
8.1 Introduction

8.1.1 Pointers and Their Applications

This chapter introduces a theory for reasoning about programs that use point-
ers, and describes decision procedures for it. We assume that the reader is
familiar with pointers and their use in programming languages.

A pointer is a program variable whose sole purpose is to refer to some
other program construct. This other construct could be a variable, a procedure
or label, or yet another pointer. Among other things, pointers allow a piece
of code to operate on different sets of data, which avoids inefficient copying
of data.

As an example, consider a program that maintains two arrays of integers,
named A and B, and that both arrays need to be sorted at some point within
the program. Without pointers, the programmer needs to maintain two imple-
mentations of the sorting algorithm, one for A and one for B. Using pointers,
a single implementation of sorting is implemented as a procedure that accepts
a pointer to the first element of an array as an argument. It is called twice,
with the addresses of A and B, respectively, as the argument.

As pointers are a common source of programming errors, most modern
programming languages try to offer alternatives, e.g., in the form of references
or abstract data containers. Nevertheless, low-level programming languages
with explicit pointers are still frequently used, for example, for embedded
systems or operating systems.

The implementation of pointers relies on the fact that the memory cells of
a computer have addresses, i.e., each cell has a unique number. The value of a
pointer is then nothing but such a number. The way the memory cells are ad-
dressed is captured by the concept of the memory model of the architecture
that executes the program.

Definition 8.1 (memory model). A memory model describes the assump-
tions that are made about the way memory cells are addressed. We assume

8

Pointer Logic

© Springer-Verlag Berlin Heidelberg 2016
D. Kroening and O. Strichman, Decision Procedures,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-662-50497-0_8

173

174 8 Pointer Logic

that the architecture provides a continuous, uniform address space, i.e., the
set of addresses A is a subinterval of the integers {0, . . . , N − 1}. Each ad-

�� ��M , A
dress corresponds to a memory cell that is able to store one data word. The
set of data words is denoted by D. A memory valuation M : A −→ D is a

�� ��D
mapping from a set of addresses A into the domain D of data words.

A variable may require more than one data word to be stored in memory.
For example, this is the case when the variable is of type struct, array, or
double-precision floating point. Let σ(v) with v ∈ V denote the size (in data

�� ��σ
words) of v.

The compiler assigns a particular memory location (address) to each
global, and thus, static variable.1 This mapping is called the memory layout,
and is formalized as follows. Let V denote the set of variables.

�� ��V

Definition 8.2 (memory layout). A memory layout L : V −→ A is a
�� ��L

mapping from each variable v ∈ V to an address a ∈ A. The address of v is
also called the memory location of v.

The memory locations of the statically allocated variables are usually as-
signed such that they are nonoverlapping (we explain later on how to model
dynamically allocated data structures). Note that the memory layout is not
necessarily continuous, i.e., compilers may generate a layout that contains
“holes”.2

Example 8.3. Figure 8.1 illustrates a memory layout for a fragment of an
ANSI-C program. The program has six objects, which are named var_a,
var_b, var_c, S, array, and p. The first five objects either are integer vari-
ables or are composed of integer variables. The object named p is a pointer
variable, which we assume to be as wide as an integer.3 The program initializes
p to the address of the variable var_c, which is denoted by &var_c. Besides
the variable definitions, the program also has a function main(), which sets
the value of the variable pointed to by p to 100.

8.1.2 Dynamic Memory Allocation

Pointers also enable the creation of dynamic data structures . Dynamic data
structures rely on an area of memory that is designated for use by objects that

1 Statically allocated variables are variables that are allocated space during the
entire run time of the program. In contrast, the addresses of dynamically allocated
data such as local variables or data on the heap are determined at run time once
the object has been created.

2 A possible reason for such holes is the need for proper alignment. As an example,
many 64-bit architectures are unable to read double-precision floating-point values
from addresses that are not a multiple of 8.

3 This is not always the case; for example, in the x86 16-bit architecture, integers
have 16 bits, whereas pointers are 32 bits wide. In some 64-bit architectures,
integers have 32 bits, whereas pointers have 64 bits.

8.1 Introduction 175

int var_a, var_b, var_c;
struct { int x; int y; } S;
int array[4];
int *p = &var_c;

int main() {

*p=100;
}

var a

var b

var c

S.x

array[2]

array[3]

p

0

1

2

3

4

5

6

7

8

9

array[0]

array[1]

S.y

Fig. 8.1. A fragment of an ANSI-C program and a possible memory layout for it

Aside: Pointers and References in Object-Oriented Programming
Separation of data and algorithms is promoted by the concept of object-
oriented programming (OOP). In modern programming languages such as
Java and C++, the explicit use of pointer variables is deprecated. Instead,
the procedures that are associated with an object (the methods) implicitly
receive a pointer to the data members (the fields) of the object instance as
an argument. In C++, the pointer is accessible using the keyword this. All
accesses to the data members are performed indirectly by means of the this
pointer variable.

References, just like pointers, are program variables that refer to a vari-
able or object. The difference between references and pointers is often only
syntactic. As an example, the fact that dereferencing is performed is usually
hidden. In program analysis, references can be treated just as pointers.

are created at the run time of the program. A run time library maintains a list
of the memory regions that are unused. A function, which is part of this library,
allocates a region of given size and returns a pointer to the beginning (lowest
address) of the region. The memory layout therefore changes during the run
time of the program. Memory allocation may be performed an unbounded
number of times (provided enough space is deallocated as well), and thus,
there is no bound on the number of objects that a program can generate.

The function that performs the allocation is called malloc() in C, and is
provided as an operator called new in C++, C#, and Java. In either case, the
size of the region that is requested is passed as an argument. In order to reuse
memory occupied by data structures that are no longer needed, C program-
mers call free, C++ programmers use delete, while Java and C# provide an
automatic garbage collection mechanism. The lifetime of a dynamic object
is the time between its allocation and its deallocation.

176 8 Pointer Logic

8.1.3 Analysis of Programs with Pointers

All but trivial programs rely on pointers or references in order to separate
between data and algorithms. Decision procedures that are used for program
analysis therefore often need to include reasoning about pointers.

As a simple example, consider the following program fragment, which com-
putes the sum of an array of size 10:

void f(int *sum) {

*sum = 0;

for(i=0; i<10; i++)

*sum = *sum + array[i];
}

The sum is stored in an integer variable that is pointed to by a pointer called
sum. Any analysis method that aims at validating the correctness of this frag-
ment has to take the value of the pointer into account. In particular, the
program is likely to fail if the address held by sum is equal to the address of i.
In this case, we say that *sum is an alias for i. Aliasing that is not anticipated
by the programmer is a common source of problems.

