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Important Instructions for the Exam Supervisor

• This examination consists of two parts.

• Part A has four questions and is allowed 90 minutes.

• Part B has two questions and is allowed 90 minutes.

• The first page that follows is a cover sheet. Examinees may keep the cover sheet for both
parts of the exam.

• The parts are then identified by the center header on each page. Examinees are only allowed
to do one part at a time, and may not work on other parts, even if they have time remaining.

• Allow 90 minutes to complete Part A. Do not let students look at Part B. Collect the answers
to Part A before allowing the examinee to begin Part B. Examinees are allowed a 10 to 15
minute break between parts A and B.

• Allow 90 minutes to complete Part B. Do not let students go back to Part A.

• Ideally the test supervisor will divide the question paper into 3 parts: the cover sheet (page
2), Part A (pages 3-4), and Part B (pages 6-7). Examinees should be provided parts A and
B individually, although they may keep the cover sheet.

• The supervisor must collect all examination questions, including the cover sheet, at the end
of the exam, as well as any scratch paper used by the examinees. Examinees may not take
the exam questions. The examination questions may be returned to the students after April
1, 2012.

• Examinees are allowed calculators, but they may not use symbolic math, programming, or
graphic features of these calculators. Calculators may not be shared and their memory must
be cleared of data and programs. Cell phones, PDA’s or cameras may not be used during
the exam or while the exam papers are present. Examinees may not use any tables, books,
or collections of formulas.

• Please provide the examinees with graph paper for Part A.
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AAPT UNITED   STATES   PHYSICS   TEAM
AIP 2012

Semifinal Exam

INSTRUCTIONS

DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN

• Work Part A first. You have 90 minutes to complete all four problems. Each question is
worth 25 points. Do not look at Part B during this time.

• After you have completed Part A you may take a break.

• Then work Part B. You have 90 minutes to complete both problems. Each question is worth
50 points. Do not look at Part A during this time.

• Show all your work. Partial credit will be given. Do not write on the back of any page. Do
not write anything that you wish graded on the question sheets.

• Start each question on a new sheet of paper. Put your AAPT ID number, your name, the
question number and the page number/total pages for this problem, in the upper right hand
corner of each page. For example,

AAPT ID #

Doe, Jamie

A1 - 1/3

• A hand-held calculator may be used. Its memory must be cleared of data and programs. You
may use only the basic functions found on a simple scientific calculator. Calculators may not
be shared. Cell phones, PDA’s or cameras may not be used during the exam or while the
exam papers are present. You may not use any tables, books, or collections of formulas.

• Questions with the same point value are not necessarily of the same difficulty.

• In order to maintain exam security, do not communicate any information about
the questions (or their answers/solutions) on this contest until after April 1, 2012.

Possibly Useful Information. You may use this sheet for both parts of the exam.
g = 9.8 N/kg G = 6.67× 10−11 N ·m2/kg2

k = 1/4πε0 = 8.99× 109 N ·m2/C2 km = µ0/4π = 10−7 T ·m/A
c = 3.00× 108 m/s kB = 1.38× 10−23 J/K
NA = 6.02× 1023 (mol)−1 R = NAkB = 8.31 J/(mol ·K)
σ = 5.67× 10−8 J/(s ·m2 ·K4) e = 1.602× 10−19 C
1eV = 1.602× 10−19 J h = 6.63× 10−34 J · s = 4.14× 10−15 eV · s
me = 9.109× 10−31 kg = 0.511 MeV/c2 (1 + x)n ≈ 1 + nx for |x| � 1
sin θ ≈ θ − 1

6θ3 for |θ| � 1 cos θ ≈ 1− 1
2θ2 for |θ| � 1
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Part A

Question A1

A newly discovered subatomic particle, the S meson, has a mass M . When at rest, it lives for
exactly τ = 3× 10−8 seconds before decaying into two identical particles called P mesons (peons?)
that each have a mass of αM .

a. In a reference frame where the S meson is at rest, determine

i. the kinetic energy,

ii. the momentum, and

iii. the velocity

of each P meson particle in terms of M , α, the speed of light c, and any numerical constants.

b. In a reference frame where the S meson travels 9 meters between creation and decay, determine

i. the velocity and

ii. kinetic energy of the S meson.

