
3.1 Introduction

In the previous chapter we studied CDCL-based procedures for deciding
propositional formulas. Suppose, now, that instead of propositional variables
we have other predicates, such as equalities and disequalities over the reals,
e.g.,

(x1 = x2∨x1 = x3)∧(x1 = x2∨x1 = x4)∧x1 6= x2∧x1 6= x3∧x1 6= x4 . (3.1)

Or, perhaps we would like to decide a Boolean combination of linear-
arithmetic predicates:

((x1 + 2x3 < 5) ∨ ¬(x3 ≤ 1) ∧ (x1 ≥ 3)) , (3.2)

or a formula over arrays:

(i = j ∧ a[j] = 1) ∧ ¬(a[i] = 1) . (3.3)

Equalities, linear predicates, arrays... is there a general framework to define
them? Of course there is, and it is called first-order logic. Each of the above
examples is a formula in some quantifier-free fragment of a first-order theory .
Let us recall some basic terminology that was introduced already in Sect. 1.4.
Generally such formulas can use propositional connectives and a set Σ of
additional function and predicate symbols that uniquely define the theory T—
indeed Σ is called the signature of T .1 A decision procedure for T can decide
the validity of T -formulas. Accordingly such formulas can be characterized as
being T -valid, T -satisfiable (also called T -consistent), etc. We refer the reader
to Sect. 1.4 for a more elaborate discussion of these matters.

1 In this book we only consider signatures with commonly used symbols (e.g., “+”,
“*”, “<”) and assume that they are interpreted in the standard way (e.g., the
“+” symbol corresponds to addition). Hence, the interpretation of the symbols
in Σ is fixed.

3

From Propositional to Quantifier-Free Theories

© Springer-Verlag Berlin Heidelberg 2016
D. Kroening and O. Strichman, Decision Procedures,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-662-50497-0_3

59

60 3 From Propositional to Quantifier-Free Theories

In this chapter we study a general method—a framework, really—that
generalizes CDCL to a decision procedure for decidable quantifier-free first-
order theories, such as those above.2 The method is commonly referred to as
DPLL(T), emphasizing that it is parameterized by a theory T . The fact that
it is called DPLL(T) and not CDCL(T) is attributed to historical reasons
only: it is based on modern CDCL solvers (see Sect. 2.4 for a discussion on
the differences). It is implemented in most Satisfiability Modulo Theories
(SMT) solvers. In the case of (3.1), for example, T is simply the theory of
equality (see Chap. 4). DPLL(T) is based on an interplay between a SAT
solver and a decision procedure DPT for the conjunctive fragment of T , i.e.,

�� ��DPT

formulas which are a conjunction of T -literals.
The following example demonstrates the existence of a decision procedure

DPT for the case of a conjunction of equalities:

Example 3.1. In the case where T is the theory of equality, a simple proce-
dure DPT is easy to design. The T -literals are either equalities or inequality
predicates over some set of variables V . Given a conjunction of T -literals ϕ,
build an undirected graph G(N,E=, E 6=) where the nodes N correspond to
the variables V , and there are two kinds of edges, E= and E 6=, corresponding
respectively to the equality and inequality predicates in ϕ. This is called an
equality graph. It is not hard to see that the formula ϕ is unsatisfiable if and
only if there exists an edge (v1, v2) ∈ E 6= such that v2 is reachable from v1
through a sequence of E= edges. The equality graph in Fig. 3.1, for exam-
ple, corresponds to x1 6= x2 ∧ x2 = x3 ∧ x1 = x3. This procedure can be
implemented with |E 6=| depth-first search (DFS) calls over G, and is hence
polynomial in the size of the input formula. More efficient procedures exist,
and will be discussed in Chap. 4.

x3x1 x2

Fig. 3.1. An equality graph corresponding to x1 6= x2 ∧ x2 = x3 ∧ x1 = x3

To reason about formulas with arbitrary propositional structure rather
than just conjunctions, we can simply perform case-splitting (see Sect. 1.3),
and decide each case with DPT . If any of the cases is satisfiable, then so is
the original formula. For example, there are four cases to consider in order to
decide (3.1):

2 Extending the framework for solving quantified formulas (which is not necessarily
decidable) will be discussed later on in the book, namely in Sect. 9.5.

3.2 An Overview of DPLL(T) 61

(x1 = x2 ∧ x1 = x2 ∧ x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4) ,
(x1 = x2 ∧ x1 = x4 ∧ x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4) ,
(x1 = x3 ∧ x1 = x2 ∧ x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4) ,
(x1 = x3 ∧ x1 = x4 ∧ x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4) ,

(3.4)

all of which are unsatisfiable. Hence, we can conclude that (3.1) is unsatisfi-
able.