The use of pointers gives rise to program properties that are of high in-
terest. It is well known that many programs fail owing to incorrect use of
pointer variables. A very common problem in programs is dereferencing of
pointer variables that do not point to a proper object. The value 0 is typically
reserved as a designated NULL pointer. It is guaranteed that no object, either
statically or dynamically allocated, has this address. This value can therefore
be used to indicate special cases, for example, the end of a linked list. However,
if such a pointer is—by mistake—dereferenced, modern architectures typically
generate an exception, which terminates the program.

Programming languages that offer explicit deallocation face another prob-
lem. In the following program fragment, an array-type object is allocated and
deallocated:

int *p, *q;

p = new int[10];
q = &p[3];
delete p;

*q = 2;

Note that the address of the fourth element of the array is stored in q, and that
this pointer is dereferenced after the deallocation of the array. In a variant of
the program above, the library that manages the dynamically allocated mem-
ory may have reassigned the space used for the array by that time, and thus
another object might be overwritten by writing to *q. Such errors are hard
to reproduce, as they depend on the exact memory layout of the architecture.

8.2 A Simple Pointer Logic 177

They often remain undetected despite extensive testing. The detection of such
errors is therefore an important application for static program analysis tools.

Aside: Alias Analysis
Alias analysis has a significant role in pointer-related reasoning about soft-
ware, such as the analysis performed by optimizing compilers. Alias analysis
may be performed at various levels of precision. For example, alias analysis
may be field sensitive or insensitive, interprocedural or intraprocedural, and
may or may not be sensitive to the control flow. Alias analysis is a special
case of static analysis , and is typically performed as a may-analysis, that is,
it determines the set of variables that a given pointer may point to — this is
called the “points-to” set. In other words, variables that are not in this set
cannot be pointed to by this pointer. For example, given an instruction such
as

*p=0;

may-analysis permits us to conclude that any variable that is not in the points-
to set of p is also not modified by this assignment. In the case of an optimizing
compiler, this permits us to determine the set of variables that can be cached
safely in processor registers.

Alias analysis is performed by maintaining a points-to set for each pointer
(and, if desired, for each program location), and updating these sets accord-
ing to the program statements. The algorithm terminates once the sets have
saturated, i.e., do not change anymore.

As an example, consider a control-flow-insensitive analysis of a program
with three statements:

p=q;
q=&i;
p=&j;

The points-to sets of p and q are initially empty. Processing the first statement
results in no change. The second statement adds i to the points-to set of q,
and the third adds j to the points-to set of p. Owing to the first statement,
the set of q is added to that of p and, thereafter, the two sets are saturated.

8.2 A Simple Pointer Logic

8.2.1 Syntax

There are many variants of pointer logic, each with a different syntax and
meaning. The more complex ones are often undecidable. We define a simple
logic here, with the goal of making the problem of deciding formulas in this
logic easier to solve.

178 8 Pointer Logic

Definition 8.4 (pointer logic). The syntax of a formula in pointer logic is
defined by the following rules:

formula : formula ∧ formula | ¬formula | (formula) | atom

atom : pointer = pointer | term = term |
pointer < pointer | term < term

pointer : pointer-identifier | pointer + term | (pointer) |
&identifier | & ∗ pointer | ∗ pointer | NULL

term : identifier | ∗ pointer | term op term | (term) |
integer-constant | identifier [term]

op : + | −

The variables represented by pointer-identifier are assumed to be of pointer
type, whereas the variables represented by identifier are assumed to be integers
or an array of integers.4 Note that the grammar allows pointer arithmetic,
whereas it prohibits a direct conversion of an integer into a pointer or vice
versa. This is motivated by the fact that the conversion of a pointer to an
integer may actually fail in a number of architectures, owing to the fact that
pointers are wider than the standard integer type.5

Example 8.5. Let p, q denote pointer identifiers, and let i, j denote integer
identifiers. The following expressions are well formed according to the gram-
mar above:

• ∗(p+ i) = 1,
• ∗(p+ ∗p) = 0,
• p = q ∧ ∗p = 5,
• ∗ ∗ ∗ ∗ ∗p = 1,
• p < q.

The following expressions are not permitted by the grammar:

• p+ i,
• p = i,
• ∗(p+ q),
• ∗1 = 1,
• p < i.

Note that the grammar above encompasses all of integer linear arithmetic
(Chap. 5) and also a fragment of array logic (Chap. 7). In practice, a logic for
pointers is typically combined with a logic for the program expressions, such
as bit-vector arithmetic.
4 The syntax is clearly inspired by that of ANSI-C. Note, however, that we deviate

from the ANSI-C syntax in a few points. As an example, in ANSI-C, an array
identifier is synonymous with its address.

5 Much as in C/C++, an indirect conversion by means of the dereferencing operator
is still possible.

8.2 A Simple Pointer Logic 179

8.2.2 Semantics

There are numerous ways to assign a meaning to the expressions defined
above. We define the semantics by referring to a specific memory layout L
(Definition 8.2) and a specific memory valuation M (Definition 8.1), that is,
pointer logic formulas are predicates on M,L pairs. The definition uses a
reduction to integer arithmetic and array logic, and thus we treat M and L
as array types. We also assume that D (the set of data words) is contained in
the set of integers.

Definition 8.6 (semantics of pointer logic). As before let L denote a
memory layout and let M denote a valuation of the memory. Let LP denote
the set of pointer logic expressions, and let LD denote the set of expressions
permitted by the logic for the data words. We define a meaning for e ∈ LP
using the function J·K : LP −→ LD. The function JeK is defined recursively as
given in Fig. 8.2. The expression e ∈ LP is valid if and only if JeK is valid.

