J Comput Virol (2012) 8:141-149
DOI 10.1007/s11416-012-0165-0

ORIGINAL PAPER

Anti-virtual machines and emulations

Anoirel Issa

Received: 16 February 2012 / Accepted: 1 May 2012 / Published online: 19 June 2012

© Springer-Verlag France 2012

Abstract Virtual Machines are important infrastructural
tools for malware analysis. They provide safe yet accu-
rate way of evaluating real life behavior and impact of any
executable code, thus providing a better understanding of
obfuscated or non conventional portions of code within a
binary file. Many virtual machines, such as VMware, Qemu,
VirtualBox and SandBoxes, are available and are widely
adopted by malware researchers and analysts. Moreover,
many antivirus scanners have their own implementation
of emulators to achieve comparable results by running
malicious code within a controlled environment in order
to decrypt obfuscated code. Virus writers have always
responded to these technologies. Most malware today uses
anti-debug techniques to counter analysis and evade antivi-
rus detection. Lately, malware like Zeus/SpyEye and associ-
ated families such as Smoaler, Dromedan, Kazy, Yakes, and
other malware such as Spyrat or W32.Pilleuz, have deployed
techniques to disrupt the use of virtual machines and emula-
tors. These malware families are able to implement different
variations of disruption techniques within single samples or
within related groups of malware before propagation. This
paper will present a study of these anti-emulation and anti-
virtual machine techniques.

1 Introduction

In today’s complex malware threats, cybercriminals invent
and implement different technologies that would protect their
malicious code from being reverse engineered and under-

A. Issa (<)

Security Technology and Response Division,

The Global Malware Services Department, Symantec,
1260 Lansdowne court, Gloucester Business Park,
GL3 4AB Gloucester, UK

e-mail: anoirel_issa@symantec.com

stood by anti-malware analysts. The first protection technol-
ogies are packers and encryptors. They are available com-
mercially or freely on the Internet. Packer protection systems
are obfuscation tools used by a wide array of software com-
panies who wish to protect their intellectual property. Virus
writers use packers a lot to obfuscate their malware before
propagation. According to antivirus company data, the vast
majority of malware is protected by packers. Packers are
very popular because there is no development time required
in order to protect specific software; in that sense they are
very cost effective. However there is a downside to this tech-
nology, most packers are very well known. Many unpacking
technologies are implemented in antivirus scanners and other
reverse-engineering tools.

There are other protection mechanisms, such as anti-
debug, used to prevent automated or human analyzers from
accessing the core functionality of the malicious code.
However similar to the packer technology, most anti-debug
techniques are very well know and there are lots of publicly
available resources and documentation about them.

There is now emulation and anti-emulation technology.
Although this is not a new technology, implementing anti-
emulation techniques requires more skill that most of the
previously cited methods of protection. Cyber criminals have
understood that virtual machines and emulators are the saf-
est environment used to analyze and evaluate their mali-
cious code. Some professional malware writers such as those
responsible of developing Zeus or Spyrat have decided to
focus on developing and implement as many anti-emula-
tion technologies as possible in order to disrupt analysis
attempts on their code. With a lack of innovative technol-
ogies they recycle already-existing concepts and turn them
into subtle, but fairly new techniques, thus enabling malware
that can detect when they are running in a hostile environ-
ment.

@ Springer



142

A. Issa

Fig. 1 CPU register-based
anti-emulator under Windows 7
and Vista

407b93
-

2 Central processing unit (CPU) registers based
anti-emulation

When a program is executed, the operating system initial-
izes its environment first. Specific memory regions such as
the stack and heap are allocated and reserved so that the
program can use them in order to carry out its task. Many of
these environmental settings are predictable. Although their
predictability has significantly been reduced by the introduc-
tion of the address space layout randomization (ASLR), it is
still possible to predict some other variables within a pro-
gram’s environment. For example, the initial values of the
CPU registers can be known prior to the program’s execution.

Each emulation system, such as virtual machines and emu-
lators, can present their own initial register characteristics
that are different than those in a non-emulated environment.
For instance VirtualBox, which tends to be targeted by many
malware, will have different environmental settings than the
Pokas emulator, an open source emulator. This also means
that the emulator in antivirus program A is likely to differ
from that of antivirus program B.