The primary problem with this approach is the fact that the number of
cases is in general exponential in the size of the original formula—think how
many cases we would have if the original formula had n clauses—and indeed,
when attempting to solve formulas that have a nontrivial propositional struc-
ture with this method, the number of cases is typically a major bottleneck (see
Example 1.18). Furthermore, this method misses any opportunity for learning,
as each case is solved independently. In the example above, the contradiction
x1 = x2 ∧ x1 6= x2 appears in two separate cases, but we still have to infer
inconsistency for each one of them separately.

A better approach is to leverage the learning capabilities of SAT (see p. 35)
and other means of efficiency, and combine it with DPT in order to solve such
formulas. The two main engines in this framework work in tight collaboration:
the SAT solver chooses those literals that need to be satisfied in order to satisfy
the Boolean structure of the formula, and DPT checks whether this choice is
T -satisfiable.

The advantage of this approach is that any reasoning about the proposi-
tional part of ϕ is performed by the propositional SAT solver; any explicit case
splitting of disjunctions in ϕ is avoided. This has strong practical advantages,
as the resulting algorithms are both very modular and very efficient.

We will now present in detail how this combination can be implemented,
while continuing to use the theory of equality as an example.

3.2 An Overview of DPLL(T)

Recall that every theory T is defined with respect to a signature Σ, which is
the set of allowed symbols. In the case of the theory of equality, for example,
Σ = {‘=’}. When we write Σ-literals (or, similarly, Σ-atoms and Σ-formulas),
it means that the literal only uses symbols from Σ.

Let at(ϕ) denote the set of Σ-atoms in a given NNF formula ϕ. Assuming
�� ��at(ϕ)

some predefined order on the atoms, we denote the i-th distinct atom in ϕ by
at i(ϕ).

�� ��at i(ϕ)
Given atom a, we associate with it a unique Boolean variable e(a), which �� ��e(a)we call the Boolean encoder of this atom. Extending this idea to formulas,

given a Σ-formula t, e(t) denotes the Boolean formula resulting from substi- �� ��e(t)tuting each Σ-atom in t with its Boolean encoder.
For example, if x = y is a Σ-atom, then e(x = y), a Boolean variable,

denotes its encoder. And if

62 3 From Propositional to Quantifier-Free Theories

ϕ := x = y ∨ x = z (3.5)

is a Σ-formula, then

e(ϕ) := e(x = y) ∨ e(x = z) . (3.6)

For a Σ-formula ϕ, the resulting Boolean formula e(ϕ) is called the propo-
sitional skeleton of ϕ.

Using this notation, we can now begin to give an overview of the method
studied in this chapter, while following a simple example. Some of the notation
that we shall use in this example will be defined more formally later on.

As before we will use the theory of equality for the example. Let

ϕ := x = y ∧ ((y = z ∧ ¬(x = z)) ∨ x = z) . (3.7)

The propositional skeleton of ϕ is

e(ϕ) := e(x = y) ∧ ((e(y = z) ∧ ¬e(x = z)) ∨ e(x = z)) . (3.8)

Let B be a Boolean formula, initially set to e(ϕ), i.e.,

B := e(ϕ) . (3.9)

As the next step, we pass B to a SAT solver. Assume that the formula is
satisfiable and that the SAT solver returns the satisfying assignment

α := {e(x = y) 7→ true, e(y = z) 7→ true, e(x = z) 7→ false} .

The decision procedure DPT now has to decide whether the conjunction of
the literals corresponding to this assignment is satisfiable. We denote this
conjunction by T̂ h(α) (the “Th” is intended to remind the reader that the
result of this function is a Theory, and the “hat” that it is a conjunction of
symbols). For the assignment above,

T̂ h(α) := x = y ∧ y = z ∧ ¬(x = z) . (3.10)

This formula is not satisfiable, which means that the negation of this formula
is a tautology. Thus B is conjoined with e(¬T̂ h(α)), the Boolean encoding of
this tautology:

e(¬T̂ h(α)) := (¬e(x = y) ∨ ¬e(y = z) ∨ e(x = z)) . (3.11)

This clause contradicts the current assignment, and hence blocks it from being
repeated. Such clauses are called blocking clauses. In general, we denote by
t the formula—also called the lemma—returned by DPT . In this example,
t := ¬T̂ h(α), that is, the lemma is the negation of the full assignment α and
hence it is a clause, but generally t can be multiple clauses, depending on the
implementation of DPT .

3.2 An Overview of DPLL(T) 63

After the blocking clause has been added, the SAT solver is invoked again
and suggests another assignment, for example,

α′ := {e(x = y) 7→ true, e(y = z) 7→ true, e(x = z) 7→ true} .