Jf1 ∧ f2K
.
= Jf1K ∧ Jf2K

J¬fK .
= ¬JfK

Jp1 = p2K
.
= Jp1K = Jp2K where p1, p2 are pointer expressions

Jp1 < p2K
.
= Jp1K < Jp2K where p1, p2 are pointer expressions

Jt1 = t2K
.
= Jt1K = Jt2K where t1, t2 are terms

Jt1 < t2K
.
= Jt1K < Jt2K where t1, t2 are terms

JpK .
= M [L[p]] where p is a pointer identifier

Jp+ tK .
= JpK + JtK where p is a pointer expression, and t is a term

J&vK .
= L[v] where v ∈ V is a variable

J& ∗ pK .
= JpK where p is a pointer expression

JNULLK .
= 0

JvK .
= M [L[v]] where v ∈ V is a variable

J∗pK .
= M [JpK] where p is a pointer expression

Jt1 op t2K
.
= Jt1K op Jt2K where t1, t2 are terms

JcK .
= c where c is an integer constant

Jv[t]K .
= M [L[v] + JtK] where v is an array identifier, and t is a term

Fig. 8.2. Semantics of pointer expressions

Observe that a pointer p points to a variable x if M [L[p]] = L[x], that is, the
value of p is equal to the address of x. As a shorthand, we write p ↪→ z to

�� ��p ↪→ z
mean that p points to some memory cell such that ∗p = z. Observe also that
the meaning of pointer arithmetic, for example, p+ i, does not depend on the
type of object that p points to.6

6 In contrast, the semantics of ANSI-C requires that an integer that is added to a
pointer p is multiplied by the size of the type that p points to.

180 8 Pointer Logic

Example 8.7. Consider the following expression, where a is an array identi-
fier:

∗ ((&a) + 1) = a[1] . (8.1)

The semantic definition of (8.1) expands as follows:

J∗((&a) + 1) = a[1]K ⇐⇒ J∗((&a) + 1)K = Ja[1]K (8.2)

⇐⇒ M [J(&a) + 1K] = M [L[a] + J1K] (8.3)

⇐⇒ M [J&aK + J1K] = M [L[a] + 1] (8.4)

⇐⇒ M [L[a] + 1] = M [L[a] + 1] (8.5)

Equation (8.5) is obviously valid, and thus, so is (8.1). Note that the translated
formula must evaluate to true for any L and M and, thus, the following
formula is not valid:

∗ p = 1 =⇒ x = 1 . (8.6)

For p 6= &x, this formula evaluates to false.

8.2.3 Axiomatization of the Memory Model

Formulas in pointer logic may exploit assumptions made about the memory
model. The set of these assumptions depends highly on the architecture. Here,
we formalize properties that most architectures comply with, and thus that
many programs rely on.

On most architectures, the following two formulas are valid, and hence can
be safely assumed by programmers:

&x 6= NULL , (8.7)

&x 6= &y . (8.8)

Equation (8.7) translates into L[x] 6= 0 and relies on the fact that no object
has address 0. Equation (8.8) relies on the fact that the memory layout assigns
nonoverlapping addresses to the objects. We define a series of memory model
axioms in order to formalize these properties.

Memory Model Axiom 1 (“No object has address 0”) The fact “no
object has address 0” is easily formalized:7

∀v ∈ V. L[v] 6= 0 . (8.9)

7 Note that the ANSI-C standard does not actually guarantee that the symbolic
constant NULL is represented by a bit vector consisting of zeros; however, it guar-
antees that the NULL pointer compares to the integer zero and can be obtained
by converting the integer zero to a pointer type.

8.2 A Simple Pointer Logic 181

The easiest way to ensure that (8.8) is valid is to assume that ∀v1, v2 ∈ V. v1 6=
v2 =⇒ L[v1] 6= L[v2]. However, this assumption is often not strong enough,
as objects with size greater or equal to two may still overlap. We therefore
assume the following two conditions, which together are stronger:

Memory Model Axiom 2 (“Objects have size at least one”) The fact
“an object has size at least one” is easily captured by

∀v ∈ V. σ(v) ≥ 1 . (8.10)

Memory Model Axiom 3 (“Objects do not overlap”) Different objects
do not share any addresses:

∀v1, v2 ∈ V. v1 6= v2 =⇒ {L[v1], . . . , L[v1] + σ(v1)− 1}∩
{L[v2], . . . , L[v2] + σ(v2)− 1} = ∅ . (8.11)

Program analysis tools that are applied to code that relies on additional,
architecture-specific guarantees may require a larger set of memory model
axioms. Examples are byte ordering and endianness , and specific assumptions
about alignment.

8.2.4 Adding Structure Types

Structure types are a convenient way to implement data structures. Structure
types can be added to our pointer logic as a purely syntactic extension, as we
shall soon see. We assume that the fields of the structure types are named,
and write s.f to denote the value of the field f in the structure s.

Formally, we can view structure types as “syntactic sugar” for array types,
and record the following shorthands. Each field of the structure is assigned
a unique offset. Let o(f) denote the offset of field f . We then define the

�� ��o(f)
meaning of s.f as follows: �� ��s.f

s.f
.
= ∗((&s) + o(f)) . (8.12)

For convenience, we introduce two additional shorthands. Following the PAS-
CAL and ANSI-C syntax, we write p->f for (∗p).f (this shorthand is not to

�� ��p->f
be confused with logical implication or with p ↪→ a). Adopting some notation
from separation logic (see the aside on separation logic on p. 184), we also
extend the p ↪→ a notation by introducing p ↪→ a, b, c, . . . as a shorthand for

∗(p+ 0) = a ∧
∗(p+ 1) = b ∧
∗(p+ 2) = c

(8.13)

182 8 Pointer Logic

8.3 Modeling Heap-Allocated Data Structures

8.3.1 Lists

Heap-allocated data structures play an important role in programs, and are
prone to pointer-related errors. We now illustrate how to model a number of
commonly used data structures using pointer logic.

After the array, the simplest dynamically allocated data structure is the
linked list . It is typically realized by means of a structure type that contains
fields for a next pointer and the data that are to be stored in the list.

As an example, consider the following list: The first field is named a and is
an ASCII character, serving as the “payload”, and the second field is named
n, and is the pointer to the next element of the list. Following ANSI-C syntax,
we use ’x’ to denote the integer that represents the ASCII character “x”:

. . .

p ’e’ ’x’ ’t’

0

’t’

The list is terminated by a NULL pointer, which is denoted by “0” in the
diagram above. A way of modeling this list is to use the following formula:

p ↪→ ’t’, p1
∧ p1 ↪→ ’e’, p2
∧ p2 ↪→ ’x’, p3
∧ p3 ↪→ ’t’, NULL .

(8.14)

This way of specifying lists is cumbersome, however. Therefore, disregard-
ing the payload field, we first introduce a recursive shorthand for the i-th
member of a list:8

list-elem(p, 0)
.
= p ,

list-elem(p, i)
.
= list-elem(p, i− 1)->n for i ≥ 1 .

(8.15)

We now define the shorthand list(p, l) to denote a predicate that is true if p
�� ��list

points to a NULL-terminated acyclic list of length l:

list(p, l) .
= list-elem(p, l) = NULL . (8.16)

A linked list is cyclic if the pointer of the last element points to the first one:

. . . .