By checking the state and initial values of these registers
at the entry point, the malware can deduce whether or not it
is being analyzed in a virtual environment, even which emu-
lator is analyzing it. This technique has been heavily used

Fig. 2 Exit program.
Emulation is detected

41a760
41 1

@ Springer

Emu Detected

by Zeus and the like since November 2011 to detect virtual
machines and emulators.

3 Targeting Windows 7 and Vista

Here is an example of CPU register-based anti-emulation for
ASLR based systems such as Windows 7 and Vista.

Virus Name: Zbot

On newer operating systems that have address space lay-
out randomization (ASLR) implemented, some registers are
expected not to have some specific values. For instance, the
EAX register shouldn’t be zero. This has been exploited by
some malware in order to check the environment it is running
within. Assuming that some emulators will initialize regis-
ters at the entry point to zero, an efficient attack against these
emulators is to check for a value that can be predicted. For
instance, the value of the EAX register.

In the Fig. 1 above, the initial value of the EAX register is
tested to decide whether emulation is present. In the event of
adifferent value than what is expected, the program is certain
that it is run in a non-conventional environment such as an
emulator.

Figure 2 illustrates the destination of the code in Fig. 1
refers to “jz loc_41a75d”.

Abort/Exit



Anti-virtual machines and emulations

143

Fig. 3 A more universal
anti-emulation

405778

The code in the Fig. 2 is a program-termination routine.
Once the malware has detected the presence of the emulation,
it simply stops executing itself and exits.

4 Different samples targeting different systems

In non-ASLR systems like Windows XP, the EAX entry
point is always zero, so this detection process would not
work. However the botnet responsible in spreading Zeus can
send hundreds of samples per month. Sometimes the samples
are the same, except that the anti-emulation, anti-debug or
anti-virtual machines used are different. This gives them the
flexibility of targeting different systems with their new anti-
analysis code.

5 A more ‘universal’ approach

The first code we’ve seen was targeting Windows Vista and
subsequent versions with ASLR enabled such as Windows 7.
However malware can also target just about any system. The
following code is another implementation that would work
on Windows XP, Vista, and Windows 7.

Figure 3 presents an anti-emulation technique that should
work from either Widows XP or Vista. The approach is to
check the value of the ECX register as part of the first anti-
emulation check. Under Windows XP, ECX should always
point to an address within the stack range when a program
starts; however, under Windows 7 ECX starts with a value of
zero. Therefore, if the value of that register is Oxffffftff the
least we can say is that the environment is not conventional.
Since many tools initialize values with either O or Oxffffffff,
the malware can deduct that it is being run in a hostile envi-
ronment.

Next Check

Next Check

6 Stack address range anti-emulation

Just as the initial values of the CPU registers can be known
prior to a program is executed, the stack address range can
be known in advance. A stack-based, anti-emulation tech-
nique has been implemented by the same malware family. It
consists in checking the address range of the stack against
the running process. When executed, the stack allocated to
processes under Windows XP can be predicted. By checking
the address range, it is possible to determine if a program is
run under emulation.

Figure 4 illustrates the initial registers state on a Windows
XP computer.

As highlighted on the above illustration, the ECX and ESP
registers point to values in the stack. Under Windows XP,
or a similar environment, the stack address range is usually
based around 0x120000. In Windows 7 the stack seems to be
based around 0x180000. So by checking the stack address
range, malware can determine whether it is running under
an emulated environment and subsequently abort its actions
and exit or trigger a system crash.