The corresponding Σ-formula

T̂ h(α′) := x = y ∧ y = z ∧ x = z (3.12)

is satisfiable, which proves that ϕ, the original formula, is satisfiable. Indeed,
any assignment that satisfies T̂ h(α′) also satisfies ϕ.

Figure 3.2 illustrates the information flow between the two components of
the decision procedure.

for a conjunction of Σ-literals
t

DPT – a decision procedure
T̂ h(α)

Propositional

SAT solver

α

e(t)

Fig. 3.2. The information exchanged between the SAT solver and a decision pro-
cedure DPT for a conjunction of Σ-literals

There are many improvements to this basic procedure, some of which
we shall cover later in this chapter, and some of which are left as exercises
in Sect. 3.5. One such improvement, for example, is to invoke the decision
procedure DPT after some or all partial assignments, rather than waiting for
a full assignment. A contradicting partial assignment leads to a more powerful
lemma t, as it blocks all assignments that extend it. Further, when the partial
assignment is not contradictory, it can be used to derive implications that are
propagated back to the SAT solver. Continuing the example above, consider
the partial assignment

α := {e(x = y) 7→ true, e(y = z) 7→ true} , (3.13)

and the corresponding formula that is transferred to DPT ,

T̂ h(α) := x = y ∧ y = z . (3.14)

This leads DPT to conclude that x = z is implied, and hence accordingly to
inform the SAT solver that e(x = z) 7→ true is implied by the current partial
assignment α. Thus, in addition to the normal Boolean constraint propagation
(BCP) performed by the SAT solver, there is now also theory propagation.
Such propagation may lead to further BCP, which means that this process
may iterate several times before the next decision is made by the SAT solver.

In the next few sections, we describe variations of the process demonstrated
above.

64 3 From Propositional to Quantifier-Free Theories

3.3 Formalization

For a given encoding e(ϕ), we denote by α an assignment, either full or partial,
�� ��α

to the encoders in e(ϕ). Then for an encoder e(at i) that is assigned a truth
value by α, we define the corresponding literal, denoted Th(at i, α), as follows:

Th(at i, α)
.
=

{
at i α(at i) = true
¬at i α(at i) = false .

(3.15)

Somewhat overloading the notation, we write Th(α) to denote the set of lit-
�� ��Th(α)

erals such that their encoders are assigned by α:

Th(α)
.
= {Th(at i, α) | e(at i) is assigned by α} . (3.16)

We denote by T̂ h(α) the conjunction of the elements of the set Th(α).

�� ��T̂ h(α)

Example 3.2. To demonstrate the use of the above notation, let

at1 = (x = y), at2 = (y = z), at3 = (z = w) , (3.17)

and let α be a partial assignment such that

α := {e(at1) 7→ false, e(at2) 7→ true} . (3.18)

Then
Th(at1, α) := ¬(x = y), Th(at2, α) := (y = z) , (3.19)

and
Th(α) := {¬(x = y), (y = z)} . (3.20)

Conjoining these terms gives us

T̂ h(α) := ¬(x = y) ∧ (y = z) . (3.21)

Recall that DPT is a decision procedure for a conjunction of T -literals,
where T is a theory defined over the symbols in Σ. Let Deduction be a
procedure based on DPT , which receives a conjunction of T -literals as in-
put, decides whether it is satisfiable, and, if the answer is negative, returns
constraints over these literals, as explained below. On the basis of such a pro-
cedure, we now examine variations of the method that is demonstrated in the
introduction to this chapter.

Algorithm 3.3.1 (Lazy-Basic) decides whether a given T -formula ϕ is
satisfiable. It does so by iteratively solving a propositional formula B, starting

�� ��B
from B = e(ϕ), and gradually strengthening it with encodings of constraints
that are computed by Deduction.

In each iteration, SAT-Solver returns a tuple 〈assignment, result〉 in
line 4. If B is unsatisfiable, then so is ϕ: Lazy-Basic returns “Unsatisfiable”

3.3 Formalization 65

in line 5. Otherwise, in line 7 Deduction checks whether T̂ h(α) is satisfiable.
It returns a tuple of the form 〈constraint, result〉 where the constraint is a
clause over Σ-literals, and the result is one of {“Satisfiable”, “Unsatisfiable”}.
If it is “Satisfiable”, Lazy-Basic returns “Satisfiable” in line 8 (recall that
α is a full assignment). Otherwise, the formula t returned by Deduction

�� ��t
(typically one or more clauses) corresponds to a lemma about ϕ. In line 9,
Lazy-Basic continues by conjoining the e(t) with B and reiterating.