’e’ ’x’ ’t’’t’p

Consider the following variant my-list(p, l), intended to capture the fact
that p points to such a cyclic list of length l ≥ 1:

8 Note that recursive definitions of this form are, in general, only embeddable into
our pointer logic if the second argument is a constant.

8.3 Modeling Heap-Allocated Data Structures 183

my-list(p, l) .
= list-elem(p, l) = p . (8.17)

Does this definition capture the concept properly? The list in the dia-
gram above satisfies my-list(p, 4). Unfortunately, the following list satisfies
my-list(p, 4) just as well:

.

’t’p

This is due to the fact that our definition does not preclude sharing of elements
of the list, despite the fact that we had certainly intended to specify that
there are l disjoint list elements. Properties of this kind are often referred to
as separation properties. A way to assert that the list elements are disjoint is
to define a shorthand overlap as follows:

overlap(p, q)
.
= p = q ∨ p+ 1 = q ∨ p = q + 1 . (8.18)

This shorthand is then used to state that all list elements are pairwise disjoint:

list-disjoint(p, 0)
.
= true ,

list-disjoint(p, l) .
= list-disjoint(p, l − 1)∧

∀0 ≤ i < l − 1. ¬overlap(list-elem(p, i), list-elem(p, l − 1)) .
(8.19)

Note that the size of this formula grows quadratically in l. As separation
properties are frequently needed, more concise notations have been developed
for this concept, for example, separation logic (see the aside on that topic).
Separation logic can express such properties with formulas of linear size.

8.3.2 Trees

We can implement a binary tree by adding another pointer field to each el-
ement of the data structure (see Fig. 8.3). We denote the pointer to the
left-hand child node by l, and the pointer to the right-hand child by r.

In order to illustrate a pointer logic formula for trees, consider the tree in
Fig. 8.3, which has one integer x as payload. Observe that the integers are
arranged in a particular fashion: the integer of the left-hand child of any node
n is always smaller than the integer of the node n itself, whereas the integer of
the right-hand child of node n is always larger than the integer of the node n.
This property permits lookup of elements with a given integer value in time
O(h), where h is the height of the tree. The property can be formalized as
follows:

(n.l 6= NULL =⇒ n.l->x < n.x)
∧ (n.r 6= NULL =⇒ n.r->x > n.x) .

(8.22)

Unfortunately, (8.22) is not strong enough to imply lookup in time O(h). For
this, we need to establish the ordering over the integers of an entire subtree.

184 8 Pointer Logic

Aside: Separation Logic
Theories for dynamic data structures are frequently used for proving that
memory cells do not alias. While it is possible to model the statement that
a given object does not alias with other objects with pairwise comparison,
reasoning about such formulation scales poorly. It requires enumeration of all
heap-allocated objects, which makes it difficult to reason about a program in
a local manner.

John Reynolds’ separation logic [242] addresses both problems by introduc-
ing a new binary operator “∗”, as in “P ∗ Q”, which is called a separating
conjunction. The meaning of ∗ is similar to the standard Boolean conjunc-
tion, i.e., P ∧ Q, but it also asserts that P and Q reason about separate,
nonoverlapping portions of the heap. As an example, consider the following
variant of the list predicate:

list(p, 0)
.
= p = NULL

list(p, l) .
= ∃q. p ↪→ z, q ∧ list(q, l − 1) for l ≥ 1 .

(8.20)

Like our previous definition, the definition above suffers from the fact that
some memory cells of the elements of the list might overlap. This can be
mended by replacing the standard conjunction in the definition above by a
separating conjunction:

list(p, l) .
= ∃q. p ↪→ z, q ∗ list(q, l − 1) . (8.21)

This new list predicate also asserts that the memory cells of all list elements
are pairwise disjoint. Separation logic, in its generic form, is not decidable,
but a variety of decidable fragments have been identified.

..

83

5

1 4

. .

p

0 0 0 0

0 0

Fig. 8.3. A binary tree that represents a set of integers

8.4 A Decision Procedure 185

We define a predicate tree-reach(p, q), which holds if q is reachable from p in
one step:

tree-reach(p, q)
.
= p 6= NULL ∧ q 6= NULL∧

(p = q ∨ p->l = q ∨ p->r = q) .
(8.23)

In order to obtain a predicate that holds if and only if q is reachable from
p in any number of steps, we define the transitive closure of a given binary
relation R.

Definition 8.8 (transitive closure). Given a binary relation R, the tran-
sitive closure TCR relates x and y if there are z1, z2, . . . , zn such that

xRz1 ∧ z1Rz2 ∧ . . . ∧ znRy .

Formally, transitive closure can be defined inductively as follows:

TC1
R(p, q)

.
= R(p, q) ,

TCiR(p, q)
.
= ∃p′. TCi−1R (p, p′) ∧R(p′, q) ,

TC(p, q)
.
= ∃i. TCiR(p, q) .

(8.24)

Using the transitive closure of our tree-reach relation, we obtain a new relation
tree-reach*(p, q) that holds if and only if q is reachable from p in any number
of steps:

tree-reach*(p, q) ⇐⇒ TCtree-reach(p, q) . (8.25)

Using tree-reach*, it is easy to strengthen (8.22) appropriately:

(∀p. tree-reach*(n.l, p) =⇒ p->x < n.x)
∧ (∀p. tree-reach*(n.r, p) =⇒ p->x > n.x) .

(8.26)

Unfortunately, the addition of the transitive closure operator can make even
simple logics undecidable, and thus, while convenient for modeling, it is a bur-
den for automated reasoning. We restrict the presentation below to decidable
cases by considering only special cases.

8.4 A Decision Procedure

8.4.1 Applying the Semantic Translation

The semantic translation introduced in Sect. 8.2.2 not only assigns meaning
to the pointer formulas, but also gives rise to a simple decision procedure. The
formulas generated by this semantic translation contain array read operators
and linear arithmetic over the type that is used for the indices. This may
be the set of integers (Chap. 5) or the set of bit vectors (Chap. 6). It also

186 8 Pointer Logic

contains at least equalities over the type that is used to model the contents of
the memory cells. We assume that this is the same type as the index type. As
we have seen in Chap. 7, such a logic is decidable. Care has to be taken when
extending the pointer logic with quantification, as array logic with arbitrary
quantification is undecidable.

