

# 正电子技术在材料科学 中的应用-半导体

# 叶邦角



核固体物理研究室 Laboratory of Nuclear Solid State Physics, USTC









# 半导体材料

- ●第一代半导体材料: Si, Ge
- 第二代半导体材料: III-V 族化合物(GaAs, InP等)
- II-VI族化合物等单晶(CdSe等),
- 第三代宽带隙半导体: IV-IV 族化合物(SiC 等) 单晶、微晶、纳米晶和非晶半导体。

### Positron Studies of Semiconductor Defects (PSSD)

- PSSD-2004,第4届,美国华盛顿州立大学
- PSSD-2002,第3届,日本东北大学
- PSSD-1999,第2届, McMaster Univ. 加拿大
- PSSD-1994,第1届, Halle, 德国

## **PSSD-Topics**

- 1. Basic work such as identification of defects: defect formation, migration, agglomeration and annealing.
- 2. Momentum distribution studies of defects: coincidence Doppler broadening, angular correlation of annihilation radiation (ACAR).
- 3. Low-k/High-k dielectric insulating materials in semiconductor devices
- 4. Theoretical calculations of momentum distributions and positron lifetimes
- 5. Slow beam studies of surface and near surface regions of semiconductors
- 6. High resolution positron lifetime studies of semiconductors
- 7. Semiconductor defects studied by the experimental methods other than positron annihilation
- 8. Industrial application of positron annihilation to semiconductor devices.

Positron Annihilation in Semiconductors Defect Studies

R.Krause-Rehberg H.S.Leipner

**Springer Series in Solid-State Science, 1998** 

### Introduction

- Questions of semiconductor industry
  - Defect types?
  - Defect charge states?
  - Defect concentrations?
- Answers of positron annihilation
  - Vacancy-like defects and defect complexes Size of a vacancy (mono-, di-, vacancy cluster)
  - Neutral or negatively charged vacancy-complexes Positively charged defects are invisible
  - Sensitivity limits 10<sup>14</sup>-10<sup>19</sup> cm<sup>-3</sup>

### **Positron in materials**



- positron wave-function can be localized in the attractive potential of a defect
- annihilation parameters change in the localized state
  - e.g. positron lifetime increases in a vacancy
- lifetime is measured as time difference between 1.27 and 0.51 MeV quanta
- defect identification and quantification possible

### Positron trapping - Vacancy

# Perfect lattice Atom potential [001] direction [110] direction [110] direction Atom potential in GaAs (110) plane Positron wave function in GaAs (110) plane

Positrons are repelled by positive atom cores

### Positron trapping

#### Perfect lattice (GaAs plane [110])



Positrons are repelled by positive atom cores

Vacancy represents a positron trap due to the missing nuclei (potential well for a positron)

Positron Annihilation is sensitive to vacancylike defects

Because of reduced electron density positrons live longer in vacancies



# **Defects in Materials**

| Defect Ty    | ype        | Size        | Materials  |  |
|--------------|------------|-------------|------------|--|
| Atomic       | ••••       | .1 nm       | Metals     |  |
| Vacancies    | • • • • •  |             |            |  |
| Dislocations |            | 1 nm-10 µm  | Metals     |  |
| Voids        | $\bigcirc$ | .1 nm-1 μm  | Composites |  |
| Holes        |            | .1 nm-10 µm | Polymers   |  |

# Point defects determine optical and electronic properties of semiconductors

- Point defects determine electronic and optical properties
- electric conductivity strongly influenced
- Doping of semiconductors (n-, p-Si)



- Point defects are generated by irradiation (e.g. cosmic rays), by plastic deformation or by diffusion, ...
- Metals in high radiation environment -> formation of voids -> embrittlement
- -> Properties of vacancies and other point defects must be known
- Analytical tools are needed to characterize point defects

#### The Diffusion of Positrons

Diffusion can be described by the time-dependent diffusion equation:

$$\frac{\partial}{\partial t}n_{+}(\mathbf{r},t) = D_{+}\nabla^{2}n_{+}(\mathbf{r},t) - \nabla \left[v_{d}n_{+}(\mathbf{r},t)\right] - \lambda_{eff}n_{+}(\mathbf{r},t).$$

$$n_{+}(\mathbf{r},t) \dots \text{ positron density} \qquad v_{d} \dots \text{ drift velocity (electric field)}$$

$$\lambda_{eff} = 1/\tau_{b} + \kappa(\mathbf{r}) \dots \text{ effective annihilation rate}$$

$$\kappa = \mu C \qquad \mu \dots \text{ trapping coefficient} \quad C \dots \text{ defect density}$$

Mean free path *l* and positron diffusion length  $L_+$  in semiconductors is mainly determined by acoustic phonon scattering  $\Rightarrow$  D  $\propto$  T<sup>-0.5</sup>

### 扩散长度

The positron diffusion length  $L_+$  is limited due to the finite lifetime of positrons in the defect-free bulk,  $\tau_b$ ,

$$L_{+} = \sqrt{\tau_b D_{+}}, \quad D_{+} = \tau_r \frac{k_B T}{m^*}$$

 $\tau_r$  is the relaxation time for the dominant scattering mechanism. The mean free path  $\langle l \rangle$  and the positron diffusion length  $L_+$  of some representative semiconductors at room temperature are presented in Table.

| Material | <i><l></l></i> [nm] | L+[nm]        |
|----------|---------------------|---------------|
| Si       | 6.9, 6.6, 8.5       | 219, 214, 243 |
| GaAs     | 5.3                 | 198           |
| Ge       | 5.3                 | 200           |



### Effect diffusion length L<sub>eff</sub>

# 1994年, Britton等人发现, 由于晶体缺陷和电场的影响, 扩散长度应修正为:

$$\begin{split} L_{e\!f\!f} = & \frac{1}{\sqrt{\frac{\lambda_{e\!f\!f}}{D_+} + \left(\frac{eE_{drift}}{2k_BT}\right)^2} - \frac{2\left|E_{drift}\right|}{2k_BT}} \end{split}$$

Edrift 是电场强度. 有效扩散长度随电场强度的增加而增加.

## Trapping

**Vacancies** 

Shallow positron traps

**Dislocations** 

**Voids** 

**Precipitates** 

Surfaces

Interfaces

Graned Material

**Positronium formation** 

### Positron Annihilation Lifetime Spectroscopy

 $\mathrm{dn}\,(t) = -\lambda\,n(t)$ probability n(t) that e<sup>+</sup> is alive at time t: n(0) = 1dt  $\lambda$  - positron annihilation rate Positron lifetime spectrum in bulk: (no trapping of positrons) 10 Si T<sub>bulk</sub> = 219 ps bulk GaAs:Zn T<sub>bulk</sub> = 230 ps 10 Intensity  $n(t) = e^{-\lambda_{bulk} t}$  $\lambda_h =$ 103 Th. annihilation radiation 10  $\lambda$  - slope of the exponential decay 10' 100 200 300 400 Channels



$$\tau_b = C_1 a_0^{3/2},$$
  
(C\_1 = 543.8 ps / nm<sup>1.5</sup>)

Siethoff 1998 Phys.stat.sol.(b)205,R3



- in a metal: charge of a vacancy is effectively screened by free electrons
- they are not available in semiconductors
- thus, long-range Coulomb potential added
- positrons may be attracted or repelled
- trapping coefficient  $\boldsymbol{\mu}$  is function of charge state

#### Vacancies may be charged



For a negative vacancy:

- Coulomb potential is rather extended but weak
- it supports trapping only at low temperatures
- at higher temperatures: detrapping dominates and vacancy behaves like a vacancy in a metal or a neutral vacancy

Positive vacancies repel positrons



Si的三种电荷态空位的捕获系数与温度的关系

#### **Positron Trapping in a Single Defect Type**



abbreviations:

$$\begin{aligned} \tau_1 &= \frac{1}{\lambda_{\rm b} + \kappa_{\rm d}}, \quad \tau_2 &= \frac{1}{\lambda_{\rm d}}, \\ I_1 &= 1 - I_2, \quad I_2 &= \frac{\kappa_{\rm d}}{\lambda_{\rm b} - \lambda_{\rm d} + \kappa_{\rm d}} \end{aligned}$$

The  $t_i$  and  $I_i$  are measured  $\Rightarrow$  k is obtained:

$$\kappa_{\rm d} = \mu C_{\rm d} = \frac{I_2}{I_1} \left( \frac{1}{\tau_{\rm b}} - \frac{1}{\tau_{\rm d}} \right)$$



