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Derivation of the Lorentz transformation without the use of Einstein’s Second Postulate is pro-
vided along the lines of Ignatowsky, Terletskii, and others. This is a write-up of the lecture first
delivered in PHYS 4202 E&M class during the Spring semester of 2014 at the University of Georgia.
The main motivation for pursuing this approach was to develop a better understanding of why the
faster-than-light neutrino controversy (OPERA experiment, 2011) was much ado about nothing.

Special relativity as a theory of space and time

All physical phenomena take place in space and time.
The theory of space and time (in the absence of gravity)
is called the Special Theory of Relativity.

We do not get bogged down with the philosophical
problems related to the concepts of space and time. We
simply acknowledge the fact that in physics the notions
of space and time are regarded as basic and cannot be
reduced to something more elementary or fundamental.
We therefore stick to pragmatic operational definitions:

Time is what clocks measure. Space is what measuring
rods measure.

In order to study and make conclusions about the prop-
erties of space and time we need an observer. A natural
choice is an observer who moves freely (the one who is
free from any external influences). An observer is not a
single person sitting at the origin of a rectangular coor-
dinate grid. Rather, it is a bunch of friends (call it Team
K) equipped with identical clocks distributed through-
out the grid who record the events happening at their
respective locations.

How do we know that this bunch of friends is free
from any external influences? We look around and make
sure that nothing is pulling or pushing on any member
of the bunch; no strings, no springs, no ropes are at-
tached to them. An even better way is to use a collection
of “floating-ball detectors” (Fig. 1) distributed through-
out the grid [1]. When detector balls are released, they
should remain at rest inside their respective capsules. If
any ball touches the touch-sensitive surface of the cap-
sule, the frame is not inertial.

In the reference frame associated with a freely moving
observer (our rectangular coordinate grid), Galileo’s Law
of Inertia is satisfied: a point mass, itself free from any
external influences, moves with constant velocity. To be
able to say what “constant velocity” really means, and
thus to verify the law of inertia, we need to be able to
measure distances and time intervals between events hap-
pening at different grid locations.

 

Floating Ball 
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FIG. 1: (Color online.) A floating-ball inertial detector. After
[1].

Definition of clock synchronization

It is pretty clear how to measure distances: the team
simply uses its rectangular grid of rods.

It is also clear how to measure time intervals at a par-
ticular location: the team member situated at that loca-
tion simply looks at his respective clock. What’s not so
clear, however, is how the team measures time intervals
between events that are spacially separated.

A confusion about measuring this kind of time inter-
vals was going on for two hundred years or so, until one
day Einstein said: “We need the notion of synchronized
clocks! Clock synchronization must be operationally de-
fined.”

The idea that clock synchronization and, consequently,
the notion of simultaneity of spacially separated events,
has to be defined (and not assumed apriori) is the single
most important idea of Einstein’s, the heart of special
relativity. Einstein proposed to use light pulses. The
procedure then went like this:

In frame K, consider two identical clocks equipped
with light detectors, sitting some distance apart, at A
and B. Consider another clock equipped with a light
emitter at location C which is half way between A and
B (we can verify that C is indeed half way between A and
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B with the help of the grid of rods that had already been
put in place when we constructed our frame K). Then,
at some instant, emit two pulses from C in opposite di-
rections, and let those pulses arrive at A and B. If the
clocks at A and B show same time when the pulses arrive
then the clocks there are synchronized, by definition.

The light pulses used in the synchronization procedure
can be replaced with two identical balls initially sitting at
C and connected by a compressed spring. The spring is
released (say, the thread holding the spring is cut in the
middle), the balls fly off in opposite directions towards A
and B, respectively.

How do we know that the balls are identical? Because
Team K made them in accordance with a specific manu-
facturing procedure.

How do we know that all clocks at K are identical?
Because Team K made all of them in accordance with a
specific manufacturing procedure.

How do we know that a tic-toc of any clock sitting
in frame K corresponds to 1 second? Because Team K
called a tic-toc of a clock made in accordance with the
manufacturing procedure “a second”.