A straightforward decision procedure for pointer logic therefore first ap-
plies the semantic translation to a pointer formula ϕ to obtain a formula ϕ′

in the combined logic of linear arithmetic over integers and arrays of integers.
The formula ϕ′ is then passed to the decision procedure for the combined
logic. As the formulas ϕ and ϕ′ are equisatisfiable (by definition), the result
returned for ϕ′ is also the correct result for ϕ.

Example 8.9. Consider the following pointer logic formula, where x is a vari-
able, and p identifies a pointer:

p = &x ∧ x = 1 =⇒ ∗p = 1 . (8.27)

The semantic definition of this formula expands as follows:

Jp = &x ∧ x = 1 =⇒ ∗p = 1K
⇐⇒ Jp = &xK ∧ Jx = 1K =⇒ J∗p = 1K
⇐⇒ JpK = J&xK ∧ JxK = 1 =⇒ J∗pK = 1
⇐⇒ M [L[p]] = L[x] ∧M [L[x]] = 1 =⇒ M [M [L[p]]] = 1 .

(8.28)

A decision procedure for array logic and equality logic easily concludes that
the formula above is valid, and thus, so is (8.27).

As an example of an invalid formula, consider

p ↪→ x =⇒ p = &x . (8.29)

The semantic definition of this formula expands as follows:

Jp ↪→ x =⇒ p = &xK
⇐⇒ Jp ↪→ xK =⇒ Jp = &xK
⇐⇒ J∗p = xK =⇒ JpK = J&xK
⇐⇒ J∗pK = JxK =⇒ M [L[p]] = L[x]
⇐⇒ M [M [L[p]]] = M [L[x]] =⇒ M [L[p]] = L[x]

(8.30)

A counterexample to this formula is the following:

L[p] = 1, L[x] = 2, M [1] = 3, M [2] = 10, M [3] = 10 . (8.31)

The values of M and L in the counterexample are best illustrated with a
picture:

1

3 1010

0 2 3

p x

8.4 A Decision Procedure 187

Applying the Memory Model Axioms

A formula may rely on one of the memory model axioms defined in Sect. 8.2.3.
As an example, consider the following formula:

σ(x) = 2 =⇒ &y 6= &x+ 1 . (8.32)

The semantic translation yields

σ(x) = 2 =⇒ L[y] 6= L[x] + 1 . (8.33)

This formula can be shown to be valid by instantiating Memory Model Ax-
iom 3. After instantiating v1 with x and v2 with y, we obtain

{L[x], . . . , L[x] + σ(x)− 1} ∩ {L[y], . . . , L[y] + σ(y)− 1} = ∅ . (8.34)

We can transform the set expressions in (8.34) into linear arithmetic over the
integers as follows:

(L[x] + σ(x)− 1 < L[y]) ∨ (L[x] > L[y] + σ(y)− 1) . (8.35)

Using σ(x) = 2 and σ(y) ≥ 1 (Memory Model Axiom 2), we can conclude,
furthermore, that

(L[x] + 1 < L[y]) ∨ (L[x] > L[y]) . (8.36)

Equation (8.36) is strong enough to imply L[y] 6= L[x] + 1, which proves that
Eq. (8.32) is valid.

8.4.2 Pure Variables

The semantic translation of a pointer formula results in a formula that we
can decide using the procedures described in this book. However, semantic
translation down to memory valuations places an undue burden on the un-
derlying decision procedure, as illustrated by the following example (symmetry
of equality):

Jx = y =⇒ y = xK (8.37)

⇐⇒ Jx = yK =⇒ Jy = xK (8.38)

⇐⇒ M [L[x]] = M [L[y]] =⇒ M [L[y]] = M [L[x]] . (8.39)

A decision procedure for array logic and equality logic is certainly able to
deduce that (8.39) is valid. Nevertheless, the steps required for solving (8.39)
obviously exceed the effort required to decide

x = y =⇒ y = x . (8.40)

In particular, the semantic translation does not exploit the fact that x and
y do not actually interact with any pointers. A straightforward optimization
is therefore the following: if the address of a variable x is not referred to, we
translate it to a new variable Υx instead of M [L[x]]. A formalization of this
idea requires the following definition:

188 8 Pointer Logic

Definition 8.10 (pure variables). Given a formula ϕ with a set of variables
V , let P(ϕ) ⊆ V denote the subset of ϕ’s variables that are not used within
an argument of the “ &” operator within ϕ. These variables are called pure.

As an example, P(&x = y) is {y}. We now define a new translation function
J·KP . The definition of JeKP is identical to the definition of JeK unless e denotes
a variable in P(ϕ). The new definition is:

JvKP .
= Υv for v ∈ P(ϕ)

JvKP .
= M [L[v]] for v ∈ V \ P(ϕ)

Theorem 8.11. The translation using pure variables is equisatisfiable with
the semantic translation:

JϕKP ⇐⇒ JϕK .

Example 8.12. Equation (8.38) is now translated as follows without referring
to a memory valuation, and thus no longer burdens the decision procedure for
array logic:

Jx = y =⇒ y = xKP (8.41)

⇐⇒ Jx = y =⇒ y = xKP (8.42)

⇐⇒ Jx = yKP =⇒ Jy = xKP (8.43)

⇐⇒ Υx = Υy =⇒ Υy = Υx . (8.44)

8.4.3 Partitioning the Memory

The translation procedure can be optimized further using the following ob-
servation: the run time of a decision procedure for array logic depends on the
number of different expressions that are used to index a particular array (see
Chap. 7). As an example, consider the pointer logic formula

∗ p = 1 ∧ ∗q = 1 , (8.45)

which—using our optimized translation—is reduced to

M [Υp] = 1 ∧M [Υq] = 1 . (8.46)

The pointers p and q might alias, but there is no reason why they have to.
Without loss of generality, we can therefore safely assume that they do not
alias and, thus, we partition M into M1 and M2:

M1[Υp] = 1 ∧M2[Υq] = 1 . (8.47)

While this has increased the number of array variables, the number of different
indices per array has decreased. Typically, this improves the performance of
a decision procedure for array logic.

8.5 Rule-Based Decision Procedures 189

This transformation cannot always be applied, illustrated by the following
example:

p = q =⇒ ∗p = ∗q . (8.48)

This formula is obviously valid, but if we partition as before, the translated
formula is no longer valid:

Υp = Υq =⇒ M1[Υp] = M2[Υq] . (8.49)

Unfortunately, deciding if the optimization is applicable is in general as hard
as deciding ϕ itself. We therefore settle for an approximation based on a
syntactic test. This approximation is conservative, i.e., sound, while it may
not result in the best partitioning that is possible in theory.