 $\delta$  ... detrapping (escape) rate

#### Positron trapping by negative vacancies



- trapping process can be described quantitatively by trapping model
- Coulomb potential leads to Rydberg states
- from there: positrons may reescape by thermal stimulation
- once in the deep state: positron is captured until annihilation
- detrapping is strongly temperature dependent

$$\delta_{\rm R} = \frac{\kappa_{\rm R}}{\rho_{\rm v}} \left(\frac{m^* k_{\rm B} T}{2\pi\hbar^2}\right)^{3/2} \exp\left(-\frac{E_{\rm R}}{k_{\rm B} T}\right)$$

 $\rho_{\rm v}$  vacancy density

Manninen, Nieminen, 1981



 temperature dependence of positron trapping is rather complex

$$\kappa = \frac{\vartheta_{\rm R} \rho_{\rm v} \kappa_{\rm R0} T^{-1/2}}{\vartheta_{\rm R} \rho_{\rm v} + \kappa_{\rm R0} \left(\frac{m^* k_{\rm B}}{2\pi\hbar^2}\right)^{3/2} T \exp\left(-\frac{E_{\rm R}}{k_{\rm B}T}\right)}$$

- low temperature: ~T<sup>-0.5</sup> due to diffusion limitation in Rydberg states
- higher T: stronger temperature dependence due to thermal detrapping from Rydberg state

**Positron trapping rate** *k* in negatively charged gallium vacancies determined in semi-insulating gallium arsenide as a function of temperature T. The trapping rate is normalized to the value measured at 20 *K*. Different symbols stand for different samples.

| Table   | 1.   | Compilatio  | on of  | ' positr | on trap | ping    | coefficients | of  | vacancy-   | type  | defects  | experi- |
|---------|------|-------------|--------|----------|---------|---------|--------------|-----|------------|-------|----------|---------|
| mental  | ly ( | determined  | in va  | arious   | semicor | nducto  | ors (Krause- | Reh | berg and   | Leipn | er 1997  | ). Only |
| such e  | xpe  | riments w   | here t | he inde  | pendent | t refer | rence metho  | d w | as applied | to th | e same s | samples |
| were ta | ake  | n into acco | unt.   |          |         |         |              |     |            |       |          |         |

| Material | Defect Trapping coefficient                      |                                     | Т                                                   | Reference method | Authors       |   |
|----------|--------------------------------------------------|-------------------------------------|-----------------------------------------------------|------------------|---------------|---|
|          |                                                  | [10 <sup>15</sup> s <sup>-1</sup> ] | [10 <sup>-8</sup> cm <sup>3</sup> s <sup>-1</sup> ] | [K]              |               |   |
| Si:P     | (VP) <sup>0</sup>                                | 0.68                                | 1.4                                                 | 300              | Hall effect   | а |
|          |                                                  | > 1.3                               | > 2.6                                               | 300              | Resistivity   | b |
| Si:P     | (VP) <sup>-</sup>                                | 18                                  | 36                                                  | 300              | Hall effect   | а |
|          |                                                  | > 2                                 | > 4                                                 | 300              | Resistivity   | ъ |
| Si       | $V_{2}^{0}$                                      | $0.8 \pm 0.40$                      | $1.5 \pm 0.8$                                       | 300              | EPR           | С |
|          |                                                  | 0.8                                 | 1.б                                                 | 300              | Hall effect   | а |
| Si       | $V_2^-$                                          | $2.6 \pm 1.3$                       | 5.2 ± 2.6                                           | 300              | EPR.          | С |
|          |                                                  | 10                                  | 20                                                  | 300              | Hall effect   | а |
| Si       | V2 <sup>2-</sup>                                 | 5.2 ± 2.7                           | $10.5 \pm 5.3$                                      | 300              | EPR           | С |
|          |                                                  | 29                                  | 58                                                  | 300              | Hall effect   | а |
| Si       | $V_2^+$                                          | < 0.1                               | < 0.2                                               | 300              | Hall effect   | а |
| GaP      | $V_{\mathbf{p}}^{0}$                             | $0.8 \pm 0.3$                       | 1.5±0.6                                             | 473              | Hall effect   | đ |
| GaP      | V <sub>p</sub>                                   | <u>1.9 ± 0</u> .5                   | $3.8 \pm 1.0$                                       | 473              | Hall effect   | đ |
| GaP      | $V_{P}^{+}$                                      | < 0.1                               | < 0.2                                               | 473              | Hall effect   | đ |
| GaAs:Te  | (V <sub>Ga</sub> Te <sub>As</sub> ) <sup>−</sup> | $1.1 \pm 0.2$                       | $2.5 \pm 0.5$                                       | 300              | Hall effect   | е |
| GaAs:Si  | $(V_{Ga}Si_{Ga})^-$                              | $0.7 \pm 0.2$                       | $1.6 \pm 0.5$                                       | 300              | STM           | f |
| GaAs     | V <sub>G₄</sub> (EL2*)                           | > 3                                 | > 7                                                 | 25               | IR absorption | g |
|          |                                                  | > 30                                | > 68                                                | 20               | IR absorption | h |
| GaA1Sb   | $V_{G_{A}}^{-}$ (DX)                             | $1 \pm 0.3$                         | $2.9 \pm 1$                                         | 300              | DLTS          | i |
| HgCdTe   | $V_{Hz}^{2-}$                                    | $2.1 \pm 0.3$                       | 7 ± 1                                               | 300              | Hall effect   | j |
|          |                                                  | $0.1 \pm 0.025$                     | $0.3 \pm 0.1$                                       | 800              | Hall effect   | j |
| PbSe     | $V_{P_{0}}^{2-}$                                 | $0.1 \pm 0.01$                      | $0.3 \pm 0.03$                                      | 300              | Hall effect   | k |
| CdTe     | $V_{ca}^{2-} \operatorname{Cl}_{r_{b}}^{+}$      | $1.7 \pm 0.4$                       | $5.2 \pm 1.2$                                       | 300              | PL            | 1 |

*T* temperature of the positron experiment; EPR—electron paramagnetic resonance; STM scanning tunneling microscopy; IR—infrared; DLTS—deep level transient spectroscopy; PL photoluminescence.

\*Kawasuso et al. (1995c), <sup>b</sup>Mäkinen et al. (1992a), <sup>c</sup>Mascher et al. (1989b), <sup>d</sup>Krause-Rehberg et al. (1993c), <sup>e</sup>Krause-Rehberg et al. (1995b), <sup>f</sup>Gebauer et al. (1997c), <sup>g</sup>Krause et al. (1990b), <sup>h</sup>Le Berre et al. (1994), <sup>i</sup>Krause-Rehberg et al. (1993b), <sup>j</sup>Krause-Rehberg et al. (1995a), <sup>k</sup>Polity et al. (1993), <sup>i</sup>Krause-Rehberg et al. (1998).

| Parkhad     | Defect                          | $\tau_{\rm d}$ [ps] | date offert | Defect                          | $\tau_{\rm d}$ [ps] | noo none  | Defect                          | $\tau_{\rm d}$ [ps |
|-------------|---------------------------------|---------------------|-------------|---------------------------------|---------------------|-----------|---------------------------------|--------------------|
| С           | V                               | 146                 | Si          | V                               | 256                 | Ge        | v                               | 263                |
|             | V <sub>2</sub>                  | 206                 |             | V <sub>2</sub>                  | 309                 | edge geft | V <sub>2</sub>                  | 316                |
| AIP         | V <sub>AI</sub>                 | 265                 | GaP         | V <sub>Ga</sub>                 | 264                 | InP *     | Vin                             | 295                |
|             | $V_{\rm P}$                     | 261                 |             | Vp                              |                     |           | Vp                              | 275                |
|             | $V_{AI}V_P$                     | 319                 |             | $V_{Ga}V_{P}$                   | 316                 |           | V <sub>In</sub> V <sub>P</sub>  | 340                |
| AlAs        | V <sub>AI</sub>                 | 271                 | GaAs        | V <sub>Ga</sub>                 | 265                 | InAs      | VIn                             | 299                |
|             | V <sub>As</sub>                 | 274                 |             | V <sub>As</sub>                 | 268                 |           | V <sub>As</sub>                 | 285                |
|             | $V_{Al}V_{As}$                  | 439                 |             | $V_{Ga}V_{As}$                  | 321                 |           | V <sub>In</sub> V <sub>As</sub> | 347                |
| AlSb        | V <sub>Al</sub>                 | 298                 | GaSb        | V <sub>Ga</sub>                 | 287                 | InSb      | V <sub>In</sub>                 | 315                |
| - Scinitace | V <sub>Sb</sub>                 | 319                 |             | V <sub>Sb</sub>                 | 307                 |           | V <sub>Sb</sub>                 | 322                |
|             | V <sub>Al</sub> V <sub>Sb</sub> | 455                 |             | V <sub>Ga</sub> V <sub>Sb</sub> | 350                 |           | V <sub>In</sub> V <sub>Sb</sub> | 369                |
| CdTe        | V <sub>Cd</sub>                 | 321                 | HgTe        | V <sub>Hg</sub>                 | 304                 |           |                                 | 0.000              |
|             | V <sub>Te</sub>                 | 339                 |             | V <sub>Te</sub>                 | 315                 |           |                                 |                    |
|             | V <sub>Cd</sub> V <sub>Te</sub> | 384                 |             | $V_{Hg}V_{Te}$                  | 362                 |           |                                 | witten a           |
| GaN         | V <sub>Ga</sub> ·               | 273                 | - 1100.01   |                                 |                     |           |                                 |                    |
| ne kennen   | V <sub>N</sub>                  | 9 - H. KH.          |             | (m. edg. we                     |                     |           |                                 |                    |
|             | V <sub>Ga</sub> V <sub>N</sub>  | 348                 |             |                                 |                     |           |                                 |                    |
| SiC         | V <sub>Si</sub>                 | 196                 |             |                                 |                     |           |                                 |                    |
|             | V <sub>C</sub>                  | 153                 |             |                                 |                     |           |                                 |                    |
| senamo:     | 2V                              | 214                 |             |                                 |                     |           |                                 |                    |

