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Abstract

In this report we study the symmetries that correspond to the conservation of

the Runge-Lenz vector in the Kepler problem. In section 2 we use Noether’s

theorem to define a Runge-Lenz vector as a consequence of an invariance of the

action integral. It’s shown that such a vector exists for all central potentials.

In section 3 we describe the Kepler problem in space-time. By choosing a nice

parametrization we show that the equations of motion and the conservation of

energy describe a harmonic oscillator with an extra derivative in four dimensions

and a four dimensional sphere, respectively. From this we define a conserved

tensor. The components of this tensor correspond to the Runge-Lenz vector and

angular momentum.
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Introduction

1 Introduction

One of the most famous problems in classical mechanics is the Kepler problem.

This is the problem of a point mass in a central force field of the form

F(r) =
−k
r2

er. (1)

A special thing about this problem is that there exists an extra conserved quantity

besides the total energy and the angular momentum. This quantity is a vector

called the Runge-Lenz vector. The Runge-Lenz vector A for a particle of mass m

moving in a central force field F = − k
r2

er is defined as

A := p× L− mk

|r|
r. (2)

Here p is the momentum of the particle, L is the angular momentum, m the

mass and r the position vector of the particle. In the Kepler-problem the angular

momentum and energy are conserved. One might then think that there exist

seven conserved quantities. This is not the case, because the variables are not

independent of each other. From Figure 1 one sees that the Runge-Lenz-vector

lies in the plane of motion and thus A·L = 0. Further on by taking the dot product

A · A one obtains A2 = m2k2 + 2mEL2. From this one can see that there are

only five independent constants of motion in the Kepler-problem [1]. The orbits

in the Kepler-problem are conic-sections. A nice way to realize this is by using the

Runge-Lenz-vector. By denoting θ as the angle between the position vector and

the Runge-Lenz-vector one has

A · r = Arcosθ = r · p× L−mkr = L · r× p−mkr = L2 −mkr. (3)
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.

Figure 1: Illustration of how the Runge-Lenz-vector is oriented in the Kepler orbits
[3].

Thus we can solve for r as

1

r
=
mk

L2

[
1 +

A

mk
cosθ

]
, (4)

which is the equation of a conic section with eccentricity e = A/mk provided A is

constant [3]. Thus we see that the conservation of the Runge-Lenz-vector actually

is the reason that the orbits of the Kepler-problem are closed. The Runge-Lenz-

vector can in principle be generalized to any central potential as we shall see in

Section 2.2. However these generalized Runge-Lenz-vectors are often complicated

functions and usually not expressible in closed form[3]. Since the conservation

of the Runge-Lenz-vector implies closed orbits for the Kepler-problem one might

expect that there exists some analogue of this derivation for the isotropic harmonic

oscillator. This is indeed the case but we shall leave this question here [1].
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Runge-Lenz-vector from a symmetry of the action integral

2 Runge-Lenz-vector from a symmetry of the ac-

tion integral

2.1 General aspects of conserved quantities

Noether’s theorem relates conservation laws with symmetries. A somewhat simpli-

fied way to state this theorem is to say that if the action integral is invariant under

some transformation then there is some conserved quantity. Hamilton’s principle

says that the physical path of a system is such that the action is stationary. This

simply means that the action is invariant under an infinitesimal variation of the

path as q(t) 7→ q′i(t) = qi(t) + δηi. Besides the Euler-Lagrange-equations, this also

implies conservations laws. A trivial example is a Lagrangian with some cyclic co-

ordinate, then the canonical momentum conjugate to this coordinate is conserved.

This follows directly from the Euler-Lagrange-equations and thus this conservation

law follows from Hamilton’s principle. Noether’s theorem can somewhat simplified

be stated as, an invariance of the Lagrangian corresponds to a conservation law.

To see how this works we vary the path as

qi 7→ q′i = qi + δqi, (5)

where the variation δqi is such that it is zero at the endpoints. The velocity then

becomes

q̇i 7→ q̇′i = q̇i + δq̇i. (6)

The Lagrangian of the new coordinates can be expanded in a power series as

L(q′i, q̇
′
i) = L(qi, q̇i) +

∑
i

∂L

∂qi
δqi +

∑
i

∂L

∂q̇i
δq̇i + . . . (7)
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2.1 General aspects of conserved quantities

Taking only the linear terms we can write the variation of the Lagrangian as

δL =
∑
i

∂L

∂qi
δqi +

∑
i

∂L

∂q̇i
δq̇i. (8)

We now assume that the variation of the action can be written as the integral of

the variation of the Lagrangian

0 = δS =

∫ t2

t1

dtδL =

∫ t2

t1

dt
∑
i

[
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

]
=

∫ t2

t1

dt
∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
δqi.