Definition 8.13. We say that two pointer expressions p and q are related
directly by a formula ϕ if both p and q are used inside the same relational
expression in ϕ and that the expressions are related transitively if there is a
pointer expression p′ that relates to p and relates to q. We write p ≈ q if p

�� ��p ≈ q
and q are related directly or transitively.

The relation ≈ induces a partitioning of the pointer expressions in ϕ. We
number these partitions 1, . . . , n. Let I(p) ∈ {1, . . . , n} denote the index of
the partition that p is in. We now define a new translation J·K≈, in which we use
a separate memory valuation MI(p) when p is dereferenced. The definition of
JeK≈ is identical to the definition of JeKP unless e is a dereferencing expression.
In this case, we use the following definition:

J∗pK≈ .
= MI(p)(JpK≈) .

Theorem 8.14. Translation using memory partitioning results in a formula
that is equisatisfiable with the result of the semantic translation:

∃α1. α1 |= JϕK≈ ⇐⇒ ∃α2. α2 |= JϕK .

Note that the theorem relies on the fact that our grammar does not permit
explicit restrictions on the memory layout L. The theorem no longer holds as
soon as this restriction is lifted (see Problem 8.5).

8.5 Rule-Based Decision Procedures

With pointer logics expressive enough to model interesting data structures,
one often settles for incomplete, rule-based procedures. The basic idea of such
procedures is to define a fragment of pointer logic enriched with predicates
for specific types of data structures (e.g., lists or trees) together with a set of
proof rules that are sufficient to prove a wide range of verification conditions
that arise in practice. The soundness of these proof rules is usually shown
with respect to the definitions of the predicates, which implies soundness of
the decision procedure. There are only a few known proof systems that are
provably complete.

190 8 Pointer Logic

8.5.1 A Reachability Predicate for Linked Structures

As a simple example of this approach, we present a variant of a calculus for
reachability predicates introduced by Greg Nelson [204]. Further rule-based
reasoning systems are discussed in the bibliographic notes at the end of this
chapter.

We first generalize the list-elem shorthand used before for specifying linked
lists by parameterizing it with the name of the field that holds the pointer
to the “next” element. Suppose that f is a field of a structure and holds a
pointer. The shorthand followfn(q) stands for the pointer that is obtained by
starting from q and following the field f , n times:

followf0 (p)
.
= p

followfn(p)
.
= followfn−1(p)->f .

(8.50)

If followfn(p) = q holds, then q is reachable in n steps from p by following f .
We say that q is reachable from p by following f if there exists such n. Using
this shorthand, we enrich the logic with just a single predicate for list-like
data structures, denoted by

p
f
→
x
q , (8.51)

which is called a reachability predicate. It is read as “q is reachable from
p following f , while avoiding x”. It holds if two conditions are fulfilled:

1. There exists some n such that q is reachable from p by following f n times.
2. x is not reachable in fewer than n steps from p following f .

This can be formalized using follow() as follows:

p
f
→
x
q ⇐⇒ ∃n.(followfn(p) = q ∧ ∀m < n.followfm(p) 6= x) . (8.52)

We say that a formula is a reachability predicate formula if it contains
the reachability predicate.

Example 8.15. Consider the following software verification problem. The fol-
lowing program fragment iterates over an acyclic list and searches for a list
entry with payload a:

struct S { struct S *nxt; int payload; } *list;

...
bool find(int a) {
for(struct S *p=list; p!=0; p=p->nxt)
if(p->payload==a) return true;

return false;
}

8.5 Rule-Based Decision Procedures 191

We can specify the correctness of the result returned by this procedure using
the following formula:

find(a) ⇐⇒ ∃p′.(list
nxt
→
0
p′ ∧ p′->payload = a) . (8.53)

Thus, find(a) is true if the following conditions hold:

1. There is a list element that is reachable from list by following nxt without
passing through a NULL pointer.

2. The payload of this list element is equal to a.

We annotate the beginning of the loop body in the program above with the
following loop invariant, denoted by INV:

INV := list
nxt
→
0
p ∧ (∀q 6= p. list

nxt
→
p
q =⇒ q->payload 6= a) . (8.54)

Informally, we make the following argument: first, we show that the program
maintains the loop invariant INV; then, we show that INV implies our property.

Formally, this is shown by means of four verification conditions. The
validity of all of these verification conditions implies the property. We use the
notation e[x/y] to denote the expression e in which x is replaced by y.

IND-BASE := p = list =⇒ INV (8.55)

IND-STEP := (INV ∧ p->payload 6= a) =⇒ INV[p/p->nxt] (8.56)

VC-P1 := (INV ∧ p->payload = a)

=⇒ ∃p′.(list
nxt
→
0
p′ ∧ p′->payload = a)

(8.57)

VC-P2 := (INV ∧ p = 0) =⇒ ¬∃p′.(list
nxt
→
0
p′ ∧ p′->payload = a) (8.58)

The first verification condition, IND-BASE, corresponds to the induction base
of the inductive proof. It states that INV holds upon entering the loop, because
at that point p = list . The formula IND-STEP corresponds to the induction
step: it states that the loop invariant is maintained if another loop iteration
is executed (i.e., p->payload 6= a).

The formulas VC-P1 and VC-P2 correspond to the two cases of leaving
the find function: VC-P1 establishes the property if true is returned, and
VC-P2 establishes the property if false is returned. Proving these verification
conditions therefore shows that the program satisfies the required property.

8.5.2 Deciding Reachability Predicate Formulas

As before, we can simply expand the definition above and obtain a semantic
reduction. As an example, consider the verification condition labeled IND-
BASE in Sect. 8.5.1:

192 8 Pointer Logic

p = list =⇒ INV (8.59)

⇐⇒ p = list =⇒ list
nxt
→
0
p ∧ ∀q 6= p. list

nxt
→
p
q =⇒ q->payload 6= a (8.60)

⇐⇒ list
nxt
→
0

list ∧ ∀q 6= list . (list
nxt
→
list

q =⇒ q->payload 6= a) (8.61)

⇐⇒ (∃n. follownxt
n (list) = list ∧ ∀m < n. follownxt

m (list) 6= list)∧
(∀q 6= list . ((∃n. follownxt

n (list) = q ∧ ∀m < n. follownxt
m (list) 6= list)

=⇒ q->payload 6= a)) . (8.62)

Equation (8.62) is argued to be valid as follows: In the first conjunction,
instantiate n with 0. In the second conjunct, observe that q 6= list , and thus
any n satisfying ∃n. follownxt

n (list) = q must be greater than 0. Finally, observe
that follownxt

m (list) 6= list is invalid for m = 0, and thus the left-hand side of
the implication is false.