Similarly, clocks in K ′ are regarded as identical and
tick-tocking at 1 second intervals because in that frame
all of the clocks were made in accordance with the same
manufacturing procedure.

Now, how do we know that the manufacturing proce-
dures in K and K ′ are the same? (Say, how do we know
that a Swiss shop in frame K makes watches the same
way as its counterpart in frame K ′?) Hmm. . . . That’s
an interesting question to ponder about.

When studying spacetime from the point of view of
inertial frames of reference discussed above, people dis-
covered the following.

Properties of space and time:

1. At least one inertial reference frame exists. (Geo-
centric is OK for crude experiments; geliocentric is
better; the frame in which microwave background
radiation is uniform is probably closest to ideal).

2. Space is uniform (translations; 3 parameters).

3. Space is isotropic (rotations; 3 parameters).

4. Time is uniform (translation; 1 parameter).

5. Space is continuous (down to ∼ 10−18 [m]).

6. Time is continuous (down to ∼ 10−26 [s]).

7. Space is Euclidean (apart from local distortions,
which we ignore; cosmological observations put the
limit at ∼ 1026 [m], the size of the visible Universe;
this property is what makes rectangular grids of
rods possible).

8. Relativity Principle (boosts; 3 parameters).

Einstein constructed his theory of relativity on the ba-
sis of (1) The Principle of Relativity (laws of nature are
the same in all inertial reference frames), and (2) The
Postulate of the Constancy of the Speed of Light (the
speed of light measured by any inertial observer is in-
dependent of the state of motion of the emitting body).
[NOTE: This is not the same as saying that the speed
of light emitted and measured in K is the same as the
speed of light emitted and measured in K ′. This latter
type of constancy of the speed of light is already implied
by the principle of relativity.]

Here we want to stick to mechanics and push the
derivation of the coordinate transformation as far as
possible without the use of the highly counterintuitive
Einstein’s Second Postulate. The method that achieves
this will be presented below and was originally due to
Vladimir Ignatowsky [2].

[DISCLAIMER: I never read Ignatowsky’s original
papers, but the idea is well-known within the community,
often mentioned and discussed. Anyone with time to
burn can reproduce the steps without much difficulty.
The derivation below consists of 14 steps. If you can
reduce that number, let me know.]

Step 1: Galileo’s Law of Inertia for freely moving
particles

. . . implies the linearity of the coordinate transforma-
tion between K and K ′ (see Fig. 2),

x′ = α11(v)x+ α12(v)y + α13(v)z + α14(v)t, (1)

y′ = α21(v)x+ α22(v)y + α23(v)z + α24(v)t, (2)

z′ = α31(v)x+ α32(v)y + α33(v)z + α34(v)t, (3)

t′ = α41(v)x+ α42(v)y + α43(v)z + α44(v)t. (4)

Here we assumed that the origins of the two coordinate
systems coincide, that is event (0, 0, 0, 0) in K has coor-
dinates (0, 0, 0, 0) in K ′.
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FIG. 2: (Color online.) Two inertial reference frames (or-
thogonal grids of rods equipped with synchronized clocks) in
relative motion along the x-axis.



3

Step 2: Isotropy and homogeneity of space and
homogeneity of time

. . . imply that (i) x′ is independent of y and z, (ii) y′

is independent of z, x, and t; (iii) z′ is independent of x,
y, and t; (iv) t′ is independent of y and z, so

x′ = α11(v)x+ α14(v)t, (5)

y′ = α22(v)y, (6)

z′ = α33(v)z, (7)

t′ = α41(v)x+ α44(v)t. (8)

NOTE: The fact that y′ and z′ are independent of x
and t follows from the requirement that the x′-axis (the
line y′ = z′ = 0) always coincides with the x-axis (the
line y = z = 0); this would not be possible if y′ and z′

depended on x and t.
IMPORTANT: Eq. (8) indicates that it is possible to

have two spacially separated events A and B that are
simultaneous in frame K and, yet, non-simultaneous in
frame K ′, that is

∆tAB = 0, ∆xAB 6= 0 : ∆t′AB = α41∆xAB 6= 0. (9)

This is not as obvious as might seem: for example, be-
fore Einstein it was assumed that whenever ∆tAB is zero,
∆t′AB must also be zero. So keeping α41(v) in (8) is a
significant departure from classical Newtonian mechan-
ics.