(9)

In the last equality we used integration by parts and that the variation is zero

at the endpoints of integration. By the fundamental lemma of the calculus of

variations this integral is zero only if the integrand is zero. Also we assume that

the coordinates are independent, which implies that the coefficient in front of each

δqi is zero, and thus we obtain the Euler-Lagrange-equations

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0. (10)

These are one equation for each coordinate qi. By the Euler-Lagrange-equations

we can write ∑
i

∂L

∂qi
=
∑
i

d

dt

∂L

∂q̇i
. (11)

By inserting this expression in the expression for the variation of the Lagrangian

we can write

δL =
∑
i

[
d

dt

∂L

∂q̇i
δqi

]
+
∑
i

∂L

∂q̇i
δq̇i =

∑
i

d

dt

[
∂L

∂q̇
δqi

]
. (12)
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2.2 Runge-Lenz-vector

This expressions is a good way of defining constants of motion. As an example we

consider the case of a central potential. The Lagrangian can then be written as

L =
m

2
(ẋ2 + ẏ2 + ż2)− V (r). (13)

This Lagrangian of this system is obviously invariant under rotations, e.g rotation

about the x-axis by a small angle δθ as

r 7→ r′ = r + δθr× ex. (14)

From Equation (12) we can now define a constant of motion as

1

δθ

∑
i

[
∂L

∂q̇i
δqi

]
=
∑
i

pi(r× ex)i = zpy − pzy = Lx, (15)

which is the x-component of angular momentum. Although this seems as a useful

method it is not possible to define the Runge-Lenz-vector as a consequence of an

invariance of the Lagrangian, but for the whole action integral. By this method it is

only possible to define constants of motions such as linear and angular momentum

which are conserved due to some cyclic coordinate.

2.2 Runge-Lenz-vector

This section is based on the work done in [2]. We will now see how we can define the

Runge-Lenz-vector by a similar variational calculation. We study a system with

n generalized coordinates q1, . . . qn , described by a time independent Lagrangian

L(qk, q̇k). We now try a slightly more complicated variation of both the path and

time and then demand that the action integral is invariant. The path and time is
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2.2 Runge-Lenz-vector

varied as

qi 7→ q′i = qi + δαi(qk, t) and (16)

t 7→ t′ = t+ δβ, (17)

with some small parameter δ. Here the variation of the coordinates is a function

of the original variables and time. The variation added to time δβ is taken to be

constant. Since the variation of time is a constant and the Lagrangian is assumed

to be time-independent, the transformation of time will not change the action

integral. But the variation of time is still introduced for later calculations. Also

here the variations are such that they vanish at the endpoints of integration. The

velocities then become

q̇′i = q̇i + δα̇i. (18)

We can as before expand the Lagrangian in a power series and write the variation

of the Lagrangian as

δL =
∑
i

∂L

∂qi
δα +

∑
i

∂L

∂q̇ii
δα̇i. (19)

We now demand that the action integral is invariant under this transformation i.e

∫ t2

t1

L(qk, q̇k)dt =

∫ t2

t1

dt
[
L(q′k, q̇

′
k) +

dg(q, t)

dt

]
, (20)

where we added a total time derivative which we can do since the integrand is

determined only up to a total time derivative. The variation of the action integral

then becomes

0 = δS =

∫ t2

t1

dt

[
δL+

df

dt

]
, (21)

where f is defined to be the variation of g due to the coordinate transformation.

We now simply focus on the integrand since it is the most important part. We can
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2.2 Runge-Lenz-vector

rewrite the integrand in the variation of the transformed action integral as

δL+
df

dt
= δL+

df

dt
+
dL

dt
δβ − dL

dt
δβ

=
d

dt

[∑
k

∂L

∂q̇k

(
δα− q̇kδβ

)
+ Lδβ + f

]
−
∑
k

[
d

dt

∂L

∂q̇k
− ∂L

∂qk

](
δαk − q̇kδβ)

=
d

dt

[∑
k

∂L

∂q̇k

(
δα− q̇kδβ

)
+ Lδβ + f

]
. (22)