=/o&

® General registers

EAX 806000088 L, CF @
EBX ZFFD88086 L debuqBBs: 7FFD8 000 PF 1
[ECX 8012FFB® L, Stack[ 80006C90]:0812FFBA] |AF @
EDX7COOES14 Lyntdll.dll:7COBES14 ZF1
ES| B434FCES L, SF @
EDI 1086BEBB L, TF @

BE A8 B Ly Stack[80600C208] :8612FFF0 IF 1
SP 8012FFCh by Stack[ 00008C920] : 8812FFCH DF 8
EIP 00407878 L, start OF @

EFL 60800246

Fig. 4 Stack address range

@ Springer



144

A. Issa

r"' General registers Q ]

E4X 00000000 L, CFe
EBX 7FFD8000 L, debugB05:7FFD80OOO PF1

EDI 1006BEBB L, TF 0
EBP @812FFFB L, Stack[ 00006C90] : 8612FFF@ IF 1
ESP 8812FFC4 L, Stack[ 00066C90] : 8812FFCY DF @
EIP 00407B78 L, start OF @
EFL 00060246

Not Emulated

Fig. 5 EDX values in non-emulated and virtual environments

7 Dynamic linked library address space checks as
anti-emulations

Dynamic linked libraries are often needed in programs,
including malware. One of the most commonly used DLLs
in a Windows environment is kernel32.dll. DLLs are mapped
in memory regions that are very predictable in a non-ASLR-
enabled environment. Knowing the memory address range of
aspecific DLL, malware is able to determine if they are being
analyzed in an emulated system by checking the address
range of some libraries. The idea behind this technique is
similar to the one that checks the stack address range.

This time, what is checked is the address range of a par-
ticular DLL. For instance, it is known that upon execution,
the entry point the value of the EDX register points to is
an address within Ntdll.dll, which is around 0x7C90000 in
Windows XP, as shown in the Fig. 5.

Figure 5 shows this under a normal, non-emulated envi-
ronment. On a system running Windows XP, the EDX reg-
ister points to the ntdll.dll address of 0x7c90ES514, which is
the address of the KiFastSystemCallRet system API. This
is the expected behavior. However under a virtual machine,
(for instance VirtualBox) EDX no longer points to an address
within ntdll.dll, but to a debug register address. So by check-
ing whether EDX points to the address range of ntdll.dll at
the entry point, malware can detect if it is being analyzed in
a virtual machine or emulator.

8 Junk APIs as anti-emulation

Although this technique has been heavily used over a year
now, it continues to be used albeit to a lesser extent. A lot of
malware abusively uses junk API calls, whether with illegal
parameters or with valid ones, several times so that they can
break some emulators.

This is a direct attack on emulators that don’t handle API
calls very well, since in the case of non-handled APIs, it may

@ Springer

ECX G012FFBO L, Stack[ 00000C90]:0012FFBBO AF 0
EDX7C9BES14 Lyntd11.d11:7C9BES14 | |—1r-|—':>,.
T SFO

i _ - [B]x)
EAXlBﬂBBBBB CF@
EBX 7FFDF 088 L, debugBe5:7FFDF 000 PF1
AF O
ZF 8
SF1
TF 8
EBP 8812FFF08 L, Stack[ 0000605B4] :0012FFF0 IF 1
ESP 8012FFC4 L, Stack[ 000005B4] : 8812FFC4 DF @
EIP 88487B78 L, start OF@
EFL 0000B286

\ < General regisiess

Emulated: Virtual Machine

not execute the malware in its virtual environment, classify-
ing the threat as “clean” by ignoring it.

9 From simplicity to complexity: exploiting the CPU
based anti-emulation and virtual machines

From the simplicity of the initial values of the CPU registers,
there are a certain number of ways anti-emulation can be
implemented. Different samples can have variations that can
be simple, but also very complex. Malware that implements
these anti-emulation techniques, coupled with obfuscation
such as polymorphism, can be very difficult to track down.

10 Statistics on one CPU-based, anti-emulation
malware family

The Fig. 6 is a chart showing the statistics on a malware
family that uses one of the CPU-based, anti-emulation tech-
niques over a period of six months. Although this particular
technique has not been used lately, it has been seen in over
34,000 times during the period.

11 Anti-Sandboxes

Sandboxes are tools that offer sandboxed virtual environment
to run programs and observe their behavior. As a result, these
tools, popular among the reverse-engineering community, are
also under close scrutiny by the malware-writing community.