However, note that the formulas above contain many existential and uni-
versal quantifiers over natural numbers and pointers. Applying the semantic
reduction therefore does not result in a formula that is in the array prop-
erty fragment defined in Chap. 7. Thus, the decidability result shown in that
chapter does not apply here. How can such complex reachability predicate
formulas be solved?

Using Rules

In such situations, the following technique is frequently applied: rules are de-
rived from the semantic definition of the predicate, and then they are applied
to simplify the formula.

p
f
→
x
q ⇐⇒ (p = q ∨ (p 6= x ∧ p->f f

→
x
q)) (A1)

(p
f
→
x
q ∧ q f→

x
r) =⇒ p

f
→
x
r (A2)

p
f
→
x
q =⇒ p

f
→
q
q (A3)

(p
f
→
y
x ∧ p f

→
z
y) =⇒ p

f
→
z
x (A4)

(p
f
→
x
x ∨ p f

→
y
y) =⇒ (p

f
→
y
x ∨ p f

→
x
y) (A5)

(p
f
→
y
x ∧ p f

→
z
y) =⇒ x

f
→
z
y (A6)

p->f
f
→
q
q ⇐⇒ p->f

f
→
p
q (A7)

Fig. 8.4. Rules for the reachability predicate

8.5 Rule-Based Decision Procedures 193

The rules provided in [204] for our reachability predicate are given in
Fig. 8.4. The first rule (A1) corresponds to a program fragment that follows
field f once. If q is reachable from p, avoiding x, then either p = q (we are
already there) or p 6= x, and we can follow f from p to get to a node from
which q is reachable, avoiding x. We now prove the correctness of this rule.

Proof. We first expand the definition of our reachability predicate:

p
f
→
x
q ⇐⇒ ∃n. (followfn(p) = q ∧ ∀m < n. followfm(p) 6= x) . (8.63)

Observe that for any natural n, n = 0 ∨ n > 0 holds, which we can therefore
add as a conjunct:

⇐⇒ ∃n. ((n = 0 ∨ n > 0)∧
followfn(p) = q ∧ ∀m < n. followfm(p) 6= x) .

(8.64)

This simplifies as follows:

⇐⇒ ∃n. p = q ∨ (n > 0 ∧ followfn(p) = q ∧ ∀m < n. followfm(p) 6= x) (8.65)

⇐⇒ p = q ∨ ∃n > 0. (followfn(p) = q ∧ ∀m < n. followfm(p) 6= x) . (8.66)

We replace n by n′ + 1 for natural n′:

⇐⇒ p = q ∨ ∃n′. (followfn′+1(p) = q ∧ ∀m < n′ + 1. followfm(p) 6= x) . (8.67)

As followfn′+1(p) = followfn′(p->f), this simplifies to

⇐⇒ p = q ∨ ∃n′. (followfn′(p->f) = q ∧ ∀m < n′ + 1. followfm(p) 6= x) .(8.68)

By splitting the universal quantification into the two parts m = 0 and m ≥ 1,
we obtain

⇐⇒ p = q ∨ ∃n′. (followfn′(p->f) = q ∧
p 6= x ∧ ∀1 ≤ m < n′ + 1. followfm(p) 6= x) .

(8.69)

The universal quantification is rewritten:

⇐⇒ p = q ∨ ∃n′. (followfn′(p->f) = q ∧
p 6= x ∧ ∀m < n′. followfm(p->f) 6= x) .

(8.70)

As the first and the third conjunct are equivalent to the definition of p->f
f
→
x
q,

the claim is shown.

There are two simple consequences of rule (A1):

p
f
→
x
p and p

f
→
p
q ⇐⇒ p = q . (8.71)

In the following example we use these consequences to prove (8.61), the reach-
ability predicate formula for our first verification condition.

194 8 Pointer Logic

Example 8.16. Recall (8.61):

list
nxt
→
0

list ∧ ∀q 6= list . (list
nxt
→
list

q =⇒ q->payload 6= a) . (8.72)

The first conjunct is a trivial instance of the first consequence. To show the
second conjunct, we introduce a Skolem variable9 q′ for the universal quan-
tifier:

(q′ 6= list ∧ list
nxt
→
list

q′) =⇒ q′->payload 6= a . (8.73)

By the second consequence, the left-hand side of the implication is false.

Even when the axioms are used, however, reasoning about a reachabil-
ity predicate remains tedious. The goal is therefore to devise an automatic
decision procedure for a logic that includes a reachability predicate. We men-
tion several decision procedures for logics with reachability predicates in the
bibliographical notes.

8.6 Problems

8.6.1 Pointer Formulas

Problem 8.1 (semantics of pointer formulas). Determine if the following
pointer logic formulas are valid using the semantic translation:

1. x = y =⇒ &x = &y .
2. &x 6= x .
3. &x 6= &y + i .
4. p ↪→ x =⇒ ∗p = x .
5. p ↪→ x =⇒ p->f = x .
6. (p1 ↪→ p2, x1 ∧ p2 ↪→ NULL, x2) =⇒ p1 6= p2 .

Problem 8.2 (modeling dynamically allocated data structures).

1. tt data structure is modeled by my-ds(q, l) in the following? Draw an
example.

c(q, 0)
.
= (∗q).p = NULL

c(q, i)
.
= (∗list-elem(q, i)).p = list-elem(q, i− 1) for i ≥ 1

my-ds(q, l)
.
= list-elem(q, l) = NULL ∧ ∀0 ≤ i < l. c(q, i)

2. Write a recursive shorthand DAG(p) to denote that p points to the root
of a directed acyclic graph.

9 A Skolem variable is a ground variable introduced to eliminate a quantifier, i.e.,
∀x.P (x) is valid iff P (x′) is valid for a new variable x′. This is a special case of
Skolemization, which is named after Thoralf Skolem.

8.6 Problems 195

3. Write a recursive shorthand tree(p) to denote that p points to the root of
a tree.

4. Write a shorthand hashtbl(p) to denote that p points to an array of lists.

Problem 8.3 (extensions of the pointer logic). Consider a pointer logic
that only permits a conjunction of predicates of the following form, where p
is a pointer, and fi, gi are field identifiers:

∀p. p->f1->f2->f3 . . . = p->g1->g2->g3 . . .

Show that this logic is Turing complete.

Problem 8.4 (axiomatization of the memory model). Define a set of
memory model axioms for an architecture that uses 32-bit integers and little-
endian byte ordering (this means that the least-significant byte has the lowest
address in the word).