In the last step we simply used the Euler-Lagrange equations. We can see that an

invariance of the action integral under this more general transformation implies

both the Euler-Lagrange equations and another equation which is a conservation

law. As before the variation of the action integral is zero only if the integrand is

zero and thus we obtain the expression

d

dt

[∑
k

∂L

∂q̇k

(
δαk − q̇kδt

)
+ Lδβ + f

]
= 0. (23)

This is an expression involving the conserved quantities of the system. The terms

in the time derivative can be identified as a linear combination of the conserved

quantities of the system. By rewriting this we get

0 =
d

dt

[∑
k

∂L

∂q̇k
δαk −Hδβ + f

]
, (24)

where H is the Hamiltonian of the system. This expression has three terms: the

Hamiltonian which comes from the variation of time, the conjugate momentum

which comes from the variation of coordinates and the function f which we will

see is important for understanding how the Runge-Lenz vector can be conserved.

To see more conserved quantities we need to determine the functions f(q, t) and

δα(q, t) such that this expression holds. To proceed further we restrict ourself to
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2.2 Runge-Lenz-vector

the case of a central potential. The Lagrangian is then given by

L(r, q̇k) =
m

2

∑
k

q̇2k − V (r), (25)

where r :=
(∑

i q
2
i

)1/2
is the distance between the interacting bodies in the two-

body problem. We also assume that the equations that determine the generalized

coordinates qk do not involve time explicitly. The Hamiltonian is then equal to

the total energy:

H =
m

2

∑
k

q̇2k + V (r). (26)

We can write the time derivatives of the terms in Equation (24) by the chain rule

as

d

dt
Hδβ = δβ

∑
k

∂V

∂qk
q̇k + δβ

∑
k

mq̇kq̈k, (27)

d

dt
δαk =

∑
i

∂δαk

∂qi
q̇i +

∂δαk

∂t
and (28)

df

dt
=
∑
i

∂f

∂qi
q̇i +

∂f

∂t
. (29)

If we plug in this information into Equation (24) one obtains

d

dt

[∑
k

∂L

∂q̇k
δαk −Hδβ + f

]
=
∑
k

mq̈kδαk +
∑
k,i

mq̇k
∂δαk

∂qi
q̇i+

+
∑
k

q̇k

(
∂δαk

∂t
+
∂f

∂qk

)
−
∑
k

∂V

∂qk
q̇kδβ −

∑
k

mq̈kq̇kδβ +
∂f

∂t
, (30)

and by using that

δαk = δβq̇k (31)
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2.2 Runge-Lenz-vector

Equation (30) becomes

d

dt

[∑
k

∂L

∂q̇k
δαk −Hδβ + f

]
=
∑
k,i

[
mq̇iq̇k

∂δαk

∂qi

]
+
∑
k

q̇k

[
m
∂δαk

∂t
+
∂f

∂qk

]
−
[∑

k

∂V

∂qk
δαk −

∂f

∂t

]
. (32)

Each of the three terms to in square brackets will now be set to zero individually.

Since the term with the double sum over k and i is symmetric in its indices we

can write
∂δαk

∂qi
= ξik, (33)

where ξik = −ξki is some antisymmetric coefficient matrix. We can now integrate

this and obtain an expression for δαk. This gives the expression

δαk =
∑
i

ξkiqi + ak(t), (34)

where ak(t) is some integration constant. Setting the second term in square brack-

ets of the right hand side in Equation (32) equal to zero gives

∑
k

mq̇k
∂δαk

∂t
=
∑
k

mq̇kȧk = −
∑
k

∂f

∂qk
q̇k. (35)

Integrating this equation gives an expression for the function f as

f = −
∑
k

mȧkqk. (36)
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2.2 Runge-Lenz-vector

We now got an expression for all of the terms in the linear combination of conserved

quantities. Denoting this linear combination by B we can write

B =
1

2

∑
k,i

mξki
[
q̇kqi − q̇iqk

]
+
∑
k

m
[
q̇kak − ȧkqk

]
−Hδβ. (37)

The first term can be identified as components of the angular momentum and the

last term is the energy (Hamiltonian) of the system. The term in the middle is

the conserved quantity that is components of the Runge-Lenz-vector. By setting

the two last terms of Equation (32) to zero and use that the ak are independent

integration constants gives a differential equation for determining ak. One obtains

äk +
1

mr

dV

dr
ak = 0. (38)

Since we only assumed that the potential is a central potential, this shows that

there exist a conserved vector like the Runge-Lenz-vector for all central potentials.