12 Anti-Sandboxie

As most of the programs have got their own sets of files, the
Sandboxie sandbox has a core dynamic link library called
‘SbieDIl.dIl’. As illustrated above, some malware checks if
this particular DLL has been loaded in the system. If so,



Anti-virtual machines and emulations

145

[ |uastHoiw | Lesti2Hours |EsstDay  |LsstWesk |Last2Wesks  LsstMonth  ||LestSMontw | LeetGMonte
0 0 0 0 0 0 0 34,069

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 34,069
— Malware
— Non-Malware

A\
o
LZE/ \EJ A

240ct 250ct 260ct 270ct 280ct 290ct 300ct  310ct  O1Nov

Fig. 6 Statistics on a malware family using a cpu based anti-emulation

CODE:©00840852EC

02Nov

03Nov  O4Nov  O5SNov  O6Nov  O7Nov  08Nov  O9Nov  10Nov 11Nov

CODE:@24052EC SandBoxie Check SbieDll dll proc near ; CODE XREF: ANTI_DEBUGGER_
CODE:9884052EC ; DATA XREF: ANTI_DEBUGGER_
CODE : 904052EC push ebx

CODE : ©04052ED xor ebx, ebx

CODE : 004052EF push offset asSbiedll_dll ; "sSbieDll.dll"

CODE : 004052F4 call GetModuleHandleA ©

CODE : 904052F9 test eax, eax

CODE : 004052FB jz short loc_4@52FF

CODE : 004052FD mov bl, 1

CODE : @04052FF

CODE:004052FF loc_4@52FF: ; CODE XREF: SandBoxie_Chec
CODE : 004052FF mov eax, ebx

CODE : 00405301 pop ebx

CODE : 00405302 retn

CODE : 00405302
CODE : 00405302

Fig. 7 Anti-Sandboxie

then it is certain that the malware is in fact running under a
sandboxie emulated environment Fig. 7.

13 Anti-VMware
VMware is one of the most popular virtual machines avail-

able. It offers an easy interface to work with and supports a
wide range of operating systems such as DOS, OS2, Linux,

SandBoxie_Check_sSbieDl1l_dll endp

and Windows. It is naturally one of the earliest to be targeted
by malware. The technique here is rather common but still
widely used by malware wishing to detect VMware. Figure 8
represents code recently seen in a Spyrat sample.

VMware uses the EBX number 564D5868h, which corre-
sponds to the ASCII value ‘VMXh’, along with communica-
tion port 5658h, which has a corresponding ASCII value of
‘VX’. The command Oah returns the VMware version. One
of the most common ways of detecting VMware is to issue

@ Springer



146 A. Issa
CODE:900405124 arg 8 = dword ptr eoch
CODE : 08405124
CODE:@e4085124 xor eax, eax
CODE : 00405126 push offset loc 4e514C
CODE : 00405128 push dword ptr fs:[eax]
CODE :0040512E mov fs:[eax], esp
CODE:00405131 mov eax, 'VMxh' 3 Vmaware magic
CODE : 08405136 mov ebx, 3C6CF712h
CODE : 00405138 mov ecx, ©0Ah 3 version
CODE : 904051490 mov dx, 'vx' 3 vmware port
CODE : 00405144 in eax, dx 3 read the port
CODE:@e4085145 mov eax, 1
CODE :0040514A jmp short loc 4@515F
CODE:@OA0514C § ~---=-ss=smmcsmecucccscsscnmeneemcsesseeaseseesessesnn e nnes
CODE:@e40514C
CODE :0040514C loc 40514C: ; DATA XREF: Anti vMwARE+2%o
CODE :0040514C mov eax, [esp+arg_8]
CODE : 004051590 mov dword ptr [eax+eB8h], offset loc_4@515D
CODE : @040515A xor eax, eax
CODE :0840515C retn

Fig. 8 VMware detection

CODE : ©040523D call

CODE : 00405242 mov

CODE : 00405248 push eax
CODE : 0405249 lea

CODE : 0040524F mov

CODE : 00405254 call

CODE : 90405259 mov

Fig. 9 Anti-VirtualBox

a VMware command and check if the return value in EBX
(which should differ from the original value) is “VMXh’. If
this is the case then VMware is present.

