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BOSE-EINSTEIN CONDENSATION

Green’s function method to the ground state properties of a two-component
Bose–Einstein condensate

Chen Liang,a) Kong Wei, B. J. Ye, H. M. Wen, X. Y. Zhou, and R. D. Han

Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
(Submitted November 25, 2010)

Fiz. Nizk. Temp. 37, 708–714 (July 2011)

The elementary excitation spectrum of a two-component Bose–Einstein condensate is obtained by

Green’s function method. It is found to have two branches. In the long-wave limit, the two branches

of the excitation spectrum are reduced to one phonon excitation and one single-particle excitation.

With the obtained excitation spectrum and the Green’s functions, the depletion of the condensate

and the ground state energy have also been calculated in this paper. VC 2011 American Institute of
Physics. [doi: 10.1063/1.3633685]

I. INTRODUCTION

The realization of Bose–Einstein condensation (BEC)

(Refs. 1 and 2) has attracted much interest in the past years,

because it provides the unique opportunities for exploring

quantum phenomena on a macroscopic scale. The Bose–

Einstein condensation for noninteracting particles is charac-

terized as the macroscopic occupation number for one of the

single-particle energy levels. For interacting systems, the cri-

terion for BEC is generalized by Penrose and Onsager and

by Yang as off-diagonal long range order.3,4 The experimen-

tally realization of BEC is in dilute atomic gases, in which

mean field theory is well applied in the nearly zero tempera-

ture.5,6 The condition for diluteness is na3
s � 1, where n is

the density of the gas and as is the s-wave scattering length.

The interaction between atoms is characterized by the s-

wave scattering length as, which can be manipulated by the

use of lasers and magnetic fields. The transition between re-

pulsive and attractive interaction can be controlled by a Fes-

hbach resonance. The properties of a gas in a trap are usually

studied by Thomas–Fermi approximation. When the length

scale of the trap is much greater than the coherence length n,

the gas is assumed to be homogeneous.

The subject of two-component Bose–Einstein condensate

has attracted many experimental and theoretical studies.7–15

Much work has been devoted to the case of double-well

trapping,9–13 which is similar to the Josephson junctions of

superconductors. The recent experiments have directly

observed the phenomena of plasmon oscillation and macro-

scopic quantum self-trapping (MQST),12,13 which have been

theoretically predicted earlier.9–11 Another possible case is the

mixtures of the same isotope, but in different internal spin

states, such as 87Rb.7,8 In this case, atoms can undergo transi-

tions between hyperfine states by an external field, which

corresponds to the tunneling effects in the double-well case.

The two-body interaction between the atoms of the same state

may be different from the interaction of the different

hyperfine states. The dynamics of this case is similar to the

double-well condensate.11 The thermal effects can act as the

damping term and the system under damping will evolve

into a stationary state of two equivalent components.10

The p phase difference of the two components corresponds

to the energy minimum in the mean field theory in the zero

temperature.14

In this paper we will study the ground state properties of

a two-component BEC. The concept of elementary excita-

tions is important for the ground state BEC, and it can be

studied by several ways. The excitation spectrum can be

achieved by linearizing the hydrodynamic equations derived

from the Gross–Pitaevskii equation.6,15 However for a quan-

tum Bose gas, the excitation spectrum was first obtained by

Bogoliubov by a special transformation,16 which has been

well extended for many quantum theories. It is well known

that the method of Green’s function can be applied to find

the elementary excitations in many fields of condensed mat-

ter physics.17 In this paper, we will extend the method devel-

oped by Beliaev18 to the Bose–Einstein condensate of two

equivalent components. In the mean field approximation, the

elementary excitation spectrum is found to have two

branches. In the long-wave limit, the two branches of the ex-

citation spectrum are reduced to one phonon excitation and

one single-particle excitation. By use of the obtained excita-

tion spectrum and the Green’s functions, we have also calcu-

lated the depletion and the ground state energy of the

condensate.

In Sec. II, we introduce the Green’s method for a homo-

geneous Bose–Einstein condensate in the mean field approx-

imation. In Sec. III, we apply the method to find the

elementary excitation spectrum for a two-component BEC.