�

�

�

�

Algorithm 3.3.1: Lazy-Basic

Input: A formula ϕ
Output: “Satisfiable” if ϕ is satisfiable, and “Unsatisfiable” oth-

erwise

1. function Lazy-Basic(ϕ)
2. B := e(ϕ);
3. while (true) do
4. 〈α, res〉 := SAT-Solver(B);
5. if res =“Unsatisfiable” then return “Unsatisfiable”;
6. else
7. 〈t, res〉 := Deduction(T̂ h(α));
8. if res =“Satisfiable” then return “Satisfiable”;
9. B := B ∧ e(t);

Consider the following three requirements on the formula t that is returned
by Deduction:

1. The formula t is T -valid, i.e., t is a tautology in T . For example, if T is
the theory of equality, then x = y ∧ y = z =⇒ x = z is T -valid.

2. The atoms in t are restricted to those appearing in ϕ.
3. The encoding of t contradicts α, i.e., e(t) is a blocking clause.

The first requirement is sufficient for guaranteeing soundness. The second and
third requirements are sufficient for guaranteeing termination. Specifically, the
third requirement guarantees that α is not repeated.

Two of the three requirements above can be weakened, however:

• Requirement 1: t can be any formula that is implied by ϕ, and not just
a T -valid formula. However, finding formulas that on the one hand are
implied by ϕ and on the other hand fulfill the other two requirements may
be as hard as deciding ϕ itself, which misses the point. In practice, the
amount of effort dedicated to computing t needs to be tuned separately
for each theory and decision procedure, in order to maximize the overall
performance.

66 3 From Propositional to Quantifier-Free Theories

• Requirement 2: t may refer to atoms that do not appear in ϕ, as long as
the number of such new atoms is finite. For example, in equality logic,
we may allow t to refer to all atoms of the form xi = xj where xi, xj are
variables in var(ϕ), even if only some of these equality predicates appear
in ϕ.

Integration into CDCL

Let Bi be the formula B in the i-th iteration of the loop in Algorithm 3.3.1.
�� ��Bi

The constraint Bi+1 is strictly stronger than Bi for all i ≥ 1, because blocking
clauses are added but not removed between iterations. It is not hard to see
that this implies that any conflict clause that is learned while solving Bi can
be reused when solving Bj for i < j. This, in fact, is a special case of in-
cremental satisfiability, which is supported by most modern SAT solvers.3

Hence, invoking an incremental SAT solver in line 4 can increase the efficiency
of the algorithm.

A better option is to integrate Deduction into the CDCL-SAT al-
gorithm, as shown in Algorithm 3.3.2. This algorithm uses a procedure
AddClauses, which adds new clauses to the current set of clauses at run
time. We leave the question of why this is a better option than using an incre-
mental SAT solver to the reader (see Problem 3.1). We note that α, which is
referred to in line 9, is the current assignment to the propositional variables.

3.4 Theory Propagation and the DPLL(T) Framework

3.4.1 Propagating Theory Implications

Algorithm 3.3.2 can be optimized further. Consider, for example, a formula ϕ
that contains an integer variable x1 and, among others, the literals x1 ≥ 10
and x1 < 0.

Assume that the Decide procedure assigns e(x1 ≥ 10) 7→ true and
e(x1 < 0) 7→ true. Inevitably, any call to Deduction results in a contradic-
tion between these two facts, independently of any other decisions that are
made. However, Algorithm 3.3.2 does not call Deduction until a full satisfy-
ing assignment is found. Thus, the time taken to complete the assignment is
wasted. Moreover, as was mentioned in the introduction to this chapter, the
refutation of this full assignment may be due to other reasons (i.e., a proof
that a different subset of the assignment is contradictory), and, hence, addi-
tional assignments that include the same wrong assignment to e(x1 ≥ 10) and
e(x1 < 0) are not ruled out.

3 Incremental satisfiability was described in Sect. 2.2.7. It is concerned with the
more general case in which clauses can also be removed. The question in that
case is which conflict clauses can be reused safely. See also Problem 2.16.

3.4 Theory Propagation and the DPLL(T) Framework 67

�

�

�

�

Algorithm 3.3.2: Lazy-CDCL

Input: A formula ϕ
Output: “Satisfiable” if the formula is satisfiable, and “Unsatisfiable”

otherwise

1. function Lazy-CDCL
2. AddClauses(cnf (e(ϕ)));
3. while (true) do
4. while (BCP() = “conflict”) do
5. backtrack-level := Analyze-Conflict();
6. if backtrack-level < 0 then return “Unsatisfiable”;
7. else BackTrack(backtrack-level);
8. if ¬Decide() then . Full assignment
9. 〈t, res〉:=Deduction(T̂ h(α)); . α is the assignment

10. if res=“Satisfiable” then return “Satisfiable”;
11. AddClauses(e(t));

Algorithm 3.3.2 can therefore be improved by running Deduction even
before a full assignment to the encoders is available. This early call to
Deduction can serve two purposes:

1. Contradictory partial assignments are ruled out early.
2. Implications of literals that are still unassigned can be communicated back

to the SAT solver, as demonstrated in Sect. 3.2. Continuing our example,
once e(x1 ≥ 10) has been assigned true, we can infer that e(x1 < 0) must
be false and avoid the conflict altogether.

