
Type Checking λω

Formal Methods, SSE of USTC

Spring 2015

In most programming languages, the task of type checking can often re-
duce to checking the equivalence between types, which is easy to perform for
languages with simple types, just like simply typed λ-calculus. However, for
languages with a non-trivial notion of types and type-level operations, the type
checker should need a much fancier notion of type equivalence, hence, the type
checking process will also involve computation on types to some degree. In this
programming assignment, your task is to build a type checker for such a lan-
guage with nontrivial notion of type equivalence: λω, which has type operators
(type-level functions).

1 The Syntax for λω

The syntax for λω is presented in Figure 1. A term t consists of boolean con-
stants, the test term, the λ abstraction and application. It’s worthing remarking
that, in the λ abstraction, the type of the binding variable x is a constructor c,
which means that one should check c to ensure its well-formedness.

Terms t → true | false | if t then t else t | x | λx : c.t | t t
Constructors c → Bool | α | c → c | Λα :: K.c | c c
Kinds K → ⋆ | K ⇒ K

Figure 1: Syntax for λω

2 The Declarative Static Semantics for λω

The static semantics for λω consists of three components: the typing rule for
terms, the kinding rules for constructors and the equivalence rules for types.

2.1 The Typing Rules

In order to present the typing rules, we first present the definition of the typing
environment Γ and the kinding environment ∆, in Figure 2.

1

Typing environment Γ → · | x : c,Γ
Kinding environment ∆ → · | α :: K,∆

Figure 2: Typing and kinding environments

The typing rules make use of the following judgmental form

Γ;∆ ⊢ t : c,

and the rules are given in Figure 3. Only the T-Eq rule deserves further expla-
nation. Essentially, this rules specifies that one can interchange a constructor
c2 when another constructor c1 is inferable, as long as these two constructors
are equivalent c1 ≡ c2, the equivalence relation ≡ will be discussed shortly.

So, these typing rules are not syntax-directed and thus can not be used to
direct the type checking.

Γ;∆ ⊢ t : c

Γ;∆ ⊢ true : Bool
(T-True)

Γ;∆ ⊢ false : Bool
(T-False)

Γ;∆ ⊢ t1 : Bool Γ;∆ ⊢ t2 : c Γ;∆ ⊢ t3 : c

Γ;∆ ⊢ if t1 then t2 else t3 : c
(T-If)

x : c ∈ Γ

Γ;∆ ⊢ x : c
(T-Var)

∆ ⊢ c :: ⋆ Γ, x : c;∆ ⊢ t : c′

Γ;∆ ⊢ λx : c.t : c → c′
(T-Abs)

Γ;∆ ⊢ t1 : c1 → c2 Γ;∆ ⊢ t2 : c1

Γ;∆ ⊢ t1 t2 : c2
(T-App)

Γ;∆ ⊢ t : c1 ⊢ c1 ≡ c2 ∆ ⊢ c2 :: ⋆

Γ;∆ ⊢ t : c2
(T-Eq)

Figure 3: Typing rules for λω

2

2.2 The Kinding Rules

The kinding rule specifies the conditions under which a constructor is legal.
These rules take the following judgmental form:

∆ ⊢ c :: K

and consists of the rules in Figure 4.

∆ ⊢ c :: K

∆ ⊢ Bool :: ⋆
(K-TyBool)

∆ ⊢ c1 :: ⋆ ∆ ⊢ c2 :: ⋆

∆ ⊢ c1 → c2 :: ⋆
(K-TyArrow)

α :: K ∈ ∆

∆ ⊢ α :: K
(K-TyVar)

∆, α :: K1 ⊢ c :: K2

∆ ⊢ Λα :: K.c :: K1 ⇒ K2

(K-TyAbs)

∆ ⊢ c1 :: K1 ⇒ K2 ∆ ⊢ c2 :: K1

∆ ⊢ c1 c2 :: K2

(K-TyApp)

Figure 4: Kinding rules for λω

It’s nice to see that the set of kinding rules are syntax-directed.

2.3 The Definitional Equivalence Rules

The equivalence relation ≡ are defined on any two constructors using this judg-
ment form:

⊢ c1 ≡ c2

and the rules are given in Figure 5.
It’s also worth remarking that these definitional equivalence relation is not

syntax-directed. For instance, when one need to compare two constructors c1
and c2, a feasible way is to use the T-Beta rule to try to reduce any one
constructor, but another way is to use the E-Trans rule, which involves guess
a third constructor c3. For this reason, in the next, we would develop a theory
of algorithmic equivalence checking.

3

⊢ c1 ≡ c2

⊢ c ≡ c
(E-Refl)

⊢ c1 ≡ c2

⊢ c2 ≡ c1
(E-Symm)

⊢ c1 ≡ c2 c2 ≡ c3

⊢ c1 ≡ c3
(E-Trans)

⊢ c1 ≡ c3 c2 ≡ c4

⊢ c1 → c2 ≡ c3 → c4
(E-Arrow)

⊢ c1 ≡ c2

⊢ Λα :: K.c1 ≡ Λα :: K.c2
(E-TyAbs)

⊢ c1 ≡ c3 c2 ≡ c4

⊢ c1 c2 ≡ c3 c4
(E-TyApp)

⊢ (Λα :: K.c)c′ ≡ [α 7→ c′]c
(E-Beta)

Figure 5: Definitional Equivalence Rules for λω

3 The Algorithmic Static Semantics for λω

The key step in designing an algorithmic static semantics is to make the typing
rules and definitional equivalence rules syntax-directed.