The depletion of the condensate and the ground state energy

have also been calculated in this section. In Sec. IV, we

make a conclusion of the paper.

II. GREEN’S FUNCTION METHOD TO BOSE–EINSTEIN
CONDENSATE

The ground-canonical Hamiltonian for a homogeneous

Bose gas in a volume V is often written as17

K ¼
X

p

p2

2m
� l

� �
aþp ap þ

U0

2V

X
k1k2q

aþk1þqaþk2�qak1
ak2
; (1)
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where U0 characterize the two-body interaction, l¼U0n0 is

the chemical potential used to keep the conservation of the

total number of particles, and aþp and ap are the Bose crea-

tion and annihilation operators in the momentum representa-

tion. In zero temperature the condensate is well described by

a field. For simplicity, the phase of the condensate can be

assumed to be zero,17 and we can get the useful average

a0h i ¼ aþ0
� �

¼
ffiffiffiffiffiffi
N0

p
.

In order to get the excitation spectrum, we introduce two

single-particle Green’s functions in zero temperature:17

Gðp; t� t0Þ ¼ �ihTapðtÞaþp ðt0Þi; (2)

Fðp; t� t0Þ ¼ �ihTaþ�pðtÞaþp ðt0Þi: (3)

where the T denotes the chronological product and the opera-

tors are in the Heisenberg picture. The first one is the normal

Green’s function and the second is abnormal. We will try to

derive their dynamical equations. For example:

i
@

@t
Gðp; t� t0Þ ¼ dðt� t0Þ � i

�
T½ap;K�aþp ðt0Þ

�
¼ dðt� t0Þ � i T

p2

2m
� l

� �
apðtÞaþp ðt0Þ

� �

� i
U0

V

X
kq

TaþkþqðtÞakðtÞapþqðtÞaþp ðt0Þ
D E

:

(4)

The brackets of four operators in the interaction term must be

reduced to products of pair operators by Wick’s theorem:17

� i
U0

X

X
kq

�
TaþkþqðtÞakðtÞapþqðtÞaþp ðt0Þ

�

¼ �i
U0

V

X
k

2
�
aþk ðtÞakðtÞ

��
TapðtÞaþp ðt0Þ

�
� i

U0

V

X
q

�
aþ�p�qðtÞapþqðtÞ

��
Taþ�pðtÞaþp ðt0Þ

�

� 2nU0Gðp; t� t0Þ þ U0

V

�
aþ10ðtÞa10ðtÞ

�
Fðp; t� t0Þ

¼ 2nU0Gðp; t� t0Þ þ nU0Fðp; t� t0Þ: (5)

To deduce (5), we have made mean field approximation and

the condensate density n0 is replaced by n. If we make

Fourier transformation of (5) into energy representation, we

can get

xGðp;xÞ ¼ 1þ p2

2m
� l

� �
þ 2nU0

	 

Gðp;xÞþnU0Fðp;xÞ:

(6)

Similarly, we can get another equation for the abnormal

Green’s function as

xFðp;xÞ ¼ � p2

2m
� l

� �
þ 2nU0

	 

Fðp;xÞ � nU0Gðp;xÞ:

(7)

From (6) and (7), we can get the two Green’s functions as

Gðp;xÞ ¼
xþ p2

2m
þ nU0

x2 � e2 þ i0
; (8)

Fðp;xÞ ¼ � nU0

x2 � e2 þ i0
; (9)

where

eðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2m

p2

2m
þ 2nU0

� �
:

s
(10)

The result (10) is the well-known elementary excitation

spectrum. In the long wave-length limit p! 0, the excitation

(10) can be reduced to the phonon form e¼ sp, where

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nU0=m

p
is the sound speed.

From the obtained Green’s function (8), we can get the

density of the noncondensate atoms as17,19

nex ¼ lim
t!�0

ð
d3p

ð2p�hÞ3
ð

dx
i

2p
e�ixtGðp;xÞ ¼ 1

3p2�h3
ðmnU0Þ3=2;

(11)

and the energy density of the condensate can be calculated

as

E

V
¼ 1

2
U0n2 1þ mU0

1

V

X
p 6¼0

1

p2

 !