Write the answers in terms of M , the speed of light c, and any numerical constants.

Solution

a. Apply conservation of four momentum. For the S meson, we have

pSc = (Es, 0)

and for the two P mesons we have

pP c = (Ep,±p),

where p is the magnitude of the (relativistic) three momentum of the P mesons.

This yields
ES = 2EP

We must also satisfy the relation

E2 = p2c2 + m2c4

for each particle, so
ES

2 = M2c4

and
EP

2 = p2c2 + α2M2c4.

Therefore, the kinetic energy of each P meson is

KP = EP − αMc2 =
1
2
Mc2 − αMc2 =

(
1
2
− α

)
Mc2.
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Square the energy conservation expression, and combine with the momentum/energy/mass
relations:

1
4
M2c4 = p2c2 + α2M2c4,(

1
4
− α2

)
M2c4 = p2c2√

1
4
− α2Mc2 = pc.

The velocity of each P meson will be found from the relativistic three momentum,

p = mγv

and the relativistic energy,
E = γmc2

so

pc

E
=

mcγv

γmc2

= β.

Putting in the values for the P meson,

v = c


√

1
4 − α2Mc2

1
2Mc2

 = c
√

1− 4α2

b. From relativistic kinematics,
d = vt = vγτ,

so
v

c
γ =

d

cτ

Call this k for now. Then

k = βγ,

k2 = β2γ2,

k2 =
β2

1− β2
,

k2(1− β2) = β2,

k2 = (1 + k2)β2,

k2

1 + k2
= β2.

Combine,

v = c

√
d2

c2τ2 + d2
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so

v = c

√
92

92 + 92
=

c√
2

Then
γ = 1/

√
1− 1/2 =

√
2

It isn’t much work to find the kinetic energy,

K = (γ − 1)Mc2 = (
√

2− 1)Mc2.

c. This is a velocity addition problem, so

v =
vS + vS

1 + vS
2/c2

or, using the numbers from the first part of the problem,

v = c

√
1− 4α2

1− 2α2
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Question A2

An ideal (but not necessarily perfect monatomic) gas undergoes the following cycle.

• The gas starts at pressure P0, volume V0 and temperature T0.

• The gas is heated at constant volume to a pressure αP0, where α > 1.

• The gas is then allowed to expand adiabatically (no heat is transferred to or from the gas) to
pressure P0

• The gas is cooled at constant pressure back to the original state.

The adiabatic constant γ is defined in terms of the specific heat at constant pressure Cp and the
specific heat at constant volume Cv by the ratio γ = Cp/Cv.

a. Determine the efficiency of this cycle in terms of α and the adiabatic constant γ. As a
reminder, efficiency is defined as the ratio of work out divided by heat in.

b. A lab worker makes measurements of the temperature and pressure of the gas during the
adiabatic process. The results, in terms of T0 and P0 are

Pressure units of P0 1.21 1.41 1.59 1.73 2.14
Temperature units of T0 2.11 2.21 2.28 2.34 2.49

Plot an appropriate graph from this data that can be used to determine the adiabatic constant.

c. What is γ for this gas?

Solution

a. Label the end points as 0, 1, and 2. A quick application of PV = nRT requires that T1 = αT0.

It takes more work to do the process 1 → 2; it is acceptable to simply state the adiabatic law
of PV γ = constant; if you don’t know this, you will need to derive it.

In the case that you know the adiabatic process law,

P1V
γ
1 = P2V

γ
2 = αP1V

γ
2 ,

so that
V2 = V1 (α)

1
γ .

Another quick application of PV = nRT requires that T2 = (α)
1
γ T0.

Heat enters the gas during isochoric process 0 → 1, so

Qin = nCv∆T = nCv(α− 1)T0

Heat exits the system during process 2 → 0, so

Qout = nCp∆T = nCp(α1/γ − 1)T0
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We only consider absolute values, and insert negative signs later as needed.