The key idea to make the typing rules syntax-directed is to eliminate the
T-Eq rule and move the constructor equivalence comparision to the necessary
points in other typing rules. In this sense, we are providing equivalence coercion
in typing rules directly. A close look at the typing rules from Figure 3 reveals
that both the T-If rule and the T-App rule need this coercion: for the former,
one need to check that the type of t1 is really the constructor Bool, and that
the type of t2 and t3 are really equivalent; and for the latter, one need to check
that the term t1 is really of an arrow type c1 → c2 and that t2’s type is really
equivalent to c1.

With these in mind, we present the algorithmic typing rule via this judg-
mental form:

Γ;∆� t : c

and the typing rules in F

4

Γ;∆� t : c

Γ;∆� true : Bool
(T-True)

Γ;∆� false : Bool
(T-False)

Γ;∆ ⊢ t1 : c1 Γ� c1 ⇓ Bool Γ;∆ ⊢ t2 : c2 Γ;∆ ⊢ t3 : c3
∆� c2 ⇔ c3 :: ⋆

Γ;∆ ⊢ if t1 then t2 else t3 : c2
(T-If)

x : c ∈ Γ

Γ;∆� x : c
(T-Var)

∆� c :: ⋆ Γ, x : c;∆� t : c′

Γ;∆� λx : c.t : c → c′
(T-Abs)

Γ;∆ ⊢ t1 : c1 ∆� c1 ⇓ c2 → c3 Γ;∆� t2 : c4
∆� c2 ⇔ c4 :: ⋆

Γ;∆ ⊢ t1 t2 : c3
(T-App)

Figure 6: Algorithmic Typing rules for λω

We make use of two new judgmental forms:

∆� c1 ⇓ c2

and
∆� c1 ⇔ c2 :: K

the former one specifies that the constructor c can reduce to another constructor
c′, and the latter one specifies that the two constructors c and c′ are equivalent
algorithmically at the kind K.

The rules for the former judgmental form is given in Figure 7. The key idea
is that the β- reduction rule is applied repeatedly, until there is no constructor
application exists, unless the application is to a constructor variable α. Another
subtle point here is that both the constructors c and c′ are of kind ⋆, and this
kind is implicit in the reduction rule.

The algorithmic equivalence checking rules are given in Figure 8.
Essentially, these two rules will first push down constructors to a normal form

of kind ⋆ (if they are not, we first perform η-reduction. And then we normalize
these normal forms by the E-Star rule and compare c′1 and C ′

2 structurally.
This gives us the next judgmental form:

∆� c1 ↔ c2

5

∆� c1 ⇓ c2

∆� Bool ⇓ Bool
(R-Bool)

∆� c1 → c2 ⇓ c1 → c2
(R-Arrow)

∆ ⊢ α ⇓ α
(R-TyVar)

∆� Λα :: K.c ⇓ Λα :: K.c
(R-TyAbs)

∆� c1 ⇓ (Λα :: K.c) [α 7→ c2]c ⇓ c′

∆� c1 c2 ⇓ c′
(R-App1)

∆� c1 ⇓ α

∆� c1 c2 ⇓ α c2
(R-App2)

Figure 7: Reduction rules for Constructors

∆� c1 ⇔ c2 :: K

∆� c1 ⇓ c′1 ∆� c2 ⇓ c′2 ∆� c′1 ↔ c′2
∆� c1 ⇔ c2 :: ⋆

(E-KStar)

∆, α :: K1 � c1 α ⇔ c2 α :: K2

∆� c1 ⇔ c2 :: K1 ⇒ K2

(E-KArrow)

Figure 8: Algorithmic Equivalence Rules for Constructors

which will compare two constructors c1 and c2 for structural equivalence. The
rules for this judgmental form are given in Figure 9.

4 The Implementation

Let’s summarize, in Figure 10, all judgmental forms to type checking λω. Espe-
cially, we list the input, output and an interpretation of all judgmental forms.
Note that in the third and fifth judgments, the kind is always ⋆ and thus are
implicit.

Finally, let remark that the syntactic forms in Figure 9 are of special interest,

6

∆� c1 ↔ c2

∆� Bool ↔ Bool
(S-Bool)

∆� c1 ⇔ c3 :: ⋆ ∆� c2 ⇔ c4 :: ⋆

∆� c1 → c2 ↔ c3 → c4
(S-Arrow)

∆� α ↔ α
(S-TyVar)

∆� α :: K1 ⇒ ⋆ ∆� c1 ⇔ c2 :: K1

∆� α c1 ↔ α c2
(S-TyApp)

Figure 9: Structural Equivalence Rules for Constructors

The judgment Input Output Interpretation
Γ;∆� t : c Γ,∆, t c Type checking a term t
∆� c :: K ∆, c K Kind checking a constructor c
∆� c1 ⇓ c2 ∆, c1 c2 β-reduce a constructor c1

∆� c1 ⇔ c2 :: K ∆, c1, c2,K boolean algorithmic equivalence
∆� c1 ↔ c2 ∆, c1, c2 boolean structural equivalence

Figure 10: All Judgmental Forms

they have been evaluated to normal forms of such a shape: all head constructors
have bee exposed, but not the underlying constructors. For instance, take a look
at the S-Arrow rule, the underlying constructor ci for 1 ≤ i ≤ 4 are not normal
forms can thus can be reduced further. Such kind of normal forms are called
weak head normal forms in the literatures.

7