Further on we can see that since ak is independent integration constants, the time

derivative of each term in the second sum of Equation (37) must be zero. This

means that the conserved Runge-Lenz like vector has components

m
[
q̇kak − ȧkqk

]
, (39)

where ak is determined by Equation (38). For the case of the Kepler problem

V = −k
r

a possible solution of the differential equation for ak is

ak =
∑
i

q̇iqi. (40)
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Extra symmetries in the Kepler problem

This can be verified by inserting the solution into Equation (38). The components

of the conserved vector are in this case

m
[
q̇kak − ȧkqk

]
= mq̇k

∑
i

qiq̇i + qk

[
k

r
−m

∑
k

q̇2k

]
, (41)

which is proportional to components of the Runge-Lenz vector as defined in Equa-

tion (2).

As mentioned before one would suspect that this differential equation also has

a nice solution for the case of the harmonic oscillator. For any central potential

V (r) the equations of motion can be written

q̈i = − 1

m

∂V

∂qi
= − 1

m

dV

dr

qi
r
, (42)

which is of the same form as Equation (38). Since the solution to the equations of

motion is qi(t), we would expect that the solution to Equation (38) can be written

as

ak =
∑
i

biqi, (43)

for some coefficients bi [5]. It is shown in [3] that in the case of a harmonic oscillator

the generalized Runge-Lenz vector can be written in this form. But the coefficients

bi are more complicated than in the Kepler problem.

3 Extra symmetries in the Kepler problem

This section is based on the work done by Göransson in [4].

The components of the angular momentum satisfy the following Poisson bracket

13



Extra symmetries in the Kepler problem

identities:

{Li, Lj} =
∑
k

εijkLk. (44)

The generating function for an infinitesimal rotation about an axis n is the com-

ponent of angular momentum in the direction of that axis. We thus say that the

symmetry group for a system with angular momentum conserved is SO(3). This

is the group of all orthogonal matrices of determinant one, i.e all matrices that

describe rotations in three dimensions. We now introduce the following scaled

version of the Runge-Lenz-vector:

~D :=
~A√

2m|E|
. (45)

This new vector then satisfies the following identities [1]:

{Di, Lj} =
∑
k

εijkDk, (46)

{Di, Dj} =


∑

k εijkLk if E < 0,

−
∑

k εijkLk if E > 0.

(47)

It is known that the conservation of both angular momentum and the Runge-Lenz

vector corresponds to a larger symmetry group. For negative energy (bounded

motion) this group is SO(4), i.e the group of rotation matrices of rotations in four

dimensions [1]. This can be realized by looking at the Poisson bracket relations

above. As discussed in [1](p.413-416) the generator matrices of rotations in four

dimensions satisfies the same commutation relations as the Possion bracket rela-

tions (44), (46) and (47).

We shall now describe the Kepler problem in space time. By choosing a suitable

parametrization we shall see how the resulting four dimensional symmetry can be
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Extra symmetries in the Kepler problem

identified. Henceforth we will only deal with the situation of bounded motion,

i.e E < 0. The equations of motions in the Kepler problem are simply by using

Newton’s 2nd law

mr̈ = −k r

r3
. (48)

The conservation of energy follows directly since the force is conservative,

m

2
|ṙ|2 − k

r
= E. (49)

To simplify some expressions we define the following constants:

α :=
√
−2E/m,

β := −k/(2E) and

γ := β/α = −k
√
−m/(2E)3.

We will describe this problem in space time. In conventional mechanics we describe

the trajectories parametrized with time as parameter. In space time we use time as

a coordinate, not as a parameter. Because of this we will describe the trajectories

parametrized by some other parameter, which we will denote by τ . Differentiating

with respect to τ will be denoted by prime. We demand that this new parameter

is such that the following equalities hold:

dt

dτ
= t′ =

r

α
and (50)

dτ

dt
=
α

r
. (51)

Using the chain rule we can now write

dr

dt
=
dr

dτ

dτ

dt
= r′

α

r
. (52)
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Extra symmetries in the Kepler problem

By inserting this into the equations of motion we can rewrite the equations of

motion in this new parametrization. Doing this one obtains

r′′ = −βr

r
+
r′r′

r
. (53)

The energy conservation in this new parametrization becomes

α2(t′ − γ)2 + |r′|2 = β2. (54)