The work done is the difference, so

W = Qin −Qout = nCv(α− 1)T0 − nCp(α1/γ − 1)T0

and the efficiency is then

e =
Cv(α− 1)− Cp(α1/γ − 1)

Cv(α− 1)

This can be greatly simplified to

e = 1− γ
α1/γ − 1
α− 1

b. Along an adiabatic path, the relationship between pressure and temperature is given by

PV γ = constant ∝ P

(
T

P

)γ

so
PT

γ
1−γ = constant

As such,
P ∝ T

γ
γ−1

Note that, for an ideal gas,
γ

γ − 1
=

Cp/Cv

Cp/Cv − 1
=

Cp

R

This means that we want to plot a log-log plot with log T horizontal and log P vertical. The
slope of the graph will be Cp/R.

For the data given, Cp = (7/2)R, so γ = 7/5.
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Question A3

This problem inspired by the 2008 Guangdong Province Physics Olympiad
Two infinitely long concentric hollow cylinders have radii a and 4a. Both cylinders are insulators;

the inner cylinder has a uniformly distributed charge per length of +λ; the outer cylinder has a
uniformly distributed charge per length of −λ.

An infinitely long dielectric cylinder with permittivity ε = κε0, where κ is the dielectric constant,
has a inner radius 2a and outer radius 3a is also concentric with the insulating cylinders. The
dielectric cylinder is rotating about its axis with an angular velocity ω � c/a, where c is the speed
of light. Assume that the permeability of the dielectric cylinder and the space between the cylinders
is that of free space, µ0.

a. Determine the electric field for all regions.

b. Determine the magnetic field for all regions.

Solution

a. Consider a Gaussian cylinder of radius r and length l centered on the cylinder axis. Gauss’s
Law states that ∫

E dA =
qencl

ε0

2πrEl =
λencll

ε0

E =
λencl

2πrε0
where λencl is the enclosed linear charge density.

The field due to the hollow cylinders alone is therefore

Eapplied =


0 r < a

λ
2πrε0

a < r < 4a

0 r > 4a

The field within the dielectric is reduced by a factor κ, so that in total

E =



0 r < a
λ

2πrε0
a < r < 2a

λ
2πrκε0

2a < r < 3a
λ

2πrε0
3 < r < 4a

0 r > 4a

Copyright c©2012 American Association of Physics Teachers



2012 Semifinal Exam Part A 9

b. We can apply the results of the previous section to obtain the enclosed charge density λencl

as a function of radius:

λencl =



0 r < a

λ a < r < 2a
λ
κ 2a < r < 3a

λ 3 < r < 4a

0 r > 4a

Defining

λi =
(

1− 1
κ

)
λ

we conclude that a charge density −λi exists on the inner surface of the dielectric, a charge
density λi on the outer surface, and no charge on the interior.

As with the case of a very long solenoid, we expect the magnetic field to be entirely parallel
to the cylinder axis, and to go to zero for large r. Consider an Amperian loop of length l
extending along a radius, the inner side of which is at radius r and the outer side of which is
at a very large radius. We have on this loop∮

B dl = µ0Iencl

Letting B now be the magnetic field at radius r,

lB = µ0Iencl

B =
µ0Iencl

l

For r > 3a, Iencl = 0, since the charge on the hollow cylinders is not moving. For 2a < r < 3a,
the loop now encloses the outer surface of the dielectric. In time 2π

ω a charge λil passes through
the loop, so the current due to the outer surface is

Iout =
λilω

2π

and thus this is Iencl for 2a < r < 3a. For r < 2a, the loop now encloses both surfaces of the
dielectric; the inner surface contributes a current that exactly cancels the outer one, so again
Iencl = 0. Putting this together,

B =


0 r < 2a
µ0ω
2π λi 2a < r < 3a

0 r > 3a

or, using our expression for λi,

B =


0 r < 2a(
1− 1

κ

) µ0ωλ
2π 2a < r < 3a

0 r > 3a
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Question A4

Two masses m separated by a distance l are given initial velocities v0 as shown in the diagram.
The masses interact only through universal gravitation.

l
v0

v0

a. Under what conditions will the masses eventually collide?

b. Under what conditions will the masses follow circular orbits of diameter l?

c. Under what conditions will the masses follow closed orbits?

d. What is the minimum distance achieved between the masses along their path?