þ lim
t!�0

ð
d3p

ð2p�hÞ3
ð

dx
i

2p
e�ixteðpÞGðp;xÞ

¼ U0n2

2
þ 8

15

m3=2

p2�h3
ðU0nÞ5=2: (12)

To deduce the result (12), we have replaced the bare cou-

pling constant

U0 ¼
4p�h2a

m
by U0 ¼

4p�h2a

m
1þ 4p�h2a

V

X
p 6¼0

1

p2

 !

Refs. 17 and 20, where a is the scattering length. The first

part of (12) is the interaction energy of the condensate, and

the second part comes from the contributions of the noncon-

densed atoms. The result (12) was first obtained by Lee and

Yang.20

The Green’s function method used here was first intro-

duced by Beliaev,18 which is base on the mean-field approxi-

mation. The excitation spectrum can also be obtained by the

method of Bogoliubov transformation. For a homogeneous

BEC, the Hamiltonian should be simplified before the

transformation:16,17

H ¼N2U0

2V
þ
X

p

p2

2m
aþp ap

þ NU0

2V

X
p 6¼0

ðapa�p þ aþp aþ�p þ 2aþp apÞ: (13)

The above Hamiltonian (13) is deduced by mean field

approximation and the fact that the fluctuation in the particle

number is small. This was first done by Bogoliubov,16 and

562 Low Temp. Phys. 37 (7), July 2011 Liang et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  218.22.21.3 On:

Wed, 26 Nov 2014 12:20:01



the method of Bogoliubov transformation is to construct new

Bose operators to make the simplified Hamiltonian (13) into

diagonal form. However, if we begin from the above simpli-

fied Hamiltonian, we will be easier to get the dynamical

equations of the Green’s functions. The excitation spectrums

obtained by the two methods are completely same in the

form.17 The Bogoliubov transformation method and the

Green’s function method in this paper are all based on mean

field approximation, which is the first order approximation

to the many-body theory.17,19

III. EXCITATION SPECTRUM AND THE GROUND STATE OF A
TWO-COMPONENT BEC

The Hamiltonian for a homogeneous two-component

Bose gas in a volume V can be written in the form14

K ¼
X
i; p

p2

2m
� l

� �
aþipaip þ

X
p

gðaþ1pa2p þ aþ2pa1pÞ

þ 1

2V

X
i;k1k2q

Usa
þ
ik1þqaþik2�qaik1

aik2

þ 1

V

X
k1k2q

Uxaþ1k1þqaþ2k2�qa1k1
a2k2

; (14)

where g is a coupling parameter which shows the transition

between the two kinds of particles, Us and Ux characterize

the two-body interaction of the same kinds of particles and

two different kinds of particles, l is the chemical potential

used to keep the conservation of the total number of par-

ticles, and aþip and aip are the Bose creation and annihilation

operators in the momentum representation.

Bose–Einstein condensation occurs in a state of zero

momentum and the condensate wave function is

Wi ¼
1ffiffiffiffi
V
p hai0i ¼

ffiffiffiffiffiffi
ni0
p

eihi ;

where hi is the phase of the condensate and the angle brack-

ets denote averaging with respect to the ground state. When

the depletion is small in nearly zero temperature, the conden-

sate density ni0 can be replaced by the density ni. As in

Ref. 14, the phase difference of p corresponds to the mini-

mum of the ground state energy of the system. In this paper,

we will consider the case of the phase difference being p. In

zero temperature, the ground state energy density for the ho-

mogeneous two-component condensate with volume V is

given as

E0

V
¼ 1

4
ðUs þ UxÞn2 � 1

2
gn: (15)

In accordance with,14 the chemical potential can be found as

l ¼ � g
2
þ n

2
ðUs þ UxÞ: (16)

For simplicity, we assume that the phase of the first kind of

condensate is zero and the second kind is p. On this assump-

tion, we can get

ha10a20i ¼ �
n

2
; haþ10 a20i ¼ �

n

2
: (17)