Once the standard method of clock synchronization is
adopted, it is, however, relatively easy to give an example
of two events satisfying (9). Try that on your own!

Step 3: Isotropy of space

. . . also implies that y′ and z′ are physically equivalent,
so that α22(v) = α33(v) ≡ k(v), and thus

x′ = α11(v)x+ α14(v)t, (10)

y′ = k(v)y, (11)

z′ = k(v)z, (12)

t′ = α41(v)x+ α44(v)t. (13)

Step 4: Motion of O′ (the origin of frame K′)

. . . as seen from K gives xO′ = vtO′ , or xO′ − vtO′ = 0.
On the other hand, as seen from K ′, x′O′ = 0. For this
to be possible, we must have x′ ∝ (x− vt), and thus

x′ = α(v)(x− vt), (14)

y′ = k(v)y, (15)

z′ = k(v)z, (16)

t′ = δ(v)x+ γ(v)t, (17)

where we have re-labeled α41 ≡ δ and α44 ≡ γ.
NOTE: The γ just introduced will soon become the

celebrated gamma factor.

Step 5: Inversion x̃ = −x, ỹ = −y, and x̃′ = −x′,
ỹ′ = −y′
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FIG. 3: (Color online.) “Inverted” frames in relative motion.

. . . which is just a relabeling of coordinate marks, pre-
serves the right-handedness of the coordinate systems
and is physically equivalent to (inverted) frame K̃ ′ mov-

ing with velocity ṽ = −v relative to (inverted) frame K̃
(see Fig. 3), so that

x̃′ = α(−v)(x̃− vt), (18)

ỹ′ = k(−v)ỹ, (19)

z′ = k(−v)z, (20)

t′ = δ(−v)x̃+ γ(−v)t, (21)

or,

−x′ = α(−v)(−x− vt), (22)

−y′ = −k(−v)y, (23)

z′ = k(−v)z, (24)

t′ = −δ(−v)x+ γ(−v)t, (25)

which gives

α(−v) = α(v), (26)

k(−v) = k(v), (27)

δ(−v) = −δ(v), (28)

γ(−v) = γ(v). (29)

Step 6: Relativity principle and isotropy of space

. . . tell us that the velocity of K relative to K ′, as mea-
sured by K ′ using primed coordinates (x′, t′), is equal to
−v. REMINDER: the velocity of K ′ relative to K, as
measured by K using unprimed coordinates (x, t), is v.

I justify this by considering two local observers co-
moving with O and O′, respectively, and firing identical
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spring guns in opposite directions at the moment when
they pass each other (for a more formal approach, see [3]).
If the ball shot in the +x direction by O stays next to
O′ then, by the relativity principle and isotropy of space,
the ball shot in the −x′ direction by O′ should stay next
to O. This means that the velocity of O relative to O′ as
measured by K ′ is negative of the velocity of O′ relative
to O as measured by K. Thus,

x = α(−v)(x′ + vt′), (30)

y = k(−v)y′, (31)

z = k(−v)z′, (32)

t = δ(−v)x′ + γ(−v)t′, (33)

and since

y = k(−v)y′ = k(−v)k(v)y = k2(v)y, (34)

we get

k(v) = ±1. (35)

Choosing k(v) = +1, which corresponds to parallel rela-
tive orientation of y and y′ (as well as of z and z′), gives,
for the direct transformation,

x′ = α(v)(x− vt), (36)

y′ = y, (37)

z′ = z, (38)

t′ = δ(v)x+ γ(v)t, (39)

and, for the inverse transformation,

x = α(v)(x′ + vt′), (40)

y = y′, (41)

z = z′, (42)

t = −δ(v)x′ + γ(v)t′. (43)