Solution

a. In order for the masses to collide, the total angular momentum of the system must be zero,
which only occurs if v0 = 0.

b. In this case, the masses undergo uniform circular motion with radius l
2 and speed v0, so that

Gm2

l2
=

mv0
2

l
2

Gm

v0
2l

= 2

c. The masses follow closed orbits if they do not have enough energy to escape, i.e. if the total
energy of the system is negative. The total energy of the system is

2 · 1
2
mv0

2 − Gm2

l

so that the condition required is

mv0
2 − Gm2

l
< 0

Gm

v0
2l

> 1
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d. Note that the masses will always move symmetrically about the center of mass. Thus, in
order to be at minimum separation, their velocities must be perpendicular to the line joining
them (and will be oppositely directed). Let the minimum separation be d, and let the speed
of each mass at minimum separation be v.

L = 2mv
d

2
= mvd

The initial angular momentum is likewise mv0l, and so by conservation of angular momentum

mvd = mv0l

v = v0
l

d

By conservation of energy

2 · 1
2
mv0

2 − Gm2

l
= 2 · 1

2
mv2 − Gm2

d

v0
2 − Gm

l
= v2 − Gm

d

Combining these,

v0
2 − Gm

l
= v0

2 l2

d2
− Gm

d(
1− Gm

v0
2l

) (
d

l

)2

+
Gm

v0
2l

(
d

l

)
− 1 = 0(

d

l
− 1

) ((
1− Gm

v0
2l

)
d

l
+ 1

)
= 0

so that
d = l or d =

l
Gm
v0

2l
− 1

The second root is only sensible if Gm
v0

2l
> 1, and is only smaller than the first if Gm

v0
2l

> 2.
(Note that both of these results make sense in light of the previous ones.) Thus the minimum
separation is l if Gm

v0
2l
≤ 2 and l

Gm
v0

2l
−1

otherwise.
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STOP: Do Not Continue to Part B

If there is still time remaining for Part A, you should review your work for
Part A, but do not continue to Part B until instructed by your exam

supervisor.
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Part B

Question B1

A particle of mass m moves under a force similar to that of an ideal spring, except that the force
repels the particle from the origin:

F = +mα2x

In simple harmonic motion, the position of the particle as a function of time can be written

x(t) = A cos ωt + B sinωt

Likewise, in the present case we have

x(t) = A f1(t) + B f2(t)

for some appropriate functions f1 and f2.

a. f1(t) and f2(t) can be chosen to have the form ert. What are the two appropriate values of
r?

b. Suppose that the particle begins at position x(0) = x0 and with velocity v(0) = 0. What is
x(t)?

c. A second, identical particle begins at position x(0) = 0 with velocity v(0) = v0. The second
particle becomes closer and closer to the first particle as time goes on. What is v0?

Solution

a. We have
ma = mα2x

d2x

dt2
− α2x = 0

As with the case of simple harmonic motion, we insert a trial function, in this case x(t) = Aert:

d2

dt2
Aert − α2Aert = 0

r2Aert − α2Aert = 0

r2 − α2 = 0

r = ±α

b. We have
x(t) = Aeαt + Be−αt

and therefore
v(t) = αAeαt − αBe−αt

Inserting our initial values,
x(0) = A + B = x0
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v(0) = αA− αB = 0

These equations have solution
A = B =

x0

2
and therefore

x(t) =
x0

2
eαt +

x0

2
e−αt

c. This time our initial values are
x(0) = A + B = 0

v(0) = αA− αB = v0

with solution
A =

v0

2α

B = − v0

2α

Therefore
x(t) =

v0

2α
eαt − x0

2α
e−αt

After a long time, the second (e−αt) term will become negligible. Thus, the second particle
will approach the first particle if the first term matches:

x0

2
eαt =

v0

2α
eαt

v0 = αx0

Copyright c©2012 American Association of Physics Teachers



2012 Semifinal Exam Part B 15

Question B2

For this problem, assume the existence of a hypothetical particle known as a magnetic monopole.
Such a particle would have a “magnetic charge” qm, and in analogy to an electrically charged
particle would produce a radially directed magnetic field of magnitude

B =
µ0

4π

qm

r2

and be subject to a force (in the absence of electric fields)

F = qmB

A magnetic monopole of mass m and magnetic charge qm is constrained to move on a vertical,
nonmagnetic, insulating, frictionless U-shaped track. At the bottom of the track is a wire loop
whose radius b is much smaller than the width of the “U” of the track. The section of track near
the loop can thus be approximated as a long straight line. The wire that makes up the loop has
radius a � b and resistivity ρ. The monopole is released from rest a height H above the bottom of
the track.