**Table 3.8.** Positron bulk lifetimes (in ps) calculated according to the generalized gradient approximation (GGA) and compared with results from the local density approximation (LDA). The pseudo-potential calculations were carried out by Panda et al. (1997), and the linear muffin tin orbital in the atomic sphere approximation (LMTO-ASA) and the atomic superposition calculations by Barbiellini et al. (1995, 1996).

| Pseudo-potential |                  |                           | LMTO                      | -ASA                               | Atomic su                          | Atomic superposition   |                  |  |
|------------------|------------------|---------------------------|---------------------------|------------------------------------|------------------------------------|------------------------|------------------|--|
|                  | τ <sup>LDA</sup> | $\tau_{\rm th}^{\rm GGA}$ | $\tau_{\rm th}^{\rm LDA}$ | $	au_{\mathrm{th}}^{\mathrm{GGA}}$ | $	au_{\mathrm{th}}^{\mathrm{LDA}}$ | $	au_{ m th}^{ m GGA}$ | $\tau_{b}^{exp}$ |  |
| C                | 27               | 100                       | 86                        | 96                                 |                                    | nose <u>no</u> vience  | 105              |  |
| Si               | 190              | 216                       | 186                       | 210                                | 184                                | 207                    | 218              |  |
| Ge               | 198              | 228                       | 191                       | 228                                | 190                                | 229                    | 228              |  |
| SiC              | 130              | 145                       | 124                       | 139                                | 121                                | 134                    | 142              |  |
| GaAs             | 197              | 232                       | 190                       | 231                                | 190                                | 232                    | 229              |  |
| InP              | 213              | 246                       | 201                       | 248                                | 200                                | 247                    | 241              |  |
| ZnS              | 1 hence of       | 1 (20, 01 5               | 179                       | 223                                | 179                                | 232                    | 230              |  |
| CdTe             | 245              | 292                       | 228                       | 290                                | 228                                | 310                    | 280              |  |
| НдТе             | _                |                           | 222                       | 285                                | 222                                | 310                    | 274              |  |

 $\tau_{th}^{LDA}$  and  $\tau_{th}^{GGA}$  are the bulk lifetimes calculated for the local density approximation (LDA) and the generalized gradient approximation (GGA), respectively.  $\tau_{b}^{exp}$  is the most reliable experimental bulk lifetime.



两种计算方法比较



Calculated values of the positron lifetime as a function of unit-cell volume. The symbols denote theoretical lifetime values from

- (O) perfect crystals
- $(\Delta)$  monovacancies
- ( ) divacancies

#### Negative ions act as shallow positron traps



E<sub>sr</sub>~30-40meV

- at low T: negatively charged defects without open volume may trap positrons
- "shallow" due to small positron binding energy
- annihilation parameters close to bulk parameters
- acceptor-type impurities, dopants, negative antisite defects
- thermally stimulated detrapping can be described by:

$$\delta = \frac{\kappa}{\rho_{\rm st}} \left(\frac{m^* k_{\rm B} T}{2\pi\hbar^2}\right)^{3/2} \exp\left(-\frac{E_{\rm st}}{k_{\rm B} T}\right)$$

Saarinen et al., 1989

#### Shallow positron traps



#### Effect of shallow positron traps



The detrapping  $\delta$  and tripping  $\kappa_{st}$ :

$$\frac{\delta}{\kappa_{\rm st}} = \frac{1}{c_{\rm st}} \left( \frac{m^*}{2\pi\hbar^2} \right)^{3/2} (k_B T)^{3/2} \exp\left( -\frac{E_b}{k_B T} \right)^{3/2} \left( \frac{m^*}{k_B T} \right)^$$

$$\frac{\delta}{\kappa_{\rm st}} = \left(\frac{I_2}{I_1 \kappa_v - I_2 (\lambda_b - \lambda_2)} - \frac{1}{\kappa_{\rm st}}\right) (\lambda_{\rm st} - \lambda_2),$$



FIG. 6. The ratio of the detrapping and trapping rates in heavily doped *n*-type GaAs calculated from the decompositions of the lifetime spectra using Eq. (20). The solid lines are the fits of Eq. (19) to the experimental data with  $E_b = 43$  meV.
## 正电子寿命实验值与平均值

| Host | $	au_{ m expt}$ (ps)                                                                     | $	au^{m{st}}_{ m expt}$ (ps) |
|------|------------------------------------------------------------------------------------------|------------------------------|
| Si   | 218, <sup>a</sup> 219, <sup>b</sup> 222 <sup>c</sup>                                     | 220                          |
| Ge   | 228,° 230 <sup>d</sup>                                                                   | 229                          |
| AlP  |                                                                                          |                              |
| AlAs |                                                                                          |                              |
| AlSb |                                                                                          |                              |
| GaP  | 223,° 225 <sup>f</sup>                                                                   | 224                          |
| GaAs | 220, <sup>g</sup> 230, <sup>h</sup> 231, <sup>c</sup> 232, <sup>i</sup> 235 <sup>j</sup> | 232                          |
| GaSb | 247, <sup>f</sup> 260, <sup>k</sup> 260 <sup>l</sup>                                     | 260                          |
| InP  | 235, <sup>r</sup> 242, <sup>c</sup> 244, <sup>m</sup> 247 <sup>k</sup>                   | 244                          |
| InAs | 247, <sup>r</sup> 257 <sup>c</sup>                                                       | 257                          |
| InSb | 258, <sup>r</sup> 280, <sup>k</sup> 282 <sup>n</sup>                                     | 280                          |
| CdTe | 289,° 291 <sup>f</sup>                                                                   |                              |
| HgTe | 274°                                                                                     |                              |
|      |                                                                                          |                              |
| BeO  |                                                                                          |                              |
| BP   | 1.1.5                                                                                    |                              |
| C    | 115'                                                                                     | 115                          |
| GaN  | 180*                                                                                     | 180                          |
| MgO  | 166 <sup>p</sup>                                                                         | 166                          |
| SIC  | 157'                                                                                     | 157                          |

## **Positron in Si**







正电子寿命随温度变化



- positron lifetime spectra consist of exponential decay components
- positron trapping in open-volume defects leads to long-lived components
- longer lifetime due to lower electron density
- analysis by non-linear fitting: lifetimes τ<sub>i</sub> and intensities I<sub>i</sub>

$$N(t) = \sum_{i=1}^{k+1} \frac{I_i}{\tau_i} \exp\left(-\frac{t}{\tau_i}\right)$$
  
trapping coefficient  
$$\kappa_{d} = \mu C_{d} = \frac{I_2}{I_1} \left(\frac{1}{\tau_b} - \frac{1}{\tau_d}\right)$$
  
defect concentration

trapping rate

#### **Temperature-dependent positron trapping**



- temperature dependence of positron trapping can be used to determine the charge state of vacancies
- trapping to positive vacancies possible at elevated T
- however: has never been observed
- example: Positron trapping in eirradiated Si
- trapping by negatively charged divacancies

(Mäkinen et al. 1989)

