
Type Checking Fω

Formal Methods, SSE of USTC

Spring 2015

In this assignment, you’ll implement a type check for Fω, a formal system
with polymorphic types and type operators. Generally speaking, type checking
Fω is not that harder than type checking λω, so we emphasize only the key
difference between these two systems. And the difference parts are marked with
yellow color .

1 The Syntax for Fω

The syntax for Fω is presented in Figure 1, with two new syntactic forms for
terms: type abstraction and type application. And there is a new constructor
for polymorphic types.

Terms t → true | false | if t then t else t | x

| λx : c.t | t t | λα :: K.t | t [c]

Constructors c → Bool | α | c→ c | Λα :: K.c | c c | ∀α :: K.c
Kinds K → ? | K ⇒ K

Figure 1: Syntax for Fω

2 The Declarative Static Semantics for Fω

The static semantics for Fω consists of three components: the typing rule for
terms, the kinding rules for constructors and the equivalence rules for types.

2.1 The Typing Rules

In order to present the typing rules, we first present the definition of the typing
environment Γ and the kinding environment ∆, in Figure 2.

The typing rules make use of the following judgmental form

Γ; ∆ ` t : c,

1

Typing environment Γ → · | x : c,Γ
Kinding environment ∆ → · | α :: K,∆

Figure 2: Typing and kinding environments

and the rules are given in Figure 3. Only the T-Eq rule deserves further expla-
nation. Essentially, this rules specifies that one can interchange a constructor
c2 when another constructor c1 is inferable, as long as these two constructors
are equivalent c1 ≡ c2, the equivalence relation ≡ will be discussed shortly.

So, these typing rules are not syntax-directed and thus can not be used to
direct the type checking.

2.2 The Kinding Rules

The kinding rule specifies the conditions under which a constructor is legal.
These rules take the following judgmental form:

∆ ` c :: K

and consists of the rules in Figure 4.
It’s nice to see that the set of kinding rules are syntax-directed.

2.3 The Definitional Equivalence Rules

The equivalence relation ≡ are defined on any two constructors using this judg-
ment form:

` c1 ≡ c2
and the rules are given in Figure 5.

It’s also worth remarking that these definitional equivalence relation is not
syntax-directed. For instance, when one need to compare two constructors c1
and c2, a feasible way is to use the T-Beta rule to try to reduce any one
constructor, but another way is to use the E-Trans rule, which involves guess
a third constructor c3. For this reason, in the next, we would develop a theory
of algorithmic equivalence checking.

3 The Algorithmic Static Semantics for Fω

The key step in designing an algorithmic static semantics is to make the typing
rules and definitional equivalence rules syntax-directed.

The key idea to make the typing rules syntax-directed is to eliminate the
T-Eq rule and move the constructor equivalence comparision to the necessary
points in other typing rules. In this sense, we are providing equivalence coercion
in typing rules directly. A close look at the typing rules from Figure 3 reveals
that both the T-If rule and the T-App rule need this coercion: for the former,

2

Γ; ∆ ` t : c

Γ; ∆ ` true : Bool
(T-True)

Γ; ∆ ` false : Bool
(T-False)

Γ; ∆ ` t1 : Bool Γ; ∆ ` t2 : c Γ; ∆ ` t3 : c

Γ; ∆ ` if t1 then t2 else t3 : c
(T-If)

x : c ∈ Γ

Γ; ∆ ` x : c
(T-Var)

∆ ` c :: ? Γ, x : c; ∆ ` t : c′

Γ; ∆ ` λx : c.t : c→ c′
(T-Abs)

Γ; ∆ ` t1 : c1 → c2 Γ; ∆ ` t2 : c1

Γ; ∆ ` t1 t2 : c2
(T-App)

Γ; ∆, α :: K ` t : c

Γ; ∆ ` λα :: K.t : ∀α :: K.c
(T-TyAbs)

Γ; ∆ ` t : ∀α :: K.c′ ∆ ` c :: K

Γ; ∆ ` t [c] : [α 7→ c]c′
(T-TyApp)

Γ; ∆ ` t : c1 ` c1 ≡ c2 ∆ ` c2 :: ?

Γ; ∆ ` t : c2
(T-Eq)

Figure 3: Typing rules for Fω

one need to check that the type of t1 is really the constructor Bool, and that
the type of t2 and t3 are really equivalent; and for the latter, one need to check
that the term t1 is really of an arrow type c1 → c2 and that t2’s type is really
equivalent to c1.

3

∆ ` c :: K

∆ ` Bool :: ?
(K-TyBool)

∆ ` c1 :: ? ∆ ` c2 :: ?

∆ ` c1 → c2 :: ?
(K-TyArrow)

∆, α :: K ` c :: ?

∆ ` ∀α :: K.c :: ?
(K-TyForall)

α :: K ∈ ∆

∆ ` α :: K
(K-TyVar)

∆, α :: K1 ` c :: K2

∆ ` Λα :: K.c :: K1 ⇒ K2

(K-TyAbs)

∆ ` c1 :: K1 ⇒ K2 ∆ ` c2 :: K1

∆ ` c1 c2 :: K2

(K-TyApp)

Figure 4: Kinding rules for Fω

With these in mind, we present the algorithmic typing rule via this judg-
mental form:

Γ; ∆ � t : c

and the typing rules in F
We make use of two new judgmental forms:

∆ � c1 ⇓ c2

and
∆ � c1 ⇔ c2 :: K

the former one specifies that the constructor c can reduce to another constructor
c′, and the latter one specifies that the two constructors c and c′ are equivalent
algorithmically at the kind K.