This brings us to the next version of the algorithm, called DPLL(T), which
was first introduced in an abstract form by Tinelli [274]. As in Algorithms 3.3.1
and 3.3.2, the components of the algorithm are those of CDCL and a decision
procedure for a conjunctive fragment of a theory T . The name DPLL(T) (as
mentioned above, it can also be called CDCL(T)) emphasizes that this is a
framework that can be instantiated with different theories and corresponding
decision procedures.

In the version of DPLL(T) presented in Algorithm 3.4.1 (see also Fig. 3.3),
Deduction is invoked in line 9 after no further implications can be made by
BCP. It then finds T -implied literals and communicates them to the CDCL
part of the solver in the form of a constraint t.4 Hence, in addition to im-
plications in the Boolean domain, there are now also implications due to the

4 Deduction also returns the result res (whether T̂ h(α) is satisfiable), but res is
not used. We have kept it in the pseudocode in order for the algorithm to stay
similar to the previous algorithms.

68 3 From Propositional to Quantifier-Free Theories

Analyze-
Conflict UNSAT

Deduction AddClauses

α

t e(t)

Decide SAT

propagation
Theory

BackTrack

T̂ h(α)

bl ≥ 0

bl < 0

all assigned

/ conflict

N
o

th
in

g
to

p
ro

pa
ga

te
,

n
o

co
n

fl
ic

t

α

α

BCP
conflict

Fig. 3.3. The main components of DPLL(T). Theory propagation is implemented
in Deduction

theory T . Accordingly, this technique is known by the name theory propa-
gation.

What are the requirements on these new clauses? As before, they have to
be implied by ϕ and are restricted to a finite set of atoms—typically to ϕ’s
atoms. It is desirable that, when T̂ h(α) is unsatisfiable, e(t) blocks α; it is not
mandatory, because whether it blocks α or not does not affect correctness—
Deduction only needs to be complete when α is a full assignment. Certain
SMT solvers exploit this fact to perform cheap checks on partial assignments,
e.g., bound the time dedicated to them. What if T̂ h(α) is satisfiable? Then
we require t to fulfill one of the following two conditions in order to guarantee
termination:

1. The clause e(t) is an asserting clause under α (asserting clauses are defined
in Sect. 2.2.3). This implies that the addition of e(t) to B and a call to
BCP leads to an assignment to the encoder of some literal.

2. When Deduction cannot find an asserting clause t as defined above, t
and e(t) are equivalent to true.

The second case occurs, for example, when all the Boolean variables are al-
ready assigned, and thus the formula is found to be satisfiable. In this case,
the condition in line 11 is met and the procedure continues from line 13, where
Decide is called again. Since all variables are already assigned, the procedure
returns “Satisfiable”.

Example 3.3. Consider once again the example of the two encoders e(x1 ≥
10) and e(x1 < 0). After the first of these has been set to true, the procedure

3.4 Theory Propagation and the DPLL(T) Framework 69

Deduction detects that ¬(x1 < 0) is implied, or, in other words, that

t := ¬(x1 ≥ 10) ∨ ¬(x1 < 0) (3.22)

is T -valid. The corresponding encoded (asserting) clause

e(t) := (¬e(x1 ≥ 10) ∨ ¬e(x1 < 0)) (3.23)

is added to B, which leads to an immediate implication of ¬e(x1 < 0), and
possibly further implications.

�

�

�

�

Algorithm 3.4.1: DPLL(T)

Input: A formula ϕ
Output: “Satisfiable” if the formula is satisfiable, and “Unsatis-

fiable” otherwise

1. function DPLL(T)
2. AddClauses(cnf (e(ϕ)));
3. while (true) do
4. repeat
5. while (BCP() = “conflict”) do
6. backtrack-level := Analyze-Conflict();
7. if backtrack-level < 0 then return “Unsatisfiable”;
8. else BackTrack(backtrack-level);

9. 〈t, res〉:=Deduction(T̂ h(α));
10. AddClauses(e(t));
11. until t ≡ true;
12. if α is a full assignment then return “Satisfiable”;
13. Decide();

3.4.2 Performance, Performance...

Recall that, when α is partial, Deduction checks if there is a contradiction
on the theory side, and if not, it performs theory propagation.