#### **Electron-irradiation Si**

#### Theoretical calculation of vacancy clusters in Si



- there are cluster configurations with a large energy gain
- "Magic Numbers" with 6, 10 und 14 vacancies
- positron lifetime increases distinctly with cluster size
- for n > 10 saturation effect, i.e. size cannot be determined



Physica B 273-274 (1999) 501-504

www.elsevier.com/locate/physb

Magic number vacancy aggregates in Si and GaAs – structure and positron lifetime studies

T.E.M. Staab<sup>a,\*</sup>, M. Haugk<sup>b</sup>, A. Sieck<sup>b</sup>, Th. Frauenheim<sup>b</sup>, H.S. Leipner<sup>c</sup>

<sup>a</sup>Helsinki University of Technology, Laboratory of Physics, P.O. Box 1100, FIN-02015 HUT, Finland

TABLE I. Lifetime results for positrons trapped in defects in Si. The bulk lifetime in Si is  $\sim 218$  psec at room temperature; it has a weak temperature dependence of  $4 \times 10^{-3}$  psec/°C between 20 and 1200 °C.

| Defect type        | Lifetime (psec)          | Reference |
|--------------------|--------------------------|-----------|
|                    | Vacancies                |           |
| monovacancy        | 266-273                  | a,b,c,d,e |
| divacancy          | 300-325                  | a,f,g     |
| 4-vacancy          | 435                      | f         |
| 5-vacancy          | 505                      | h         |
| 6-vacancy (?)      | >520                     | i         |
|                    | Vacancy-impurity complex |           |
| 0-V                | 270                      | i         |
| O <sub>2</sub> -V  | 240                      | i         |
| 0-V-B              | 240                      | i         |
| (P-V) <sup>0</sup> | 268,270                  | k.i       |
| (P-V) <sup>-</sup> | 248,250                  | c.k       |

# Si中5种电荷态空位

$$ig(V_{Si}^{2-}:260 ps V_{Si}^{1-}:258 ps V_{Si}^{0}:255 ps V_{Si}^{2+}:不被捕获 V_{Si}^{1+}:不被捕获$$



## 各种空位缺陷不同电荷态的能级

## **Multivacancies**



Configuration of vacant sites in multivacancies: V4 with a zigzag chain(a) and a trigonal pyramid (b), V5 with a nonplanar shape(c), V6 with a closed hexagon (d), and V10 with an adamantine cage (e).

## Si多空位缺陷的正电子寿命

|      |                     | Positron lifetime      |                             |                        |  |  |
|------|---------------------|------------------------|-----------------------------|------------------------|--|--|
|      | Exp. <sup>a</sup>   | No rel.<br>(this work) | Relaxed<br>(this work DFTB) | Full rel. <sup>b</sup> |  |  |
| п    | $\tau(\mathrm{ps})$ | $\tau(\text{ps})$      | $\tau(\text{ps})$           | $\tau(\mathrm{ps})$    |  |  |
| Bulk | 218                 | 218                    |                             | 215                    |  |  |
| 1    | 282                 | 253                    | 218                         | 279                    |  |  |
| 2    | 310                 | 303                    | 240                         | 309                    |  |  |
| 3    |                     | 329                    | 278                         | 320                    |  |  |
| 4    |                     | 343                    | 291                         | 337                    |  |  |
| 5    |                     | 353                    | 301                         | 345                    |  |  |
| 6    |                     | 375                    | 317                         | 348                    |  |  |
| 7    |                     | 383                    | 330                         |                        |  |  |
| 8    |                     | 389                    | 364                         |                        |  |  |
| 9    |                     | 398                    | 368                         |                        |  |  |
| 10   |                     | 420                    | 385                         |                        |  |  |
| 11   |                     | 422                    | 392                         |                        |  |  |
| 12   |                     | 425                    | 402                         |                        |  |  |
| 13   |                     | 427                    | 406                         |                        |  |  |
| 14   |                     | 435                    | 414                         |                        |  |  |
|      |                     |                        |                             |                        |  |  |



Black atoms and bonds represent the removed atoms forming a cage of V14 in the ideal crystal (a). PHYSICAL REVIEW B

VOLUME 53, NUMBER 12

#### Lifetimes of positrons trapped at Si vacancies

Mineo Saito NEC Informatec Systems, Ltd., 34, Miyukigaoka, Tsukuba 305, Japan

TABLE I. Positron lifetimes in Si.  $\lambda_{core}$  and  $\lambda$  represent annihilation rates for the core and total electron charges, respectively.

|                                   | Theory (ps)      | $\lambda_{\text{core}}/\lambda{\times}100$ | Expt. (ps)       |
|-----------------------------------|------------------|--------------------------------------------|------------------|
| Bulk                              | 215              | 2.37                                       | 218 (Ref. 5)     |
| V                                 | 279              | 0.67                                       | 270 (Ref. 5)     |
| $V_2$                             | 309              | 0.50                                       | 295-325 (Ref. 8) |
| V <sub>3</sub>                    | 320              | 0.48                                       |                  |
| V <sub>4</sub> (zigzag chain)     | 325              | 0.46                                       |                  |
| V <sub>4</sub> (trigonal pyramid) | 337              | 0.43                                       |                  |
| V <sub>5</sub>                    | 345              | 0.41                                       |                  |
| V <sub>6</sub>                    | 348              | 0.45                                       |                  |
| V <sub>10</sub>                   | 386 <sup>a</sup> | 0.29                                       |                  |

<sup>a</sup>The present cell size is slightly insufficient to describe  $V_{10}$  (see text).



The lifetime vs vacancy of each size. The solid and dashed lines indicate lifetimes for the relaxed and ideal geometries, respectively.

### Si多空位缺陷的正电子寿命值

#### 和经验公式

| Lifetime (ps)                                      | Bulk             | $\mathbf{V}_1$   | $V_2$            | <b>V</b> <sub>3</sub> | $V_4$            | $V_5$            | $V_6$            | $V_7$ | $V_8$            |
|----------------------------------------------------|------------------|------------------|------------------|-----------------------|------------------|------------------|------------------|-------|------------------|
| Range of lifetime<br>values reported (Refs. 24–27) | 215<br>to<br>221 | 254<br>to<br>279 | 299<br>to<br>309 | 320<br>to<br>330      | 325<br>to<br>354 | 345<br>to<br>376 | 348<br>to<br>375 |       | 387<br>to<br>399 |
| Lifetime values<br>from Eq. (1)                    | 218              | 266              | 299              | 323                   | 342              | 357              | 369              | 379   | 387              |

$$\tau = \tau_0 + \frac{AN_v}{(B+N_v)}$$

A=266.57ps B=4.60  $\tau_0$ =218ps



**Defect lifetime vs vacancy clusters in Si** 

TABLE III. Characteristic *S* and *W* parameters calculated for the perfect bulk lattice and for the ideal vacancy clusters in Si. The momentum component  $p_z$  is along the [111] direction. Before calculating the *S* and *W* parameters the theoretical Doppler spectra have been convoluted with a Gaussian with FWHM of 4.7  $\times 10^{-3}m_0c$ .  $S_{val}$  and  $S_{B,val}$  have been calculated using the valence electron momentum distributions instead of the total distribution.

| System | $S/S_B$        | $S_{\rm val}/S_{B,{\rm val}}$ | $W/W_B$         |
|--------|----------------|-------------------------------|-----------------|
| Bulk   | $S_B = 0.5344$ | $S_B = 0.5410$                | $W_B = 0.01701$ |
| V      | 1.018          | 1.014                         | 0.86            |
| $V_2$  | 1.045          | 1.038                         | 0.72            |
| $V_3$  | 1.053          | 1.045                         | 0.68            |
| $V_4$  | 1.067          | 1.058                         | 0.64            |
| $V_5$  | 1.081          | 1.072                         | 0.59            |



Sensitivity limits of PAS for vacancy detection

- lower sensitivity limit e.g. for negatively charged divacancies in Si starts at about 10<sup>15</sup> cm<sup>-3</sup>
- upper limit: saturated positron trapping
- defect identification still possible
- only lower limit for defect density can be given

离子注入

- H N
- He As
- Kr Ge
- Ar
- 0
- F

- **B**
- 多种离子 混合注入

## Defects in ion-implanted Si

$$S(E) = F_{\text{surf}}(E)S_{\text{surf}} + F_{\text{vac}}(E)S_{\text{vac}} + F_{\text{bulk}}(E)S_{\text{bulk}},$$

● S<sub>suf</sub>, S<sub>vas</sub>和S<sub>b</sub>表示表面,空位和晶体体S参数 ● F 为各部分的比例.