Step 7: Motion of O (the origin of frame K)

. . . as seen from K gives xO = 0; also, as seen from
K ′, it gives x′O = α(v)(xO − vtO) = −vα(v)tO and t′O =

δ(v)xO+γ(v)tO = γ(v)tO. From this,
x′
O

t′O
= −vα(v)γ(v) . But

x′
O

t′O
= −v, which gives

α(v) = γ(v). (44)

As a result,

x′ = γ(v)(x− vt), (45)

y′ = y, (46)

z′ = z, (47)

t′ = δ(v)x+ γ(v)t, (48)

and

x = γ(v)(x′ + vt′), (49)

y = y′, (50)

z = z′, (51)

t = −δ(v)x′ + γ(v)t′, (52)

or, in matrix notation,[
x′

t′

]
=

[
γ(v) −vγ(v)
δ(v) γ(v)

] [
x
t

]
, (53)

and [
x
t

]
=

[
γ(v) +vγ(v)
−δ(v) γ(v)

] [
x′

t′

]
. (54)

Step 8: The odd function δ(v)

. . . can be written as

δ(v) = −vf(v2)γ(v), (55)

since γ(v) is even. [NOTE: The newly introduced func-
tion f of v2 will turn out to be a constant! Actually, one
of the goals of the remaining steps of this derivation is to
show that f is a constant. It will later be identifies with
1/c2.] Therefore,[

x′

t′

]
= γ

[
1 −v
−vf 1

] [
x
t

]
, (56)

and [
x
t

]
= γ

[
1 v
vf 1

] [
x′

t′

]
. (57)

Step 9: Lorentz transformation followed by its
inverse must give the identity transformation

This seems physically reasonable. We have,[
x′

t′

]
= γ

[
1 −v
−vf 1

] [
x
t

]
= γ2

[
1 −v
−vf 1

] [
1 v
vf 1

] [
x′

t′

]
= γ2

[
1− v2f 0

0 1− v2f

] [
x′

t′

]
, (58)

and thus

γ2(1− v2f) = 1, (59)

from where

γ = ± 1√
1− v2f

. (60)
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To preserve the parallel orientation of the x and x′ axes
we have to choose the plus sign (as can be seen by taking
the v → 0 limit), so that

γ =
1√

1− v2f
. (61)

Thus, [
x′

t′

]
=

1√
1− v2f

[
1 −v
−vf 1

] [
x
t

]
, (62)

and [
x
t

]
=

1√
1− v2f

[
1 v
vf 1

] [
x′

t′

]
, (63)

where, we recall, f = f(v2).

Step 10: Two Lorentz transformations performed in
succession is a Lorentz transformation

This step is crucial for everything that we’ve been do-
ing so far, for it shows that f is a constant, which will be
identified with 1/c2, where c is Nature’s limiting speed.

We have a sequence of two transformations: from (x, t)
to (x′, t′), and then from (x′, t′) to (x′′, t′′),[

x′′

t′′

]
= γ′

[
1 −v′
−v′f ′ 1

] [
x′

t′

]
= γ′

[
1 −v′
−v′f ′ 1

]
γ

[
1 −v
−vf 1

] [
x
t

]
= γ′γ

[
1 + vv′f −(v + v′)
−(vf + v′f ′) 1 + vv′f ′

] [
x
t

]
, (64)

where v is the velocity of K ′ relative to K (as measured
in K using the (x, t) coordinates), and v′ is the velocity
of K ′′ relative to K ′ (as measured in K ′ using the (x′, t′)
coordinates). But this could also be written as a single
transformation from (x, t) to (x′′, t′′),[

x′′

t′′

]
= γ′′

[
1 −v′′

−v′′f ′′ 1

] [
x
t

]
, (65)

with v′′ being the velocity of K ′′ relative to K (as mea-
sured in K using the (x, t) coordinates). This shows that
the (1, 1) and (2, 2) elements of the transformation ma-
trix (64) must be equal to each other and, thus,

f = f ′, (66)

which means that f is a constant that has units of inverse
speed squared, [s2/m2]. Wow!!