The other way is to set EAX to a value of ‘1°, like in the
example in the Fig. 8, then define exception-handing code
that clears the EAX register if it gets executed. If an excep-
tion occurs when running the VMware commands code, then
EAX should not be ‘1’ anymore but ‘0.

This way by checking the value of EAX, it is possible to
determine whether VMware is running or not.

14 Anti-VirtualBox

VirtualBox is an open source virtual machine owned by
Oracle. Like VMware, VirtualBox is a popular tool. Malware
writers have found a simple way of detecting its presence, as
illustrated below in Fig. 9.

Like many other tools, VirtualBox has its own running
processes. As shown in the code above, taken from a recent
malware sample, the simplest way to detect the presence of
VirtualBox is to scan all running processes and check for
VboxServices.exe. The figure below shows a list of Virtual-
Box processes on a system Fig. 10.

@ Springer

convert_String_to_Uppercase
eax, [ebp+var_12C]

edx, [ebp+var_138]

eax, offset avboxservice_ex ;
convert_String_to_Uppavboxservice ex db 'vBoxService.exe',0
eax, [ebp+var_138]

"VBoxService.exe"

[=] E winlogon. exe
= [ services.exe
w4 YBoxService.exe
= [F] svchost.exe
[ wmiprvse. exe
[ wmiprvse. exe
= [ svchost.exe
@ wuauclh exe
[ svchost.exe
[ svchost. exe

[ spoolsv.exe
[ svchost.exe

[ Isass.exe

= »j explorer.exe
34 YBoxTray.exe

Fig. 10 VirtualBox processes

VirtualBox can also be detected by checking for the Vbox-
Tray.exe process. However, if the user didn’t install additional
VirtualBox tools, then this is not always present.



Anti-virtual machines and emulations

147

CODE : 204054B@ push e ; uloptions
CODE : 904054B2 push offset aSoftwareMicr_1 ; "Software\\Microsoft\\Windows\)
CODE : ©@04054B7 push 80000002h 3 hKey
CODE : 224054BC call RegOpenKeyExA
CODE : 004054C1 test eax, eax
CODE : 9004954C3 jnz short loc_4@54F7
CODE : 924054C5 mov [esp+11@h+cbData], 1@1h
CODE : 904054CD lea eax, [esp+11@h+cbData]
CODE : 90405401 push eax ; lpcbData
CODE : 924054D2 lea eax, [esp+1l14h+Data]
CODE : 904054D6 push eax ; lpbData
CODE : 90405407 push 4] 3 lpType
CODE : 904054D9 push e ; lpReserved
CODE : 224054DB push offset aProductid ; “Productid”
CODE : 004054E@ mov eax, [esp+124h+hKey]
CODE : 904054E4 push eax ; hKey
CODE : 904954E5 call RegQueryValueExA
CODE : 904054EA lea eax, [esp+l1eh+Data]
CODE : 904054EE cmp eax, offset asc_4es544 ; " 37-8429955-22614"
CODE : 904054F 3 jnz short loc_4@54F7
CODE : 904054F5 mov bl, 1
CODE : 904054F7
CODE : 904054F7 loc_4054F7: ; CODE XREF: Anti_Anubis sandox+1F1j
Fig. 11 Anubis detection by product ID
CODE : ©040541E push eax ; lpData
CODE : @840541F push e 3 lpType
CODE : 20405421 push e ; lpReserved
CODE : 00405423 push offset aProductid @ ; "Productid”
CODE : 004085428 mov eax, [esp+124h+hKey]
CODE :0840542C push eax 3 hKey
CODE :©040542D call RegQueryValueExA
CODE : 004085432 lea eax, [esp+ll@h+Data]
CODE : 00405436 cmp eax, offset a76487644317703 ; "?648?-644-11??03?-)?510r
CODE :©040543B jnz short loc_4@543F
CODE : 00405430 mov bl, 1

CODE : 0040543F
CODE :@040543F loc_4@543F:
CODE : 0040543F

Fig. 12 CWSandbox detection

15 Anti-Anubis SandBox

Anubis is an online malware analysis sandbox. It is use-
ful when one wants to quickly check a file’s behavior.
Although this is not a standalone application, accessible
directly by the customers, malware writers have managed
to get some of Anubis’s environmental settings, such as the
product ID.