The rules for the former judgmental form is given in Figure 7. The key idea
is that the β- reduction rule is applied repeatedly, until there is no constructor
application exists, unless the application is to a constructor variable α. Another

4

` c1 ≡ c2

` c ≡ c
(E-Refl)

` c1 ≡ c2
` c2 ≡ c1

(E-Symm)

` c1 ≡ c2 c2 ≡ c3
` c1 ≡ c3

(E-Trans)

` c1 ≡ c3 c2 ≡ c4
` c1 → c2 ≡ c3 → c4

(E-Arrow)

` c1 ≡ c2
` ∀α :: K.c1 ≡ ∀α :: K.c2

(E-Forall)

` c1 ≡ c2
` Λα :: K.c1 ≡ Λα :: K.c2

(E-TyAbs)

` c1 ≡ c3 c2 ≡ c4
` c1 c2 ≡ c3 c4

(E-TyApp)

` (Λα :: K.c)c′ ≡ [α 7→ c′]c
(E-Beta)

Figure 5: Definitional Equivalence Rules for Fω

subtle point here is that both the constructors c and c′ are of kind ?, and this
kind is implicit in the reduction rule.

The algorithmic equivalence checking rules are given in Figure 8.
Essentially, these two rules will first push down constructors to a normal form

of kind ? (if they are not, we first perform η-reduction. And then we normalize
these normal forms by the E-Star rule and compare c′1 and C ′

2 structurally.
This gives us the next judgmental form:

∆ � c1 ↔ c2

which will compare two constructors c1 and c2 for structural equivalence. The
rules for this judgmental form are given in Figure 9.

5

Γ; ∆ � t : c

Γ; ∆ � true : Bool
(T-True)

Γ; ∆ � false : Bool
(T-False)

Γ; ∆ ` t1 : c1 Γ � c1 ⇓ Bool Γ; ∆ ` t2 : c2 Γ; ∆ ` t3 : c3
∆ � c2 ⇔ c3 :: ?

Γ; ∆ ` if t1 then t2 else t3 : c2
(T-If)

x : c ∈ Γ

Γ; ∆ � x : c
(T-Var)

∆ � c :: ? Γ, x : c; ∆ � t : c′

Γ; ∆ � λx : c.t : c→ c′
(T-Abs)

Γ; ∆ ` t1 : c1 ∆ � c1 ⇓ c2 → c3 Γ; ∆ � t2 : c4
∆ � c2 ⇔ c4 :: ?

Γ; ∆ ` t1 t2 : c3
(T-App)

Γ; ∆, α :: K � t : c

Γ; ∆ � λα :: K.t : ∀α :: K.c
(T-TyAbs)

Γ; ∆ ` t : c ∆ � c ⇓ ∀α :: K.c′ ∆ � c′′ :: K

Γ; ∆ ` t [c′′] : [α 7→ c′′]c′
(T-TyApp)

Figure 6: Algorithmic Typing rules for Fω

4 The Implementation

Let’s summarize, in Figure 10, all judgmental forms to type checking Fω. Espe-
cially, we list the input, output and an interpretation of all judgmental forms.
Note that in the third and fifth judgments, the kind is always ? and thus are
implicit.

6

∆ � c1 ⇓ c2

∆ � Bool ⇓ Bool
(R-Bool)

∆ � c1 → c2 ⇓ c1 → c2
(R-Arrow)

∆ � ∀α :: K.c ⇓ ∀α :: K.c
(R-Forall)

∆ ` α ⇓ α
(R-TyVar)

∆ � Λα :: K.c ⇓ Λα :: K.c
(R-TyAbs)

∆ � c1 ⇓ (Λα :: K.c) [α 7→ c2]c ⇓ c′

∆ � c1 c2 ⇓ c′
(R-App1)

∆ � c1 ⇓ α
∆ � c1 c2 ⇓ α c2

(R-App2)

Figure 7: Reduction rules for Constructors

∆ � c1 ⇔ c2 :: K

∆ � c1 ⇓ c′1 ∆ � c2 ⇓ c′2 ∆ � c′1 ↔ c′2
∆ � c1 ⇔ c2 :: ?

(E-KStar)

∆, α :: K1 � c1 α⇔ c2 α :: K2

∆ � c1 ⇔ c2 :: K1 ⇒ K2

(E-KArrow)

Figure 8: Algorithmic Equivalence Rules for Constructors

Finally, let remark that the syntactic forms in Figure 9 are of special interest,
they have been evaluated to normal forms of such a shape: all head constructors
have bee exposed, but not the underlying constructors. For instance, take a look
at the S-Arrow rule, the underlying constructor ci for 1 ≤ i ≤ 4 are not normal

7

∆ � c1 ↔ c2

∆ � Bool↔ Bool
(S-Bool)

∆ � c1 ⇔ c3 :: ? ∆ � c2 ⇔ c4 :: ?

∆ � c1 → c2 ↔ c3 → c4
(S-Arrow)

∆ � c1 ⇔ c2 :: ?

∆ � ∀α :: K.c1 ↔ ∀α :: K.c2
(S-Forall)

∆ � α↔ α
(S-TyVar)

∆ � α :: K1 ⇒ ? ∆ � c1 ⇔ c2 :: K1

∆ � α c1 ↔ α c2
(S-TyApp)

Figure 9: Structural Equivalence Rules for Constructors

The judgment Input Output Interpretation
Γ; ∆ � t : c Γ,∆, t c Type checking a term t
∆ � c :: K ∆, c K Kind checking a constructor c
∆ � c1 ⇓ c2 ∆, c1 c2 β-reduce a constructor c1

∆ � c1 ⇔ c2 :: K ∆, c1, c2,K boolean algorithmic equivalence
∆ � c1 ↔ c2 ∆, c1, c2 boolean structural equivalence

Figure 10: All Judgmental Forms

forms can thus can be reduced further. Such kind of normal forms are called
weak head normal forms in the literatures.

8