Ignore the self-inductance of the loop, and assume that the monopole passes through the loop
many times before coming to a rest.

a. Suppose the monopole is a distance x from the center of the loop. What is the magnetic flux
φB through the loop?

b. Suppose in addition that the monopole is traveling at a velocity v. What is the emf E in the
loop?

c. Find the change in speed ∆v of the monopole on one trip through the loop.

d. How many times does the monopole pass through the loop before coming to a rest?

e. Alternate Approach: You may, instead, opt to find the above answers to within a dimen-
sionless multiplicative constant (like 2

3 or π2). If you only do this approach, you will be able
to earn up to 60% of the possible score for each part of this question.

You might want to make use of the integral∫ ∞

−∞

1
(1 + u2)3

du =
3π

8

or the integral ∫ π

0
sin4 θ dθ =

3π

8

Solution

Version 1
The magnetic field around a monopole is given by

B =
µ0

4π

qm

r2
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The flux through the loop will then be

ΦB =
∫

~B · d ~A =
1
2
µ0qm

∫
sin θ dθ

where θ is the angle between a line along the axis of the loop and a line drawn between the monopole
and any point on the rim of the loop.

It is easy to see that

dΦB =
1
2
µ0qm sin θ

From Faraday’s law, we have that a changing flux will induce a current I in the loop.

dΦB

dt
= IR,

where R is the resistance of the loop. We’ll figure R out later.
The induced current will create a magnetic field that will oppose the monopole motion. We

need to use the law of Biot & Savart to find that field. Along the axis of the loop, we have

d ~B =
µ0I

4π

d~l × ~r

r3
,

where ~r is a vector connecting the monopole with some point on the rim of the loop. Only compo-
nents of ~B parallel to the axis of the loop will survive, so we can concern ourselves with

dB =
µ0I

4π

dl

r2
sin θ

The integral is trivial; dl is around the circumference; nothing else changes, so

B =
µ0Ib

2r2
sin θ

It is better to think in terms of b, the radius of the loop, than it is to deal with r, the distance from
the rim of the loop to the monopole. In that case,

sin θ =
b

r
,

so
B =

µ0I

2b
(sin θ)3

The force on the monopole is then

F = qmB = qm
µ0I

2b
(sin θ)3 = qm

µ0

2b
(sin θ)3

1
R

dΦB

dt

Note than multiplying through by dt gives an expression that is related to the change in momentum,

dp = qm
µ0

2b
(sin θ)3

1
R

dΦB = qm
2 µ0

2

4bR
(sin θ)4 dθ

Using the provided integral,

∆p =
qm

2µ0
2

4bR

3π

8
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as the monopole moves from one side to the other.
If the monopole started from rest a distance H above the loop, then the initial energy of the

system is mgH, and the initial momentum when passing through the loop (assuming there is no
loop) is then

p0 = m
√

2gH

The monopole will lose ∆p from the momentum on each pass through the loop, so the number of
times it passes through the loop N is

N =
p0

∆p
= m

√
2gH

(
qm

2µ0
2

4bR

3π

8

)−1

or

N =
32bRm

√
2gH

3πµ0
2qm

2

Oh, we still need to do R. Since a � b, we can treat it as a long thin cylindrical wire, and

R =
ρ2πb

πa2

so we finally get

N =
64b2ρm

√
2gH

3πµ0
2qm

2a2

Version 2
Instead of force, focus on the power dissipated in the loop, which is

P =
E2

R

P =

(
1
2µ0qm

b2

(b2+x2)
3
2

dx
dt

)2

2πbρ
πa2

P =
µ0

2qm
2a2b3

8ρ

1
(b2 + x2)3

(
dx

dt

)2

The energy is lost from the particle:

P = − d

dt

1
2
mv2

P = −mv
dv

dt

Combining these, and since v = dx
dt ,

dv

dt
= −µ0

2qm
2a2b3

8ρm

1
(b2 + x2)3

dx

dt

Use the provided integral (or do a trig subsitution that gives the other provided integral), and
continue.
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