

💮 中国科学技术大学

2.基于静电平衡判据约束条件的计算法

 $\frac{\mathrm{qZ}_{\text{AO}}\left(1+\ \in\right)}{\left(\textit{R}_{\text{A}}\ +\ \mathrm{r}_{\text{a}}\right)^{2}}\ =\ \frac{\mathrm{qZ}_{\text{AO}}\left(1-\ \in\right)}{\left(\textit{R}_{\text{B}}\ -\ \mathrm{r}_{\text{a}}\right)^{2}}$

 $\in 2 = \frac{Z_{B0}(R_A + r_B)^2 - Z_{A0}(R_B - r_B)^2}{2}$ $Z_{B0}(R_A + r_B)^2 + Z_{A0}(R_B - r_B)^2$

局限性

未考虑键合后原子距离的变化 r_m采用之前结论计算值,距真实值有差别

			All versity of seren	ce and recently
计算	A-B	H-CI	C-0	0-N
	R _A (A)	0.37	0.37	0.74
远秋帝児的IT-U、U-U、N-U	R _a (A)	0.99	0.74	1.01
	R _{AB} (A)	1.28	1.13	1.15
A、B、C为方程的系数	Z _{AO} (e)	1	3.25	4.55
	Z ₈₀ (e)	6.1	4.55	3.9
	q(e)	0.48913	0.854545	1.0280
	a	0.205141	0.248239	0.24962
	ь	0.423601	0.08392	-0.0385
	α	0.433278	0.885617	0.44395
	β	0.50666	0.954592	1.05155
	A	-0.82457	-0.7697	-0.8946
	в	0.362248	0.077856	-0.0162
	c	0.144836	0.072257	0.5778
	€1	0.692839	0.361115	0.7946
	∈₂	0.692839	0.361115	0.7946
	Z _A (e)	1.692839	4.423625	8.1655
	Z ₂ (e)	1.873683	2.906925	0.80093
	r _m (A)	0.292749	0.243043	0.5926
	μ(D)	0.646302	1.234014	3.51659
		1.08	0.11	0.16

🔘 中国科学技术大学

结论

1.1.1、 1.二物质的偶极矩都与实测值有差距,其中CO、NO相差较大。 2.μ+μ: H-Cl < CO < N-O μ_{all}: C-O < N-O < H-Cl。可以看出,对CO、 NO而言,相对大小关系与测量值相符,而HCl偏差较大。

反思

// Δ. 1.Slater常数是定性的,不符合定量计算的精度要求。
2.化学键类型角度分析,与HCI相比,CO、NO中有反馈π键,抵消了一部分偶极矩,故整体偶极矩较小。与狭义上的化学键相比,π键、δ键作用机理较复杂,故假设模型不适用于含有π键、δ键等较复杂的体系。

🔘 中国科学技术大学

改进 选取较为常见的σ键体系,并使用较为精确的Z_{A0}、Z₈₀进行计算^[1]

A-8	2 (e)	2 ₁₀ (e)	e,	r=1 (A)	q1 (e)	(D)	∈,	r = 1 (A)	q ; (e)	(D)	μ (D)
H	5.14	4.76	0.358	0.095	1.26	2.98	0.655	0.095	0.92	2.19	2.18
Br-F	5.14	4.76	0.291	0.057	1.29	2.00	0.503	0.056	1.10	1.75	1.29
C-F	4.94	4.76	0.303	0.002	1.25	0.84	0.298	0.0025	1.24	0.84	0.88
I-Cl	5.14	4.94	0.078	0.110	1.25	2.34	0.436	0.107	1.07	1.95	1.50
I-Br	5.14	5.14	0.141	0.009	1.30	0.71	0.167	0.009	1.29	0.706	1.21
Br-Cl	5.14	4.94	0.045	0.041	1.25	0.95	0.193	0.038	1.73	0.89	0.57
H-CI	1.00	4.94	0.786	0.279	0.561	1.05	0.787	0.279	0.561	1.05	1.08
Hg-Cl	5.53	4.95	0.36	0.054	1.32	1.96	0.343	0.046	1.28	1.80	1.44-2.5
Hg-Br	5.53	5.14	0.39	0.166	1.29	2.84	0.390	0.154	1.32	2.75	1.54-3.1
Hg-I	5.53	5.14	0.39	0.283	1.29	3.70	0.404	0.282	1.30	3.70	2.9
B-F	2.30	4.76	0.65	0.08	0.96	1.12	0.645	0.067	1.01	1.17	1.69
Al-Cl	2.48	4.94	0.225	0.19	0.93	2.28	0.730	0.187	0.61	1.48	1.97
Si-F	3.17	4.76	0.69	0.068	0.945	1.64	0.690	0.068	0.945	1.64	2.27
P-CI	3.86	4.94	0.31	0.049	1.10	0.81	0.312	0.048	1.03	0.79	0.81
P-Br	3.86	5.14	0.814	0.007	1.10	0.04	0.100	0.003	1.11	0.80	0.36
P-1	3.86	5.14	0.814	0.083	1.10	0.7	0.067	0.069	1.10	0.12	~0
Sb-Br	4.06	5.14	0.205	0.078	1.14	1.60	0.428	0.080	1.00	1.44	1.9
Sb-I	4.05	5.14	0.078	0.075	1.14	0.85	0.280	0.078	1.09	1.00	0.8

() 中国科学技术大学

总结

总结 1.对于多种典型的σ键体系适用。 2.对于第一步代入的H-CI模型,对网上查到的多种半径分别代入也得到 了不同的结果,本文中采取较为常见的半径数值进行计算(也是误差较 大的一组)。故采取不同半径对偶极矩的准确计算具有重要意义。 3.从结果来看,不能确保估算的每种σ键体系的µ误差较小,而且对σ键 体系,在未知R₄₆的情况下无法进行计算。而R₄₆往难以获得,笔者尝 试从剑桥晶体结构数据库中查询数据,但未能如愿,故直接引用了¹⁰的 图表,对常见的几种原子半径代入计算发现会有10-25%的偏差。而对 于如C-F自由基等特殊物质,其R₄₈又更难以查到。

综上,本文中所述的两种计算方法,对较多的o键体系有良好的适用性, 但是从查询难度以及选取半径、电荷等常量对结果引起的不确定性上考 虑,这种粗略计算方法仍有较大的改进空间。

🔘 中国科学技术大学

参考文献

[1]杨频 Hellmann_Feynman定理在化学键研究中的应用_键中原子有效核 电荷的计算 山西大学学报 1981.02 [2]杨频 有效键电荷及其应用 科学通报 1977.09 [3]张祖德 无机化学 中国科学技术大学出版社 2008.11 [4]胡友秋、程福臻、叶邦角、刘之景 电磁学与电动力学[上册](第二版) 科学出版社 2014.06

	لَيْنَ اللَّهُ عَلَيْهِ اللَّهُ عَلَيْهِ اللَّهُ عَلَيْهِ اللَّهُ عَلَيْهِ اللَّهُ عَلَيْهِ اللَّهُ عَلَيْهُ ا University of Science and Technology of Clina
谢	谢
11	M1