It is known that Anubis uses the following key as its prod-
uct ID: 76487-337-8429955-22614.

Figure 11 illustrates how malware checks for Anubis.

By checking for the presence of this particular value in
the registry, malware is able to detect whether it is running
in an Anubis sandbox.

; CODE XREF: Anti_cwSandBox+1FTj
; Anti_cwsandBox+arFtj

16 Anti-GFI CWSandbox

CWSandbox is accurately described by its owner as an auto-
mated malware analysis tool. Itis an advanced tool that offers
lots of interesting features. Malware writers discovered that
this tool uses a constant product ID, so they use it as a way
to detect its presence. The figure illustrates a CWSandbox
detection Fig. 12.

The same technique used to detect Anubis is applied to
the detection of CWSandbox. The malware reads the regis-
try and tries to locate the following product ID associated
with CWSandbox: 76487-644-3177037-23510. If this value
is present then the malware knows that this it is being ana-
lyzed under a virtual environment.

@ Springer



148 A. Issa
CODE : 90405367 push <] ; lpType
CODE : 90405369 push <] ; lpReserved
CODE : 00405368 push offset valueName ; "ProductId"”
CODE : 900405370 mov eax, [esp+124h+hKey]
CODE : 90405374 push eax ; hkey
CODE : 92405375 call RegQueryValueExA
CODE : 9040537A lea eax, [esp+l116h+Data]
CODE :@040537E cmp eax, offset a55274648267386 ; "55274-640-2 ) 23950
CODE : 90405383 jnz short loc_4@5387
CODE : 90405385 mov bl, 1
CODE : 00405387
CODE:00405387 loc 405387: ; CODE XREF: AntiiloeBoxiSandBoxHFTj

Fig. 13 JoeBox detection

17 Anti-JoeBox Sandbox

Joe Box is yet another sandbox for behavioral analysis. Like
some of the other sandboxes, its product is known and is
used in return to detect it. The figure below shows how it is
detected by a malware sample Fig. 13.

Once again, to detect the presence of the JoeBox sandbox,
the malware scans the registry key for the presence of the fol-
lowing product ID: 55274-640-2673064-23950. If this value
is found then JoeBox is likely running, and the malware stops
its operations.

18 Anti-Debug help library

The debug help library dbghelp.dll is a DLL provided by
Microsoft to support debugging of executable binary files in
Windows. Many tools use this library for debugging. Mali-
cious software can check if this dbghelp.dll library is loaded
in memory in order to detect if they are running under a

CODE:9@0405310

_ODE:00405310 push
CODE:©@0405311 xor
_ODE:004085313 push
_ODE:00405318 call
ZODE:0040531D test
_ODE:0040531F jZ
_ODE:00405321 mov
CODE:00405323
CODE:00405323 loc_405323:
Fig. 14 Dbghelp.dll detection
CODE :904055D2 push
CODE :904055D3 lea
CODE : 904055D6 mov
CODE : 004055DB call
CODE : 904055E0 mov
Fig. 15 Norman sandbox

@ Springer

debugger or similar environment. Figure 14 below shows
how a malware sample is checking for the presence of this
particular DLL.

This code shows how malware can check if dbghelp.dll
is loaded into memory. The interesting part here is that this
same DLL name is used by Olly Debugger for its main DLL.

19 Anti-Norman SandBox

Norman sandbox is one of the oldest professional sandboxes
available. Itis well known by malware authors since the early
ages. However, it seems that recent malware uses the same
old technique to define whether they are run under this sand-
box. The figure below illustrates how the Norman sandbox
is detected Fig. 15.

It is known that the Norman sandbox can be detected by
querying the CurrentUser username in the registry. An old
trick, but still used today.