#### Defects in Si induced by Ion Implantation 0 B注入Si mean positron depth (µm) (Eichler et al., 1997) 0.59 6.24 1.92 3.83 defect B:Si 50, 150, 300 keV 1.04 $S \ / S$ bulk 1.00 bulk Implantation dose 0.96 surface state $\blacksquare 1.10^{14} \text{ cm}^{-2}$ $\Delta 2.10^{16} \text{ cm}^{-2}$ 0.92 surface state ♦ reference 20 30 10 40 0.98 0 0.96 1.00 W / W<sub>bulk</sub> positron energy (keV)







FIG. 2. S-z curves obtained from 80 keV boron-implanted Si. Solid lines represent best fits with POSTRAP5. The dotted line shows the depth distribution of implanted boron, calculated using TRIM code.



FIG. 3. Normalized  $S_{defect}$  values as a function of implanted boron fluences. The  $S_{defect}$  value is extracted from the fitting procedure.

# F<sup>+</sup> implanted Si

#### **Shallow Doping**





## H注入

Kwinonen等用能量为35,60, 和 100 keV,剂量为1×10<sup>6</sup> H+ 的H+注入到Si中,研究空位的 形成.图为ΔS (=S<sub>irradiated</sub>-S<sub>unirradiated</sub>)随正电 子能量的变化,缺陷见下图. 这些双空位缺陷在470-570K 之间可以退火掉.



### • 260KeV的P+辐照Si



图表明在600C退火 后20C测量的S-E曲 线,对应于100KeV-P+在2%和25%污染, 离表面100nm内两组 结果差别很大, 100nm是100keV-P+ 的射程,高污染注入 在表面缺陷较多.



 The effect of isochronal anneal on the S-E data for P<sup>+</sup> implanted Si



O注入

S值高于Sb区(<2keV) S值小于Sb区(<9keV) S=Sb,>20keV

表层有大的S值表明 有大的空位团形成, 因为辐照在600C完 成的,单和双空位 能移动.

- (O)600 °C 时200 keV氧离子注入到 Si(100) 中,剂量为 1.7×10<sup>17</sup> ions/cm<sup>2</sup>.
- ()1300 °C 退火后的数据.

## Irradiation induced defects



# 不同辐照剂量下正电子寿命随温度变化

#### 正电子捕获率随温度变化

●线性减少 ●随温度增加减少10倍 ●辐照剂量大,捕获率大 辐照条件,测量条件同上





τ<sub>2</sub>寿命不随温度变化 只是强度随温度减少

### 电子辐照Si:P 1.5-MeV, 20°K

不管何种辐照

命随温度基本

不变.

剂量,平均寿



正电子平均寿命随温度变化

# Mater.Sci.Forum 175-177, 423(1995)

| Si 双空位缺陷寿命<br>(ps)          |     |      |  |  |
|-----------------------------|-----|------|--|--|
| 缺陷                          | 10K | 320K |  |  |
| V <sup>2-</sup> 2           | 260 | 320  |  |  |
| V-2                         | 278 | 320  |  |  |
| V <sup>0</sup> <sub>2</sub> | 290 | 295  |  |  |



比较红外吸收系数和正电子捕获率



#### PHYSICAL REVIEW B

#### VOLUME 58, NUMBER 16

15 OCTOBER 1998-II

#### Defects in electron-irradiated Si studied by positron-lifetime spectroscopy

A. Polity, F. Börner, S. Huth, S. Eichler, and R. Krause-Rehberg Fachbereich Physik, Universität Halle, D-06099 Halle (Saale), Germany (Received 20 April 1998; revised manuscript received 13 July 1998)



子辐照条件: ~2 MeV, 4 K, 10<sup>18</sup> cm<sup>-2</sup>)

#### 正电子寿命随退火温度的变 化. 测量条件 90° K.



4°K和室温下300°K不同电子辐照剂量(2 MeV) 下正电子寿命随温度的变化.

The solid lines correspond to the trapping model taking into account a negatively charged vacancy defect and a negative ion as shallow positron trap.

### n-irradiated Si

- radiation defects limit lifetime of detectors in high-luminosity collider experiments (ATLAS, TESLA)
- neutron irradiation generates vacancytype defects
- in as-irradiated state at RT:
   positron trapping rate: κ = 9.7×10<sup>9</sup> s<sup>-1</sup>
   defect concentration: C<sub>def</sub> = 2.5×10<sup>17</sup> cm<sup>-3</sup>
- therefore: C<sub>def</sub> >> [O]
- probably isolated divacancies and larger vacancy clusters

(monovacancies anneal at about 170 K; divacancies stable up to 450...500 K)


## n-irradiated Si

 $^{ullet}$  two different vacancy-type defects are detected: divacancies and V $_3$ 



## n-irradiated Si

• after annealing of divacancies (673 K annealing step) positron trapping rate:  $\kappa = 2 \times 10^9 s^{-1}$ assuming V<sub>3</sub>  $\Rightarrow$ defect concentration:  $C_{V3} \approx 3 \times 10^{16} \text{ cm}^{-3}$ 

 annealing stages at 300...600K and at 800 K



## Positron in Germanium



| Table 4.3. | Positron- | lifetime | data c | of ge | rmanium. |
|------------|-----------|----------|--------|-------|----------|
|------------|-----------|----------|--------|-------|----------|

|                             | Positron annihilation characteristics                  |                             | Dissolution        |  |
|-----------------------------|--------------------------------------------------------|-----------------------------|--------------------|--|
| arabagan Salada             | Lifetime [ps]                                          | $\tau_{\rm d}/\tau_{\rm b}$ | temperature [K]    |  |
| Bulk lifetime               | 228 <sup>a,b</sup>                                     | March State                 | UNN E              |  |
| Monovacancies               | 278 <sup>c</sup> , 290 <sup>a</sup> , 292 <sup>d</sup> | 1.22, 1.27, 1.28            | 200 <sup>a,c</sup> |  |
| Voids                       | 520 <sup>°</sup>                                       | 2.28                        | 870 <sup>°</sup>   |  |
| Dislocation-related defects | 325 <sup>e</sup>                                       | 1.43                        |                    |  |

 $\tau_{\rm d}$  is the defect-related positron lifetime,  $\tau_{\rm b}$  the positron lifetime in the defect-free bulk. <sup>a</sup>Corbel et al. (1985), <sup>b</sup>Würschum et al. (1989b), <sup>c</sup>Polity and Rudolf (1999), <sup>d</sup>Moser et al. (1985), <sup>e</sup>Krause-Rehberg et al. (1993a).



Positron life time spectroscopy in Si and Ge,

 $T_{\rm M}$  denotes the melting point.



# p-Ge在20°K温度下在电子辐照后的寿命随等时退火温度的变化.



## Positron in GaP

#### **Positron lifetime results**



- both reference samples: no trapping
- distinct vacancy signal only after Zn in-diffusion
- sample D: almost complete positron trapping at RT
- defect-related lifetime:  $\tau_v$  = 282 ps
- outward relaxation is expected for both vacancies:
- V<sub>Ga</sub> -> 3.8% and V<sub>P</sub> -> 6.1%
   (G. Schwarz et al., Phys. Rev. 1998)
- lifetimes were theoretically calculated taking into account the relaxation

#### **Positron lifetime results**



• defect-related lifetime:  $\tau_v = 282 \text{ ps}$ 

| Defect                           | e <sup>+</sup> lifetime | remarks      |
|----------------------------------|-------------------------|--------------|
|                                  | in ps                   |              |
| GaP bulk                         | 220                     |              |
| $V_{Ga}$                         | 258                     | unrelaxed    |
|                                  | 270                     | 3.8% outward |
|                                  |                         | relaxation   |
| V <sub>P</sub>                   | 244                     | unrelaxed    |
|                                  | 271                     | 6.1% outward |
|                                  |                         | relaxation   |
| V <sub>P</sub> -Zn <sub>Ga</sub> | 274                     | 6.1% outward |
|                                  |                         | relaxation   |
| V <sub>P</sub> -V <sub>Ga</sub>  | 307                     | unrelaxed    |

\* from lifetime: no decision between  $V_{\mbox{\scriptsize Ga}}$  and  $V_{\mbox{\scriptsize P}}$ 



Fig. 5.3. Average positron lifetime as a function of the annealing temperature in nitrogen-, sulfur-, and silicon-doped electron-irradiated gallium phosphide (Polity et al. 1995a).

