. What rogue opcode is the disassembly tricked into disassembling?

3. How many times is this technique used?

4. What command-line argument will cause the program to print 
“Good Job!”?

Lab 15-2

Analyze the malware found in the file Lab15-02.exe. Correct all anti-disassembly 
countermeasures before analyzing the binary in order to answer the questions.

Questions

1. What URL is initially requested by the program?

2. How is the User-Agent generated?

3. What does the program look for in the page it initially requests?

4. What does the program do with the information it extracts from 
the page?

Lab 15-3

Analyze the malware found in the file Lab15-03.exe. At first glance, this binary 
appears to be a legitimate tool, but it actually contains more functionality 
than advertised. 

Questions

1. How is the malicious code initially called?

2. What does the malicious code do?

3. What URL does the malware use?

4. What filename does the malware use?