For performance, it is frequently better to run an approximation in this
step for finding contradictions. Indeed, as long as α is partial, there is no need
for a complete procedure for deciding satisfiability. This is not changing the
completeness of the overall algorithm, since a complete check is performed
when α is full. A good example of this is what competitive solvers do when
the theory is integer linear arithmetic (to be covered in Sect. 5.3). Deciding
the conjunctive fragment of this theory is NP-complete, and therefore they
only consider the real relaxation of the problem (this means that they refer

70 3 From Propositional to Quantifier-Free Theories

to the variables as being in R rather than in Z—reals instead of integers),
which can be solved in polynomial time. This means that Deduction will
occasionally miss a contradiction and hence not return a blocking clause.

Another performance consideration is related to theory propagation. It is
important to note that theory propagation is required not for correctness,
but only for efficiency. Hence, the amount of effort invested in computing
new implications needs to be well tuned in order to achieve the best overall
performance.

The term exhaustive theory propagation refers to a procedure that
finds and propagates all literals that are implied in T by T̂ h(α). A simple,
generic way (called “plunging”) to perform theory propagation is the follow-

ing: Given an unassigned theory atom at i, check whether T̂ h(α) implies either
at i or ¬at i. The set of unassigned atoms that are checked in this way depends
on how exhaustive we want the theory propagation to be.

Example 3.4. Consider equality logic, and the notation we used in Exam-
ple 3.1. A simple way to perform exhaustive theory propagation in equality
logic is the following: For each unassigned atom of the form xi = xj , check if
the current partial assignment forms a path in E= between xi and xj . If yes,
then this atom is implied by the literals in the path. If the partial assignment
forms a disequality path (a path in which exactly one edge is from E 6=), the
negation of this atom is implied.

This generic method is typically not the most efficient, however. In many
cases a better strategy is to perform only simple, inexpensive propagations,
while ignoring more expensive ones. In the case of linear arithmetic, for exam-
ple, experiments have shown that exhaustive theory propagation has a neg-
ative effect on overall performance. It is more efficient in this case to search
for simple-to-find implications, such as “if x > c holds, where x is a variable
and c a constant, then any literal of the form x > d is implied if d < c”.

3.4.3 Returning Implied Assignments Instead of Clauses

Another optimization of theory propagation is concerned with the way in
which the information discovered by Deduction is propagated to the Boolean
part of the solver. So far, we have required that the clause t returned by
Deduction be T -valid. For example, if α is such that T̂ h(α) implies a literal
lit , then

t := (lit ∨ ¬T̂ h(α)) . (3.24)

The encoded clause e(t) is of the form(
e(lit) ∨

∨
lit′∈Th(α)

¬e(lit ′)
)
. (3.25)

Nieuwenhuis, Oliveras, and Tinelli concluded that this was an inefficient
method, however [211]. Their experiments on various sets of benchmarks

3.4 Theory Propagation and the DPLL(T) Framework 71

showed that on average fewer than 0.5% of these clauses were ever used again,
and that they burden the process. They suggested a better alternative, in
which Deduction returns a list of implied assignments (containing e(lit) in
this case) that the SAT solver then performs.

These implied assignments have no antecedent clauses in B, in con-
trast to the standard implications due to BCP. This causes a problem in
Analyze-Conflict (see Algorithm 2.2.2), which relies on antecedent clauses
for deriving conflict clauses. As a solution, when Analyze-Conflict needs
an antecedent for such an implied literal, it queries the decision procedure for
an explanation, i.e., a clause implied by ϕ that implies this literal given the
partial assignment at the time the assignment was created.

The explanation of an assignment might be the same clause that could
have been delivered in the first place, but not necessarily: for efficiency reasons,
typical implementations of Deduction do not retain such clauses, and hence
need to generate a new explanation. As an example, to explain an implied
literal x = y in equality logic, one needs to search for an equality path in the
equality graph between x and y, in which all the edges were present in the
graph at the time that this implication was identified and propagated.

3.4.4 Generating Strong Lemmas

If T̂ h(α) is unsatisfiable, Deduction returns a blocking clause t to eliminate
the assignment α. The stronger t is, the greater the number of inconsistent
assignments it eliminates. One way of obtaining a stronger formula is to con-
struct a clause consisting of the negation of those literals that participate in
the proof of unsatisfiability of T̂ h(α). In other words, if S is the set of literals
that serve as the premises in the proof of unsatisfiability, then the blocking
clause is

t :=
(∨
l∈S

¬l
)
. (3.26)

Computing the set S corresponds to computing an unsatisfiable core of the
formula.5 Given a deductive proof of unsatisfiability, a core is easy to find.
For this purpose, one may represent such a proof as a directed acyclic graph,
as demonstrated in Fig. 3.4 (in this case for T being equality logic and unin-
terpreted functions). In this graph the nodes are labeled with literals and an
edge (n1, n2) denotes the fact that the literal labeling node n1 was used in
the inference of the literal labeling node n2. In such a graph, there is a single
sink node labeled with false, and the roots are labeled with the premises
(and possibly axioms) of the proof. The set of roots that can be reached by a
backward traversal from the false node correspond to an unsatisfiable core.