#### **Doppler Coincidence Experiments**

- DBCS was used to study the chemical environment of the detected monovacancy
- surprise: although complete trapping -> high-momentum Doppler spectrum close to reference sample
- comparison with theoretically calculated spectra required



#### **Doppler Coincidence Experiments**



#### **Doppler Coincidence Experiments**



#### Conclusion

- During Zn in-diffusion: vacancies are formed
- concentration is much higher than thermal vacancies
- Vacancy is located in P sublattice
- $V_p$  should be positive -> thus a defect complex is most probably observed
- best candidate: V<sub>P</sub>-Zn<sub>Ga</sub>

## Positron in InP





在100-270K存在退火台阶;
台阶温度在~200K,台阶温度随辐照剂量增加而增加;
退火后都到达体寿命.

*n*-InP电子辐照后平均正电子 寿命随退火温度的变化.



#### 电子辐照*n*-InP的平均寿命, 第二寿命和强度随退火温 度的变化.

### Positron lifetime of bulk and vacancy in InP

| o antisting gameboo<br>alian ang ang ang | Positron annihilation c<br>Positron lifetime [ps] | haracteristics $	au_{ m d}/	au_{ m b}$ | Dissolution temperature [K]                                                                                      |
|------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Bulk lifetime                            | 242 <sup>a, b</sup>                               | The set to be down                     | and the second |
|                                          | 241 <sup>c</sup>                                  |                                        |                                                                                                                  |
| to design the end of the                 | 243 <sup>d, e</sup>                               |                                        | a substant dalar. Kay ha                                                                                         |
|                                          | 244 <sup>f</sup>                                  |                                        |                                                                                                                  |
| In monovacancies                         | 312 <sup>g</sup>                                  | 1.2 <sup>h</sup>                       | < 250 <sup>c, d, e</sup>                                                                                         |
|                                          | 265 <sup>i</sup>                                  | 1.12 <sup>j</sup>                      |                                                                                                                  |
| add autori Likowana                      | 297 <sup>d</sup>                                  | 1.22                                   |                                                                                                                  |
| the work and the second                  | 283 <sup>e, f</sup>                               | 1.16                                   |                                                                                                                  |
| P monovacancies                          | 263 <sup>d,e,f</sup>                              | 1.08                                   | < 250 <sup>°</sup>                                                                                               |
| V <sub>p</sub> -zinc complexes           | 325 <sup>a, f</sup>                               | 1.34                                   | 680 to 750 <sup>a</sup>                                                                                          |
| Divacancies                              | 323 <sup>i</sup>                                  | 1.37 <sup>j</sup>                      | 473 <sup>k</sup>                                                                                                 |
| Voids                                    | 420 <sup>1</sup>                                  | 1.61 <sup>m</sup>                      | 873 <sup>1</sup>                                                                                                 |
| And refigered hists                      | 486 to 527 <sup>b</sup>                           | 2.00 to 2.18                           | and a first the second                                                                                           |

 $\tau_{d}$  is the defect-related positron lifetime,  $\tau_{b}$  the positron lifetime in the defect-free bulk.

## Positron in GaAs



GaAs with B3 structure



GaAs with B10 ctructure



Positron density in a perfect GaAs lattice (110). The density value increases from the blue contours towards to the red ones. The positions of the Ga and As atoms are denoted by blue and red spheres, respectively.



#### Positron density at an As vacancy in GaAs.



Average positron lifetime calculated as a function of temperature for different vacancy concentrations. One-defect trapping model was used. Trapping into a negative vacancy was assumed.



Average positron lifetime as a function of measurement temperature in highly Si-doped VGF-grown GaAs The concentrations of silicon dopants are indicated. The lines are to guide the eye.



Average positron lifetime as a function of measurement temperature for as-grown Si- and Te-doped GaAs. The data for GaAs:Te are taken from (Gebauer et al. 2003).



High momentum part of Doppler broadening peak normalized to the data of bulk GaAs. ( corresponds to GaAs: Si studied by positron annihilation and STM spectroscopy (Gebauer et al. 1997); ( ) this study.



Photoluminescence topograms of wafer #1 measured for the four luminescence lines occurring in GaAs:Si.



Photoluminescence topogram image of wafer #1 recorded at the luminescence line of 1100 nm. Exact positions of the sample pares taken for PALS measurements are indicated. The area of each single sample equaled  $5 \times 5$  mm.

Average positron lifetime vs temperature measured across the wafer #1.



(a) The distribution of Si<sub>Ga</sub>V<sub>Ga</sub> complexes across the wafer #1, as determined by PALS;
(b) intensity variation of the 1100 nm photoluminescence band, measured across wafer# 1.

## Identification of V<sub>Ga</sub>-Si<sub>Ga</sub>-Complexes in GaAs:Si



### GaAs: annealing under defined As-partial pressure







H. Wenzl et al., J. Cryst. Growth 109 191 (1991).

### **Experiments in n–GaAs**



### **Comparison of doped and undoped GaAs**



Thermodynamic reaction:  $As_{As} \leftrightarrow V_{As} + 1/4As_4^{gas}$ Mass action law:  $[V_{As}] = K_{VAs} \times p_{As}^{-1/4}$ Fit: [V-complex]  $\sim p_{As}^{n}$   $\rightarrow n = -1/4$ As vacancy

## The Nature of EL2 defect in GaAs

- one of the most frequently studied crystal lattice defects at all
- responsible for semi-insulating properties of GaAs: large technological importance
- is deep donor, compensates shallow acceptors, e.g. C<sup>-</sup> impurities
- defect shows metastable state after illumination at low temperatures
- IR-absorption of defect disappears during illumination at T < 100 K</li>
- ground state recovers during annealing at about 110 K
- many structural models proposed Dabrowski, Scheffler and Chadi, Chang (1988): simple As<sub>Ga</sub>-antisite defect responsible
- must show a metastable structural change





### The Nature of EL2 defect in GaAs

- in metastable state at low temperature: Ga vacancy
- should disappear during annealing at about 110 K
- confirmed by positron lifetime measurements
- kinetics of recovery of ground state is identical for IR- und positron experiment: E<sub>A</sub> = (0.37 ± 0.02) eV
- evidence of the vacancy in metastable state confirms the proposed structural model




#### Temperature dependence of positron trapping

- Compensation in GaAs:S
- formation of S<sub>As</sub>-V<sub>Ga</sub> complex
- increase of τ<sub>av</sub> to low T is due to the trapping into negative shallow Rydberg potential of the defect





charged

#### Positron trapping – shallow traps

 negative ions are also positron trapping centers due to small negative Coulomb potential





- term "shallow" relates to the positron bindin energy (few meV).
- therefore the trapping is significant at low temperatures only
- the electron density is not reduced:

$$\tau_{st} = \tau_b$$

PRL, V78,17, J.Gebauer

#### Nature of vacancy complexes in Si and Te doped GaAs



Doppler coincidence



## Electron-irradiation GaAs:Te



低剂量辐照

高剂量辐照



#### **Structure in GaAs consisting of 12 vacancies. Atoms a and d are removed to get V14.**





Average positron lifetime vs *W* parameter for differently high-Tedoped GaAs. The *W* parameter is normalized to the value found in GaAs:Zn. All samples were annealed at 1100 ° C. The solid line is a linear fit to the data, showing that all samples contain the same defect type. The defect is identified to be a  $V_{\text{Ga}}$ -Te<sub>As</sub> complex.

### Cu diffusion in GaAs



High-momentum part of the positron annihilation momentum distribution, normalized by taking the ratio to a GaAs:Zn reference

#### **Microhardness indentation in GaAs**

#### Comparison of SEM and Munich Positron Scanning Microscope



## The lifetime of bulk and vacancy in GaAs

|                                  | Positron annihilation of      | characteristics         | Dissolution                                      |
|----------------------------------|-------------------------------|-------------------------|--------------------------------------------------|
| 1 100 Lat 12                     | Lifetime [ps]                 | $	au_{ m d}/	au_{ m b}$ | temperature [K]                                  |
| Bulk lifetime                    | 228 to 232 <sup>a,b,c,d</sup> |                         | <u>4</u>                                         |
| As monovacancies                 | 295 <sup>e,f</sup>            | 1.28                    | 750 <sup>b</sup>                                 |
|                                  | 255 to 295 <sup>b,g</sup>     | 1.11 to 1.28            |                                                  |
| Ga monovacancies                 | 255 <sup>h</sup>              | 1.11                    | 300 <sup>s</sup>                                 |
|                                  | 260 to 270 <sup>i</sup>       | 1.13 to 1.17            |                                                  |
| V <sub>Ga</sub> Te <sub>As</sub> | 251 to 257 <sup>j,k</sup>     | 1.09 to 1.12            | $> 1000^{k}$                                     |
| V <sub>Ga</sub> Si <sub>Ga</sub> | 262 <sup>d</sup>              | 1.14                    |                                                  |
| V <sub>As</sub> Cr <sub>Ga</sub> | 250 to 260 <sup>1,e</sup>     | 1.09 to 1.13            |                                                  |
| EL2*                             | 255 <sup>m</sup>              | 1.11                    |                                                  |
|                                  | 245 <sup>n</sup>              |                         | 结构为了此为自然的问题。———————————————————————————————————— |
| Dislocation-bound                | 300 to 320°                   | 1.30 to 1.39            |                                                  |
| vacancies                        | 270 <sup>p</sup>              | 1.17                    |                                                  |
| Voids                            | 460 to 500 <sup>q</sup>       | 2 to 2.17               | 700 to 900 <sup>q</sup>                          |
|                                  | 590 <sup>r</sup>              | 2.56                    | ors the descent set the store                    |

 $\tau_{d}$  is the defect-related positron lifetime,  $\tau_{b}$  the positron lifetime in the defect-free bulk.