We can think of this equation as a definition of a metric on space-time, which

means that the length of any four-vector Λ = tet + r in this metric is given by

||Λ|| =
√
α2t2 + |r|2. (55)

We can thus interpret the energy equation as that the four dimensional ”velocity-

vector” with time component t′ and space components r′ moves on a four dimen-

sional sphere centred at (γ, 0, 0, 0). To proceed further we shall look at the radial

component of r′′, which is r′′ = (
√

r · r)′′ . Calculating this one gets

r′′ = (
√

r · r)′′ =

(
r′ · r
r

)′
=

r′′ · r + r′ · r′

r
− r′r′ · r

r2
. (56)

Inserting the expression for r′′ from Equation (53) one obtains

r′′ =
|r′|2

r
− β. (57)

We can rewrite equation (54) as

|r′|2 = β2 − α2(t′ − γ)2 = β2 − α2(
r

α
− γ). (58)
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Extra symmetries in the Kepler problem

Inserting this into Equation (57) we obtain the nice formula

r′′ = β − r, (59)

and by using the parametrization constraint this can also be written as

t′′′ = γ − t′. (60)

Differentiating Equation (53) with respect to τ and using the expression for the

radial part(Equation (59)) one gets

r′′′ = −r′. (61)

This parametrization gives the equations of motion a nice form which is closely

related to a harmonic oscillator in four dimensions. If we define a four- dimensional

vector v with time component (t′ − γ) and space components r′ the equations of

motion and the energy conservation can be written as

||v||2 = β2 and v′′ = −v. (62)

These equations are invariant under rotations, thus the SO(4) symmetry becomes

apparent. From Equation (62) we observe that we can construct a conserved tensor

Γ as

Γ = v ∧ v′ = v ⊗ v′ − v′ ⊗ v. (63)

In index notation we can write this as

Γij = viv
′
j − v′ivj. (64)
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Extra symmetries in the Kepler problem

Calculating its derivative with respect to τ gives

(
Γij

)′
= v′iv

′
j + viv

′′
j − v′iv′j − v′′i vj = viv

′′
j − v′′i vj = −vivj + vivj = 0, (65)

and by the chain rule we have

dΓij

dt
=

(
Γij

)′
dτ

dt
=

(
Γij

)′
α

r
= 0, (66)

for all i, j and thus each component of Γ is conserved in time. Since v is a four-

vector, the tensor Γ can be represented as a 4×4 matrix. However by the definition

of the wedge product Γ is antisymmetric and all components on the diagonal are

zero. Because of this we can only identify six conserved quantities from this tensor.

Using Cartesian coordinates we can write

v′ =


t′′

x′′

y′′

0

 and v =


t′ − γ

x′

y′

0

 , (67)

where we choose coordinates such that the motion is in the x-y-plane. The com-

ponents of Γ can now be calculated as for example

Γ1,2 = v1v
′
2 − v2v′1 = (t′ − γ)x′′ − x′t′′ and Γ1,3 = (t′ − γ)y′′ − y′t′′. (68)

These components can be expressed as a conserved vector Π in space as

Π = (t′ − γ)r′′ − t′′r′. (69)
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Extra symmetries in the Kepler problem

This can be rewritten using Equation (53) and the parametrization constraint as

Π = (t′ − γ)r′′ − t′′r′ =
( r
α
− β

α

)−β
r

r +

[( r
α
− β

α

)r′
r
− r′

α

]
r′

=
β

rα

[
(r − β)r + r′r′

]
. (70)

Rewriting this in terms of time derivatives instead one obtains

Π =
β

αr

[
(r − β)r +

r

α2
(ṙ · r) ṙ

]
. (71)

This vector can be identified to be proportional to the Runge-Lenz vector as defined

in Equation (2). The other important conserved component of the tensor Γ is Γ2,3.

It can be calculated as

Γ2,3 = v2v
′
3 − v3v′2 = x′y′′ − x′′y′. (72)

This can rewritten as

Γ2,3 = x′
(−x
r

+
ṙ

α
x′
)

+ y′
(−y
r

+
ṙ

α
y′
)
. (73)

This component of Γ can be identified to be proportional to the z-component of

angular momentum.

To summarize, we saw that this parametrization in space time gives the equa-

tions of motions and conservation of energy a nice form. From these equations the

symmetry group SO(4) becomes apparent. These equations also provide a way of

defining the constants of motion angular momentum and the Runge-Lenz vector.

This is also done in [4] for the case of E > 0 and E = 0.
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