5 Unsatisfiable cores are defined for the case of propositional CNF formulas in
Sect. 2.2.6. The brief discussion here generalizes this earlier definition to inference
rules other than Binary Resolution.

72 3 From Propositional to Quantifier-Free Theories

x1 = x2

x2 = x3

x1 = x3

x2 = x4

F (x1) = F (x3)

F (x1) 6= F (x3)
false

x3 = x4

Fig. 3.4. The premises of a proof of unsatisfiability correspond to roots in the graph
that can be reached by backward traversal from the false node (in this case all roots
other than x3 = x4). Whereas lemmas correspond to all roots, this subset of the
roots can be used for generating strong lemmas

3.4.5 Immediate Propagation

Now consider a variation of this algorithm that calls Deduction after every
new assignment to an encoding variable—which may be due to either a deci-
sion or a BCP implication—rather than letting BCP finish first. Furthermore,
assume that we are implementing exhaustive theory propagation as described
above. In this variant, a call to Deduction cannot lead to a conflict, which
means that it never has to return a blocking clause. A formal proof of this
observation is left as an exercise (Problem 3.5). An informal justification is

that, if an assignment to a single encoder makes T̂ h(α) unsatisfiable, then
the negation of that assignment would have been implied and propagated in
the previous step by Deduction. For example, if an encoder e(x = y) is
implied and communicated to Deduction, this literal can cause a conflict
only if there is a disequality path (such paths were discussed in Example 3.4)
between x and y according to the previous partial assignment. This means
that, in the previous step, ¬e(x = y) should have been propagated to the
Boolean part of the solver.

3.5 Problems

Problem 3.1 (incrementality in Lazy-CDCL). Recall that an incremental
SAT solver is one that knows which conflict clauses can be reused when given
a problem similar to the previous one (i.e., some clauses are added and others
are erased). Is there a difference between Algorithm 3.3.2 (Lazy-CDCL) and
replacing line 4 in Algorithm 3.3.1 with a call to an incremental SAT solver?

Problem 3.2 (an optimization for Algorithms 3.3.1–3.4.1?).

1. Consider the following variation of Algorithms 3.3.1–3.4.1 for an input
formula ϕ given in NNF (negations are pushed all the way into the

3.6 Bibliographic Notes 73

atoms, e.g., ¬(x = y) appears as x 6= y). Rather than sending T̂ h(α) to
Deduction, send

∧
Thi for all i such that α(ei) = true. For example,

given an assignment

α := {e(x = y) 7→ true, e(y = z) 7→ false, e(x = z) 7→ true} , (3.27)

check
x = y ∧ x = z . (3.28)

Is this variation correct? Prove that it is correct or give a counterexample.
2. Show an example in which the above variation reduces the number of

iterations between Deduction and the SAT solver.

Problem 3.3 (theory propagation). Let DPT be a decision procedure for
a conjunction of Σ-literals. Suggest a procedure for performing exhaustive
theory propagation with DPT .

Problem 3.4 (pseudocode for a variant of DPLL(T)). Recall the variant
of DPLL(T) suggested at the end of Sect. 3.4.5, where the partial assignment
is sent to the theory solver after every assignment to an encoder, rather than
only after BCP. Write pseudocode for this algorithm, and a corresponding
drawing in the style of Fig. 3.3.

Problem 3.5 (exhaustive theory propagation). In Sect. 3.4.5, it was
claimed that with exhaustive theory propagation, conflicts cannot occur
in Deduction and that, consequently, Deduction never returns blocking
clauses. Prove this claim.

3.6 Bibliographic Notes

The following are some bibliographic details about the development of the lazy
encoding frameworks and DPLL(T). In 1999, Alessandro Armando, Claudio
Castellini, and Enrico Giunchiglia in [4] proposed a solver based on an in-
terplay between a SAT solver and a theory solver, in a fashion similar to the
simple lazy approach introduced at the beginning of this chapter. Their solver
was tailored to a single theory called disjunctive temporal constraints, which
is a restricted version of difference logic. In fact, they combined lazy with eager
reasoning: they used a preprocessing step that adds a large set of constraints
to the propositional skeleton (constraints of the form (¬e1 ∨¬e2) if a prelim-
inary check discovers that the theory literals corresponding to these encoders
contradict each other). This saves a lot of work later for the lazy-style engine.
In the same year LPSAT was introduced [286], which also includes many of
the features described in this chapter, including a process of learning strong
lemmas.