# Appl. Phys. A 66, 599–614 (1998)

#### Review of defect investigations by means of positron annihilation in II –VI compound semiconductors

R. Krause-Rehberg, H.S. Leipner, T. Abgarjan, A. Polity

Fachbereich Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany (Fax: +49-345/5527160, E-mail: krause@physik.uni-halle.de)

Received: 19 November 1997/Accepted: 20 November 1997

| Martanial                                      | Bulk       | lifetime/ps                                                                           | Cation-va  | cancy lifetime /ps                         | Anion-vacancy lifetime |      |
|------------------------------------------------|------------|---------------------------------------------------------------------------------------|------------|--------------------------------------------|------------------------|------|
| materiat                                       | Cal.       | Exp.                                                                                  | Cal.       | Exp.                                       | Cal.                   | Exp. |
| CdTe                                           | 286        | 291 [104]<br>281 [68]<br>283 $\pm 1$ [44]<br>285 $\pm 1$ [45, 46]<br>280 $\pm 1$ [52] | 298        | 320±5 [45, 46]<br>330±15 [44, 52, 68]      | 312                    | _    |
| HgTe<br>Hg <sub>0.8</sub> Cd <sub>0.2</sub> Te | 274<br>_   | 274 [68]<br>274 [68]<br>286 [69]<br>275 [54]<br>278 [70]                              | 285<br>-   | -<br>309 [69]<br>305 [54, 70]<br>319 [97]  | 300<br>-               |      |
| ZnO                                            | -          | 282 [97]<br>$169 \pm 2 [88]$<br>$183 \pm 4 [86, 87]$                                  | -          | $255 \pm 16$ [86, 87]<br>$211 \pm 6$ [102] | -                      | -    |
| ZnS                                            | 225        | 230 78,80                                                                             | 240        | 290 [80]                                   | 237                    | _    |
| ZnSe<br>ZnTe                                   | 240<br>260 | 240 [79]<br>266 [78]                                                                  | 253<br>266 | -                                          | 260<br>297             | -    |

## Positron in SiC



| 物理量                                              | 3C-SiC              | 4H-SiC              | 6H-SiC              | GaAs                | Si                  | 特 性                                                    |
|--------------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------------------------------------------|
| 宽带隙(eV)                                          | 2.3                 | 3.26                | 3.03                | 1.43                | 1.12                | 高温及短波蓝光发<br>射。SiC:最高工作温<br>度近 1000K; Si:不<br>能超过 500K。 |
| 击穿电场<br>(V/cm,<br>100V 下操作)                      | 4.0×10 <sup>6</sup> | 2.2×10 <sup>6</sup> | 2.4×10 <sup>6</sup> | 3.0×10 <sup>5</sup> | 2.5×10 <sup>5</sup> | 比 GaAs 或 Si 高约一<br>个量级。制作高电压、<br>高功率器件。                |
| 热导率<br>(W/cm.K@RT)                               | 4.9                 | 4.9                 | 4.9                 | 0.5                 | 1.5                 | 有利于提高集成密<br>度,减少冷却系统,使<br>器件更小型化,提高<br>器件的运行功率。        |
| 饱和电子漂移率<br>(cm/sec,<br>E@2×10 <sup>5</sup> V/cm) | 2.5×10 <sup>7</sup> | 2.0×10 <sup>7</sup> | 2.0×10 <sup>7</sup> | 1×10 <sup>7</sup>   | 1×10 <sup>7</sup>   | 有利于高频使用,对<br>提高逻辑器件的运算<br>速率有重要意义。                     |
| 键结合能                                             |                     | ~5eV                |                     |                     |                     | 抗腐蚀、辐射,高机<br>械强度和化学稳定。                                 |

## SiC Atomic structure

- Silicon Carbide has more than 200 polytype
- Polytype refers to a family of material which has common stoichiometric composition but not common crystal structure
- SiC are made by arrangement of covalently bonded tetrahedral Si and C atoms





Possible stacking sequence for SiC tetrahedral structure

*Edited from C. Kittle, 1996 and Mehregany et al.,* 2000



#### **Stacking order of 3C-SiC and 6H-SiC**

## 3 commonly used polytypes

Cubic structure, Zinc-blend, ABCABC.... Hexagonal close packed, ABCBABCB... Hexagonal close packed, ABCACBABCAC...

## Atomic structure of 6H-SiC



## Positron in SiC

| Host   | a [a.u.] | c [a.u.] | $	au_{ m LDA}  [ m ps]$ |
|--------|----------|----------|-------------------------|
| 3C-SiC | 8.24     | -        | 141                     |
| 2H-SiC | 5.81     | 9.54     | 142                     |
| 6H-SiC | 5.81     | 28.50    | 141                     |

# Atomic positions for **3C-SiC and6H-SiC.**



TABLE II. Calculated positron lifetimes  $\tau_d$  in different types of neutral and unrelaxed vacancy-type defects in three SiC polytypes. The defect configuration  $n - V_{Si}V_C$  (n = 1,2,3,4) indicates a vacancy agglomerate with n divacancies.  $E_b$  indicates the binding energy of the positron in the corresponding defect.

| Defect                     | 3 <i>C</i>    | -SiC       | 2H-SiC       |            | 6H-SiC       |            |
|----------------------------|---------------|------------|--------------|------------|--------------|------------|
|                            | $\tau_d$ [ps] | $E_b$ [eV] | $	au_d$ [ps] | $E_b$ [eV] | $	au_d$ (ps) | $E_b$ (eV) |
| V <sub>C</sub>             | 150           | 0.28       | 151          | 0.26       | 150          | 0.28       |
| $V_{Si}$                   | 185           | 1.69       | 184          | 1.67       | 183          | 1.73       |
| $1 - V_{Si}V_C$            | 216           | 2.39       | 216          | 2.40       | 214          | 2.44       |
| $2 - V_{Si}V_C$            | 254           | 3.48       | -            | -          | -            | -          |
| $3 - V_{\rm Si} V_{\rm C}$ | 286           | 4.27       | -            | -          | -            | -          |
| $4 - V_{\rm Si} V_{\rm C}$ | 321           | 4.94       | -            | -          | -            | -          |

## 两种SiC的正电子寿命,结合能和亲和势

| Positron        |          |              |            |
|-----------------|----------|--------------|------------|
| state           | au (ps)  | $E_b$ (eV)   | $A_+$ (eV) |
|                 | 3C-Si    | iC           |            |
| bulk            | 138(141) |              | -5.57      |
| C vacancy       | 153(150) | +1.05(+0.28) | -4.39      |
| Si vacancy      | 191(185) | +2.66(+1.69) | -8.22      |
| Si+C divacancy  | 212(216) | +3.17(+2.39) | -8.18      |
| Si+Si divacancy | 194      | +2.69        | -8.93      |
| C+C divacancy   | 160      | +1.29        | -4.92      |
| Si vacancy+N    | 191      | +2.73        | -8.56      |
|                 | 6H-S     | iC           |            |
| bulk            | 141(141) |              | -5.91      |
| C vacancy (1)   | 153(150) | +0.26(+0.28) | -4.30      |
| Si vacancy (1)  | 194(183) | +2.46(+1.73) | -8.27      |
| Si vacancy (2)  | 192      | +2.30        | -8.17      |
| Si vacancy (3)  | 192      | +2.32        | -8.16      |
| Si+C divacancy  | 214(214) | +2.95(+2.44) | -8.10      |
| Si+Si divacancy | 196      | +2.64        | -8.91      |
| C+C divacancy   | 161      | +0.58        | -4.72      |
| Si vacancy+N    | 194      | +2.52        | -8.75      |



正电子寿命  $\tau_1$  和 $\tau_2$ ,以及强度 $I_2$  随退火温度变化.