Problem 8.5 (partitioning the memory). Suppose that a pointer logic
permits restrictions on L, the memory layout. Give a counterexample to The-
orem 8.14.

8.6.2 Reachability Predicates

Problem 8.6 (semantics of reachability predicates). Determine the sat-
isfiability of the following reachability predicate formulas:

1. p
f
→
p
q ∧ p 6= q .

2. p
f
→
x
q ∧ p f→

q
x .

3. p
f
→
q
q ∧ q f→

p
p .

4. ¬(p
f
→
q
q) ∧ ¬(q

f
→
p
p) .

Problem 8.7 (modeling). Try to write reachability predicate formulas for
the following scenarios:

1. p points to a cyclic list where the next field is nxt .
2. p points to a NULL-terminated, doubly linked list.
3. p points to the root of a binary tree. The names of the fields for the left

and right subtrees are l and r, respectively.
4. p points to the root of a binary tree as above, and the leaves are connected

to a cyclic list.
5. p and q point to NULL-terminated singly linked lists that do not share

cells.

196 8 Pointer Logic

Problem 8.8 (decision procedures). Build a decision procedure for a con-

junction of atoms that have the form p
f
→
q
q (or its negation).

Problem 8.9 (program verification). Write a code fragment that removes
an element from a singly linked list, and provide the verification conditions
using reachability predicate formulas.

8.7 Bibliographic Notes

The view of pointers as indices into a global array is commonplace, and simi-
larly so is the identification of structure components with arrays. Leino’s thesis
is an instance of recent work applying this approach [181], and resembles our
Sect. 8.3. An alternative point of view was proposed by Burstall: each com-
ponent introduces an array, where the array indices are the addresses of the
structures [60].

Transitive closure is frequently used to model recursive data structures.
Immerman et al. explored the impact of adding transitive closure to a given
logic. They showed that already very weak logics became undecidable as soon
as transitive closure was added [153].

The PALE (Pointer Assertion Logic Engine) toolkit, implemented by An-
ders Møller, uses a graph representation for various dynamically allocated
data structures. The graphs are translated into monadic second-order logic
and passed to MONA, a decision procedure for this logic [198]. Michael Ra-
bin proved in 1969 that the monadic second-order theory of trees was decid-
able [236].

The reachability predicate discussed in Sect. 8.5 was introduced by Greg
Nelson [204]. This 1983 paper stated that the question of whether the set
of (eight) axioms provided was complete remained open. A technical report
gives a decision procedure for a conjunction of reachability predicates, which
implies the existence of a complete axiomatization [207]. The procedure has
linear time complexity.

Numerous modern logics are based on this idea. For example, Lahiri and
Qadeer proposed two logics based on the idea of reachability predicates,
and offered effective decision procedures [175, 176]. The decision procedure
for [176] was based on a recent SMT solver.

Alain Deutsch [102] introduced an alias analysis algorithm that uses sym-
bolic access paths, i.e., expressions that symbolically describe which field to
follow for a given number of times. Symbolic access paths are therefore a gen-
eralization of the technique we described in Sect. 8.5. Symbolic access paths
are very expressive when combined with an expressive logic for the basis of
the access path, but this combination often results in undecidability.

Benedikt et al. [24] defined a logic for linked data structures. This logic uses
constraints on paths (called routing expressions) in order to define memory

8.7 Bibliographic Notes 197

regions, and permits one to reason about sharing and reachability within such
regions. These authors showed the logic to be decidable using a small-model
property argument, but did not provide an efficient decision procedure.

A major technique for analyzing dynamically allocated data structures is
parametric shape analysis, introduced by Sagiv, Reps, and Wilhelm [240, 251,
282]. An important concept in the shape analysis of Sagiv et al. is the use of
Kleene’s three-valued logic for distinguishing predicates that are true, false,
or unknown in a particular abstract state. The resulting concretizations are
more precise than an abstraction using traditional, two-valued logic.

Separation logic (see the aside on this subject on p. 184) was introduced
by John Reynolds as an intuitionistic way of reasoning about dynamically
allocated data structures [242]. Calcagno et al. [64] showed that deciding the
validity of a formula in separation logic, even if robbed of its characteristic
separating conjunction, was not recursively enumerable. On the other hand,
they showed that, once quantifiers were prohibited, validity became decidable.
Decidable fragments of separation logic have been studied, for example, by
Berdine et al. [25, 26, 27]; these are typically restricted to predicates over
lists. Parkinson and Bierman address the problem of modular reasoning about
programs using separation logic [217].

Kuncak and Rinard introduced regular graph constraints as a representa-
tion of heaps. They showed that satisfiability of such heap summary graphs
was decidable, whereas entailment was not [172].

Alias analysis techniques have also been integrated directly into verifica-
tion algorithms. Manevich et al. described predicate abstraction techniques
for singly linked lists [187]. Beyer et al. described how to combine a predicate
abstraction tool that implements lazy abstraction with shape analysis [28].
Podelski and Wies propose Boolean heaps as an abstract model for heap-
manipulating programs [230]. Here, the abstract domain is spanned by a vec-
tor of arbitrary first-order predicates characterizing the heap. Bingham and
Rakamarić [36] also proposed to extend predicate abstraction with predicates
designated to describe the heap. Distefano et al. [103] defined an abstract
domain that is based on predicates drawn from separation logic. Berdine et
al. use separation logic predicates in an add-on to Microsoft’s SLAM device
driver verifier, called Terminator, in order to prove that loops iterating over
dynamically allocated data structures terminate. A graph-based decision pro-
cedure for heaps that relies on a small-model property is given in [85]. The
procedure is able to reason about the length of list segments.

Most frameworks for reasoning about dynamically allocated memory treat
the heap as composed of disjoint memory fragments, and do not model ac-
cesses beyond these fragments using pointer arithmetic. Calcagno et al. in-
troduced a variant of separation logic that permits reasoning about low-level
programs including pointer arithmetic [63]. This logic permits the analysis of
infrastructure usually assumed to exist at higher abstraction layers, e.g., the
code that implements the malloc function.

198 8 Pointer Logic

8.8 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

A Set of addresses 174

D Set of data words 174

M Map from addresses to data words 174

L Memory layout 174

σ(v) The size of v 174

V Set of variables 174

J·K Semantics of pointer expressions 179

p ↪→ z p points to a variable with value z 179

p->f Shorthand for (∗p).f 181

list(p, l) p points to a list of length l 182