The Hamiltonian (14) is more complicated than the conden-

sate of only one component. In order to get the excitation

spectrum, we introduce four single-particle Green’s func-

tions in zero temperature:

Gðp; t� t0Þ ¼ �i
�
Ta1pðtÞaþ1pðt0Þ

�
; (18)

Fðp; t� t0Þ ¼ �i
�
Taþ1�pðtÞaþ1pðt0Þ

�
; (19)

Hðp; t� t0Þ ¼ �i
�
Ta2pðtÞaþ1pðt0Þ

�
; (20)

Lðp; t� t0Þ ¼ �i
�
Taþ2�pðtÞaþ1pðt0Þ

�
; (21)

where the T denotes the chronological product and the

operators are in the Heisenberg representation. As the

procedure in last section, we will try to derive their dy-

namical equations. For the normal Green’s function, we

can get

i
@

@t
Gðp;t�t0Þ¼ dðt�t0Þ�i

�
T½a1p;K�aþ1pðt0Þ

�
¼ dðt�t0Þ�i T

p2

2m
�l

� �
a1pðtÞþ

g
2

a2pðtÞ
��

þ 1

V

X
kq

Vsa
þ
1kþqðtÞa1kðtÞa1pþqðtÞ

þ 1

V

X
kq

Vxaþ2kþqðtÞa2kðtÞa1pþqðtÞ
�

aþ1pðt0Þ
�
:

(22)

The brackets of four operators in the interaction terms must

be reduced to products of pair operators by Wick’s theo-

rem.17,18 Similar to the result (5), we will try to reduce the

following interaction term:

� i
1

V

X
kq

Ux

�
Taþ2kþqðtÞa2kðtÞa1pþqðtÞaþ1pðt0Þ

�

¼�i
1

V

X
k

Ux

�
aþ2kðtÞa2kðtÞ

��
Ta1pðtÞaþ1pðt0Þ

�

� i
1

V

X
q

Ux

�
aþ2pþqðtÞa1pþqðtÞ

��
Ta2pðtÞaþ1pðt0Þ

�

� i
1

V

X
q

Ux

�
a2�p�qðtÞa1pþqðtÞ

��
Taþ2�pðtÞaþ1pðt0Þ

�

� n2UxGðp; t� t0Þ þ 1

V
Ux

�
aþ20a10

�
Hðp; t� t0Þ

þ 1

V
Ux

�
a20a10

�
Lðp; t� t0Þ

¼ n

2
UxGðp; t� t0Þ � n

2
Ux½Hðp; t� t0Þ þLðp; t� t0Þ�: (23)

To deduce (23), we have made mean field approximation

and the condensate density ni0 is replaced by ni. We have

also made use of the assumption (17) and n1¼ n2¼ n/2. All

the interaction terms in (22) can be dealt with similarly. If

we make Fourier transformation of (22) into energy repre-

sentation, we can get

Low Temp. Phys. 37 (7), July 2011 Liang et al. 563
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xGðp;xÞ¼ 1þ p2

2m
�l

� �
þnUsþ

n

2
Ux

	 

Gðp;xÞ

þn

2
UsFðp;xÞþ

g
2
�n

2
Ux


 �
Hðp;xÞ�n

2
UxLðp;xÞ:

(24)

As the same procedure, we can get three other equations:

xFðp;xÞ¼� p2

2m
�l

� �
þnUsþ

n

2
Ux

	 

Fðp;xÞ

�n

2
UsGðp;xÞþ

n

2
UxHðp;xÞ� g

2
�n

2
Ux


 �
Lðp;xÞ;

(25)

xHðp;xÞ¼ p2

2m
�l

� �
þnUsþ

n

2
Ux

	 

Hðp;xÞ

þn

2
UsLðp;xÞ�

n

2
UxFðp;xÞþ g

2
�n

2
Ux


 �
Gðp;xÞ;

(26)

xLðp;xÞ¼� p2

2m
�l

� �
þnUsþ

n

2
Ux

	 