#### **6H-SiC(电子辐照)** (*Ee*=2 MeV, Φ=10<sup>18</sup> cm<sup>-2</sup>, *T*=4 K)



## **6H-SiC** (未辐照和辐照) (*Ee*=2 MeV, Φ=10<sup>18</sup> cm<sup>-2</sup>, *T*=4 K)



FIG. 3. Carbon interstitial clusters in 3C-SiC. Di-interstitials: (a)  $(C_{sp})_2$ , (b)  $(C_{sp})_{2,tilted}$ , and  $(C_2)_{Hex}$ . Tri-interstitials: (c)  $(C_{sp})_3$  and (d)  $(C_2)_{Hex}$ - $C_{sp}$ . Tetrainterstitials: (e)  $(C_{sp})_4$  and (f)  $[(C_2)_{Hex}]_2$ .

## **Slow positron beam**

- semiconductor technology: thin layers (epitaxy, ion implantation)
- broad energy distribution due to β<sup>+</sup> decay
- some surfaces: negative workfunction ⇒ moderation (but rather inefficient)



TABLE I. Experimental results for  $S_{expt}$  and  $W_{expt}$  (obtained at room temperature) ordered according to increasing  $r_s$  values, i.e., with decreasing valence-electron density.  $S_{val}$  is the calculated S parameter for valence electrons using the core fractions  $f_c$  from Puska *et al.*'s data (Ref. 3). The second-last column lists the ratio between the "Fermi" momentum for the valence electrons and the momentum for the outermost core electrons. The last column summarizes the nature of the investigated samples. \*Uncertainties in  $W_{expt}$  and  $S_{expt}$  large due to the large backing contribution. <sup>†</sup>Average values for S- or Zn-doped GaP ( $S_{expt}=0.4806$  and 0.4925, respectively, and  $W_{expt}=0.0397$  and 0.0372, respectively). <sup>††</sup>Average values. 1  $\Omega$  cm:  $S_{expt}=0.5013$ ,  $W_{expt}=0.0375$ ; 50  $\Omega$  cm:  $S_{expt}=0.5023$ ,  $W_{expt}=0.0373$ .

| Material | Band gap<br>(eV) | $\overset{r_s}{(\text{Å})}$ | f <sub>c</sub><br>(%) | W <sub>expt</sub><br>±0.0003 | $S_{expt}$<br>$\pm 0.0005$ | $S_{ m val}$ | $p_F/p_n^{ m core}$ | Comments                                           |
|----------|------------------|-----------------------------|-----------------------|------------------------------|----------------------------|--------------|---------------------|----------------------------------------------------|
| С        | 5.5              | 0.70                        | 1.20                  | 0.0660                       | 0.4071                     | 0.4099       | 0.43                | synthetic, type $I_b$                              |
| SiC      | 3.0              | 0.85                        | 2.65                  | 0.0450                       | 0.4376                     | 0.4441       | 0.44                | n type, N doped                                    |
| GaN      | 3.4              | 0.88                        | 14.0                  | 0.053±0.003*                 | 0.455<br>±0.005*           | 0.4913       | 0.43                | 12-μm-thick film<br>on sapphire                    |
| Si       | 1.1              | 1.06                        | 2.25                  | 0.0230                       | 0.5098                     | 0.5158       | 0.41                | Fz-Si, undoped                                     |
| GaP      | 2.2              | 1.07                        | 6.87                  | 0.0385 <sup>†</sup>          | 0.4865 <sup>†</sup>        | 0.5057       | 0.38                | p type, n type                                     |
| Ge       | 0.7              | 1.11                        | 6.80                  | $0.0374^{\dagger\dagger}$    | 0.5018††                   | 0.5261       | 0.32                | <i>n</i> type: 1 $\Omega$ cm<br>and 50 $\Omega$ cm |
| GaAs     | 1.4              | 1.11                        | 7.80                  | 0.0385                       | 0.4970                     | 0.5230       | 0.33                | semi-insulating                                    |
| InP      | 1.3              | 1.15                        | 8.33                  | 0.0357                       | 0.5034                     | 0.5298       | 0.37                | semi-insulating                                    |
| InAs     | 0.36             | 1.18                        | 8.79                  | 0.0377                       | 0.5132                     | 0.5435       | 0.33                | n type, undoped                                    |
| GaSb     | 0.67             | 1.19                        | 7.38                  | 0.0345                       | 0.5183                     | 0.5451       | 0.30                | n type, Te doped                                   |
| InSb     | 0.17             | 1.27                        | 7.92                  | 0.0346                       | 0.5277                     | 0.5567       | 0.30                | n type, undoped                                    |

TABLE III. Characteristic S and W parameters calculated for the perfect bulk lattice and for the ideal vacancy clusters in Si. The momentum component  $p_z$  is along the [111] direction. Before calculating the S and W parameters the theoretical Doppler spectra have been convoluted with a Gaussian with FWHM of 4.7  $\times 10^{-3}m_0c$ .  $S_{val}$  and  $S_{B,val}$  have been calculated using the valence electron momentum distributions instead of the total distribution.

| System | $S/S_B$        | $S_{\rm val}/S_{B,{\rm val}}$ | $W/W_B$         |
|--------|----------------|-------------------------------|-----------------|
| Bulk   | $S_B = 0.5344$ | $S_B = 0.5410$                | $W_B = 0.01701$ |
| V      | 1.018          | 1.014                         | 0.86            |
| $V_2$  | 1.045          | 1.038                         | 0.72            |
| $V_3$  | 1.053          | 1.045                         | 0.68            |
| $V_4$  | 1.067          | 1.058                         | 0.64            |
| $V_5$  | 1.081          | 1.072                         | 0.59            |



FIG. 1. (a) Experimentally obtained  $S_{\text{expt}}$  values as a function of  $r_s$ . All measurements were made at room temperature. (b) Calculated  $S_{\text{val}}$  values for valence electrons. The large value for GaN arises because of an uncharacteristically large calculated core contribution.

$$\frac{4\pi}{3}r_{s}^{3}=n_{val}^{-1},$$







用2D-ACAR测 量得到的 Si的动 量分布.



 Experimental angular distribution of annihilation y-rays from in Si oriented along [100], [111], and [110] directions.



• The electron momentum density in Si in several cross-sections corresponding to the reference Jones zone as shown.





#### Doppler coincidence spectroscopy

chemical sensitivity of energy spectra



PHYSICAL REVIEW B

#### VOLUME 51, NUMBER 7

15 FEBRUARY 1995-I

#### Identification of vacancy defects in compound semiconductors by core-electron annihilation: Application to InP

M. Alatalo, H. Kauppinen, K. Saarinen, M. J. Puska, J. Mäkinen, P. Hautojärvi, and R. M. Nieminen Laboratory of Physics, Helsinki University of Technology, FIN-02150 Espoo, Finland (Received 21 June 1994)




| TABLE II.      | Annihilation rates $\lambda_i$ (in ns <sup>-1</sup> ) for different core |
|----------------|--------------------------------------------------------------------------|
| shells in bulk | Si and GaAs.                                                             |

| Core shell | $\lambda^i$ |  |
|------------|-------------|--|
| Si 2s      | 0.034       |  |
| Si $2p$    | 0.106       |  |
| $Ga \ 3d$  | 0.320       |  |
| $Ga \ 3p$  | 0.061       |  |
| As $4s$    | 0.577       |  |
| As $3d$    | 0.116       |  |
| As 3p      | 0.030       |  |
|            |             |  |

TABLE III. Annihilation rates  $\lambda_i$  (in ns<sup>-1</sup>) for different core shells in bulk InP,  $V_{\rm P}$ , and  $V_{\rm In}$ .  $V_{\rm P}$  is relaxed outwards by 3% of the bulk bond length,  $V_{\rm In}$  is assumed ideal.

|         | $\lambda^i_{	ext{bulk}}$ | $\lambda^i_{V_{\mathbf{P}}}$ | $\lambda_{V_{In}}^{i}$ |
|---------|--------------------------|------------------------------|------------------------|
| In 4d   | 0.504                    | 0.489                        | 0.256                  |
| In $4p$ | 0.077                    | 0.071                        | 0.037                  |
| P 3s    | 0.511                    | 0.355                        | 0.574                  |
| P $2p$  | 0.022                    | 0.014                        | 0.019                  |
| P $2s$  | 0.008                    | 0.005                        | 0.007                  |