Step 11: Velocity addition formula (for reference
frames)

To derive the velocity addition formula (along the x-
axis) we use Eqs. (64) and (65) to get

γ′γ(v + v′) = γ′′v′′. (67)

Squaring and rearranging give

(v′′)2 =

(
v + v′

1 + vv′f

)2

, (68)

or,

v′′ = ± v + v′

1 + vv′f
. (69)

Choosing the plus sign (to make sure that v′′ = v when
v′ = 0), we get

v′′ =
v + v′

1 + vv′f
. (70)

Step 12: The universal constant f cannot be
negative . . .

. . . because in that case the conclusions of relativistic
dynamics would violate experimental observations! For
example, the force law,

d

dt

mvp√
1− v2pf

= F, (71)

where vp is the velocity of a particle, would get messed
up. In particular, such law would violate the observed
fact that it requires an infinite amount of work (and,
thus, energy) to accelerate a material particle from rest
to speeds approaching 3×108 [m/s] (this argument is due
to Terletskii [4]). In fact, it would become “easier” to ac-
celerate the particle, the faster it is moving. Incidentally,
this experimental fact is what “replaces” Einstein’s Sec-
ond Postulate in the present derivation! Thus, Eq. (70) is
the limit to which our (actually, Ignatowski’s) derivation
can be pushed.

REMARK: Relativistic dynamics has to be discussed
separately. We won’t do that here, but maybe you can
suggest a different reason for f not to be negative? See
[3] and [5] for possible approaches.

Step 13: Existence of the limiting speed

Denoting

f ≡ 1

c2
, (72)

we get the velocity addition formula,

v′′ =
v + v′

1 + vv′

c2

. (73)

If we begin with v′ < c and attempt to take the limit
v′ → c, we’ll get

v′′ → v + c

1 + vc
c2

= c, (74)
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which tells us that c is the limiting speed that a material
object can attain. (Notice that “material” here means
“the one with which an inertial frame can be associated”.
The photons do not fall into this category, as will be
discussed shortly!)

The possibilities therefore are:

1. c = +∞ (Newtonian mechanics; contradicts (71));

2. c > 0 and finite (Special Relativity);

3. c = 0 (Contradics observations.)

So we stick with option 2.
What if an object were created to have v′ > c from the

start (a so-called tachyon), like in the recent superluminal
neutrino controversy? We’d get some strange results.

For example, if we take v = c/2 and v′ = 2c, we get

v′′ =
(c/2) + (2c)

1 + (c/2)(2c)
c2

=
5

4
c, (75)

so in K the object would move to the right at a slower
speed than relative to K ′, while K ′ itself is moving to
the right relative to K. Bizarre, but OK, the two speeds
are measured by different observers, so maybe it’s not a
big deal . . . .

Step 14: Lorentz transformation in standard form

However, if we consider the resulting Lorentz transfor-
mation, [

x′

t′

]
=

1√
1− v2

c2

[
1 −v
− v
c2 1

] [
x
t

]
, (76)

or,

t′ =
t− v

c2x√
1− v2

c2

, (77)

x′ =
x− vt√
1− v2

c2

, (78)

y′ = y, (79)

z′ = z, (80)

we notice that in a reference frame K ′ associated with
hypothetical tachyons moving with v > c relative to K
(imagine a whole fleet of them, forming a grid which
makes up K ′), the spacetime coordinates of any event
would be imaginary! In order for the spacetime measure-
ments to give real values for (t′, x′, y′, z′), the reference
frame K ′ made of tachyons must be rejected.