74 3 From Propositional to Quantifier-Free Theories

The basic idea of integrating DPLL with a decision procedure for some
(single) theory was suggested even earlier than that; the focus of these efforts
are modal and description logics [5, 129, 149, 219].

The step-change in performance of SAT solving due to the Chaff SAT
solver in 2001 [202] led several groups, a year later, to (independently)
propose decision procedures that leverage this progress. All of these al-
gorithms correspond to some variation of the lazy approach described in
Sect. 3.3: CVC [19, 268] by Aaron Stump, Clark Barrett, and David Dill;
ICS-SAT [113] by Jean-Christophe Filliatre, Sam Owre, Harald Ruess, and
Natarajan Shankar; MathSAT [7] by Gilles Audemard, Piergiorgio Bertoli,
Alessandro Cimatti, Artur Kornilowicz, and Roberto Sebastiani; DLSAT
[186] by Moez Mahfoudh, Peter Niebert, Eugene Asarin, and Oded Maler;
and VeriFun [115] by Cormac Flanagan, Rajeev Joshi, Xinming Ou, and Jim
Saxe. Most of these tools were built as generic engines that can be extended
with different decision procedures. Since the introduction of these tools, this
approach has become mainstream, and at least twenty other solvers based on
the same principles have been developed and published.

DPLL(T) was originally described in abstract terms, in the form of a cal-
culus, by Cesare Tinelli in [274]. Theory propagation had already appeared
under various names in the papers by Armando et al. [4] and Audemard et
al. [7] mentioned above. Efficient theory propagation tailored to the underly-
ing theory T (T being equalities with uninterpreted functions (EUF) in that
case) appeared first in a paper by Ganzinger et al. [120]. These authors also
introduced the idea of propagating theory implications by maintaining a stack
of such implied assignments, coupled with the ability to explain them a pos-
teriori, rather than sending asserting clauses to the DPLL part of the solver.
The idea of minimizing the lemmas (blocking clauses) can be attributed to
Leonardo de Moura and Harald Ruess [93], although, as we mentioned earlier,
finding small lemmas already appeared in the description of LPSAT.

Various details of how a DPLL-based SAT solver could be transformed
into a DPLL(T) solver were described for the case of EUF in [120] and for
difference logic in [209]. A good description of DPLL(T), starting from an
abstract DPLL procedure and ending with fine details of implementation, was
given in [211]. A very comprehensive survey on lazy SMT was given by Roberto
Sebastiani [253]. There has been quite a lot of research on how to design T -
solvers that can give explanations, which, as pointed out in Sect. 3.4.5, is a
necessary component for efficient implementation of this framework—see, for
example, [95, 210, 270].

Let us mention some SMT solvers that are, at the time of writing this
(2015), leading at various categories according to the annual competition:

1. Z3 from Microsoft Research, developed by Leonardo de Moura and Nikolaj
Bjørner [92]. In addition to its superior performance in many categories,
it also offers a convenient application-programming interface (API) in
several languages, and infrastructure for add-ons.

3.7 Glossary 75

2. CVC-4 [17, 15], the development of which is led by Clark Barrett and
Cesare Tinelli. CVC enables each theory to produce a proof that can be
checked independently with an external tool.

3. Yices-2 [90], which was originally developed by Leonardo de Moura and
later by Bruno Dutertre and Dejan Jovanovic.

4. MathSAT-5 [71], by Alessandro Cimatti, Alberto Griggio, and Roberto
Sebastiani.

5. Boolector [52], by Armin Biere and Robert Brummayer, which special-
izes in solving bit-vector formulas.

A procedure based on Binary Decision Diagrams (BDDs) [55], where the
predicates label the nodes, appeared in [132] and [199]. In the context of
hardware verification there have been a number of publications on multiway
decision graphs [81], a generalization of BDDs to various first-order theories.

3.7 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

DPT A decision procedure for a conjunction of T -atoms 60

e(a) The propositional encoder of a Σ-atom a 61

α(t) A truth assignment (either full or partial) to the
variables of a formula t

61

at(ϕ) The atoms of ϕ 61

at i(ϕ) Assuming some predefined order on the atoms, this
denotes the i-th distinct atom in ϕ

61

α An assignment (either full or partial) to the atoms 64

Th(at i, α) See (3.15) 64

Th(α) See (3.16) 64

T̂ h(α) The conjunction over the elements in Th(α) 64

B A Boolean formula. In this chapter, initially set to
e(ϕ), and then strengthened with constraints

64

continued on next page

76 3 From Propositional to Quantifier-Free Theories

continued from previous page

First used
Symbol Refers to . . . on page . . .

t For a Σ-theory T , t represents a Σ-formula (typi-
cally a clause) returned by Deduction

65

Bi The formula B in the i-th iteration of the loop in
Algorithm 3.3.1

66