5> DATA XREF: »"\HTI:DE

.JDLL,.J&N&&;#-E

"dbghelp.dll’

ebx

ebx, ebx H
offset aDbghelp _dll ;
GetModuleHandleA o
eax, eax

short loc 405323

bl; 1

; CODE XREF: Anti_O]

eax
edx, [ebp+var_10]

eax, offset aCurrentuser ; "Currentuser”
convert_String_to_UppercCase

edx, [ebp+var_1@]



Anti-virtual machines and emulations

149

CODE :00405814 Softice_Check_1 proc near

CODE : 00405814 push
CODE : 00405815 xor
CODE: 00405817 push
CODE : 00405819 push
CODE :0040581E push
CODE : 00405820 push
CODE : 00405822 push
CODE : 00405824 push
CODE : 00405829 push
CODE : 0040582E call
CODE: 00405833 cmp
CODE : 00405836 jz
CODE : 00405838 push
CODE : 00405839 call
CODE : 9040583E mov

CODE : 00405840

CODE : 00405840 Softice Not Installed:

CODE : 00405840 mov
CODE : 00405842 pop
CODE : 00405843 retn

CODE:00405843 Softice Check 1 endp

Fig. 16 Softice detection

20 Anti-Softice

Softice is not really a virtual machine or an emulator. It is a
kernel mode debugger that has been around since the DOS
days. It was surprising to find recent malware that has imple-
mented an anti-Softice technique; in fact it is quite excep-
tional. The figure shows how the sample is checking for
Softice Fig. 16.

To detect Softice the malware tries to open the following
file names, which belong to Softice:

\\\\-\\NTICE and \\\\.\\SICE

21 Conclusion

Emulators and virtual machines present some very powerful
tools to safely analyze malicious code, especially in an era
of heavy obfuscation. They are one of the last solutions to
stand when most of the other types of analyzers have failed.
It seems that this fact is taken very seriously by professional

; CODE XREF: Anti_Softic

ebx
ebx, ebx
(% ; hTemplateFile
80h ; dwFlagsAndAttributes
3 ; dwCreationDisposition
(% ; lpSecurityAttributes
3 ; dwShareMode
0Ce0eeeeoh ; dwDesiredAccess
offset FileName ; "\\\\.\\SICE"
CreateFileA ©
eax, OFFFFFFFFh
short Softice Not Installed
eax 3 hobject
CloseHandle
bl i

; CODE XREF: Softice Che
eax, ebx
ebx

malware authors, who are investing a lot of time and energy
to avoid these environments, whether it is for innovating,
reinventing or recycling their own code, or using preexisting
techniques. The recent focus on emulation systems makes
virtualization one of the biggest trends in modern comput-
ing. The need to have an emulator that is maintained over time
to tackle existing and emerging anti-emulation technologies
seems to be slowly becoming a requirement.

References

1. Wikipedia, CPU Emulator http://en.wikipedia.org/wiki/Emulator#
CPU_simulator

2. Wikipedia, Virtual Machine http://en.wikipedia.org/wiki/Virtual _
machine

3. Symantec, Trojan.Zbot http://www.symantec.com/security_res
ponse/writeup.jsp?docid=2010-011016-3514-99

4. Symantec, W32.Spyrat http://www.symantec.com/security_res
ponse/writeup.jsp?docid=2010-011211-1602-99

@ Springer


http://en.wikipedia.org/wiki/Emulator#CPU_simulator
http://en.wikipedia.org/wiki/Emulator#CPU_simulator
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Virtual_machine
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011211-1602-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011211-1602-99

	Anti-virtual machines and emulations
	Abstract
	1 Introduction
	2 Central processing unit (CPU) registers based anti-emulation
	3 Targeting Windows 7 and Vista
	4 Different samples targeting different systems
	5 A more `universal' approach
	6 Stack address range anti-emulation
	7 Dynamic linked library address space checks as anti-emulations
	8 Junk APIs as anti-emulation
	9 From simplicity to complexity: exploiting the CPU based anti-emulation and virtual machines
	10 Statistics on one CPU-based, anti-emulation malware family
	11 Anti-Sandboxes
	12 Anti-Sandboxie
	13 Anti-VMware
	14 Anti-VirtualBox
	15 Anti-Anubis SandBox
	16 Anti-GFI CWSandbox
	17 Anti-JoeBox Sandbox
	18 Anti-Debug help library
	19 Anti-Norman SandBox
	20 Anti-Softice
	21 Conclusion
	References