What about a reference frame made of photons? In
that case, coordinates would be infinite and should also
be rejected. So a fleet of photons cannot form a “le-
gitimate” reference frame. Nevertheless, we know that

photons exist. Similarly, tachyons may also exist and,
like photons, (a) should be created instantaneously (that
is, can’t be created at rest, and then accelerated), and
(b) should not be allowed to form a “legitimate” inertial
reference frame.

What about violation of causality?
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FIG. 4: (Color online.) Violation of causality by a hypothet-
ical tachyon.

Indeed, the Lorentz transformation shows that
tachyons violate causality. If we consider two events,
A (tachyon creation) and B (tachyon annihilation) with
tB > tA such that tachyon’s speed, vp = xB−xA

tB−tA > c,

is greater than c as measured in K (see Fig. 4), then in
frame K ′ moving with velocity v < c relative to K we’ll
have from (77) and (78),

t′B − t′A = γ
[
(tB − tA)− v

c2
(xB − xA)

]
= γ

[
1− v

c2
xB − xA
tB − tA

]
(tB − tA)

= γ
(

1− vvp
c2

)
(tB − tA) , (81)

x′B − x′A = γ [(xB − xA)− v (tB − tA)]

= γ

[
1− v tB − tA

xB − xA

]
(xB − xA)

= γ

(
1− v

vp

)
(xB − xA) , (82)

where γ = 1/
√

1− v2/c2, which shows that it is possible
to find v < c such that t′B − t′A < 0; that is, in K ′ event
B happens before event A. This seems to indicate that
tachyons are impossible. However, causality is a conse-
quence of the Second Law of Thermodynamics, which
is a statistical law, applicable to macroscopic systems;
it does not apply to processes involving individual ele-
mentary particles. As a result, the existence of tachyons
cannot be so easily ruled out.
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Step 15: Speed of light is the limiting speed for
material objects

Finally, returning to Eq. (74), we see that if something
moves with c relative to K ′, it also moves with c rela-
tive to any other frame K ′′. That is: the limiting speed
is the same in all inertial reference frames. And there
is no mentioning of any emitter. Also, as follows from
(73), c is the only speed that has this property (of being
the same in all inertial frames). We know that light has
this property (ala Michelson-Morley experiment), so the
speed of light is the limiting speed for material objects.
Since neutrinos have mass, they cannot move faster than
light, and thus superluminal neutrinos are not possible.

Immediate consequences of the Lorentz
transformation

A. Length contraction and relativity of
simultaneity
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FIG. 5: (Color online.) Length contraction and relativity of
simultaneity.

Here we have a rod of (proper) length `0 ≡ x′B−x′A > 0
sitting at rest in frame K ′, see Fig. 5. Its speed relative
to frame K is v. The two events, A and B, represent the
meetings of the two clocks at the ends of the rod with
the corresponding clocks in the K frame at tA = tB . We
have from (77) and (78),

t′B − t′A = γ
(
− v

c2

)
(xB − xA) , (83)

x′B − x′A = γ (xB − xA) , (84)

or

t′B − t′A =
(
− v

c2

)
(x′B − x′A) , (85)

xB − xA =
x′B − x′A

γ
. (86)

Eq. (85) says that t′B−t′A < 0, that is, the meeting events
are not simultaneous in K ′ (relativity of simultaneity).
Eq. (86) says that the length of the rod, ` ≡ xB − xA, as
measured in K is smaller than its proper length by the
gamma factor,

` = `0/γ, (87)

the phenomenon of length contraction.

B. Time dilation
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FIG. 6: (Color online.) Time dilation.

This time a single clock belonging to K ′, Fig. 6, passes
by two different clocks in K. The corresponding two
events, A and B, have x′A = x′B , and are related to each
other by

t′B − t′A = γ
[
(tB − tA)− v

c2
(xB − xA)

]
= γ

[
1− v

c2
xB − xA
tB − tA

]
(tB − tA)

= γ

(
1− v2

c2

)
(tB − tA)

=
tB − tA

γ
. (88)

This means that upon arrival at B the moving clock will
read less time than the K-clock sitting at that location.
This phenomenon is called time dilation (moving clocks
run slower).
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