Lðp;xÞ

�n

2
UsHðp;xÞþ

n

2
UxGðp;xÞ� g

2
�n

2
Ux


 �
Fðp;xÞ:

(27)

By the use of the chemical potential (16), we can solve the

four algebra equations (24), (25), (26) and (27) with the aid

of Mathematica. And the solutions are given as

Gðp;xÞ ¼
xþ p2

2m
þ n

2
Us þ

g
2

� �
x2 � e2

1 þ e2
2

2

� �
� g

2
� n

2
Ux


 � e2
1 � e2

2

2

ðx2 � e2
1Þðx

2 � e2
2Þ

;
(28)

Fðp;xÞ ¼
� n

2
Us x2 � e2

1 þ e2
2

2

� �
� n

2
Ux

e2
1 � e2

2

2

ðx2 � e2
1Þðx

2 � e2
2Þ

; (29)

Hðp;xÞ ¼

g
2
� n

2
Ux


 �
x2 � e2

1 þ e2
2

2

� �
� xþ p2

2m
þ n

2
Us þ

g
2

� �
e2

1 � e2
2

2

ðx2 � e2
1Þðx

2 � e2
2Þ

; (30)

Lðp;xÞ ¼

n

2
Ux x2 � e2

1 þ e2
2

2

� �
þ n

2
Us

e2
1 � e2

2

2

ðx2 � e2
1Þðx

2 � e2
2Þ

; (31)

where

e1ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2m

p2

2m
þ nðUs þ UxÞ

	 

;

s
(32)

e2ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2m
þ g

� �
p2

2m
þ gþ nðUs � UxÞ

	 
s
: (33)

From the form of the denominator of the Green’s functions,

it is clear that the energy spectrum of the elementary excita-

tions has two branches e1(p) and e2(p). It is possible for e2(p)

to be imaginary, and this situation corresponds to the insta-

bilities as indicated in Refs. 14 and 15.

In the experiments of the cold atomic gas 87Rb,5 the

scattering length is often in the range 85a0<aRb<140a0,

where a0¼ 0.5292 Å is the Bohr radius. The density is n
� 1012–1014 atoms/cm3, which can meet the condition of

diluteness na3 � 0. And the sound speed s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nU0=m

p
is

always in the order of 1 mm/s. In Fig. 1 we display the two

branches of the excitation spectrum (32) and (33) with

the parameters: the density of the 87Rb gas n¼ 4 � 1013

atoms/cm3, the two scattering length as¼ 120a0 and

ax¼ 80a0 (a0 is the Bohr radius), and g¼ n(Us�Ux)/2.

From the selected parameters, we can obtain the sound

speed s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðUs þ UxÞ=2m

p
of the first branch e1(p) to be

1.5 mm/s. It is clear that the two branches of excitation spec-

trum are of a single-particle excitation and a phonon one.

The normal Green’s function (28) can be rewritten as

Gðp;xÞ ¼
xþ p2

2m
þn

2
ðUsþUxÞ

2ðx2� e2
1Þþ i0

þ
xþ p2

2m
þgþn

2
ðUs�UxÞ

2ðx2� e2
2Þþ i0

:

(34)

FIG. 1. Excitation energy as a function of the wave number k. The solid

line shows the excitation energy e1, and the dash line resembles the branch

e2 with the parameters: n¼ 4 � 1013 atoms/cm3, as¼ 120a0, ax¼ 80a0 and

g¼ n(Us�Ux)/2.
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Based on the results of excitation spectrum (32) and (33), we

can make some discussions about the ground state properties

of the system. In the long-wavelength limit and 0 � g,

n(Us�Ux), (32) and (33) can be reduced as

e1ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðUs þ UxÞ

2m

r
p; (35)

e2ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g½gþ nðUs � UxÞ�

p
þ p2

2m�
; (36)

where the effective mass m* is given by

m� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g½gþ nðUs � UxÞ�

p
2gþ nðUs � UxÞ

m: (37)

It is clear that e1(p) is the phonon excitations with the sound

speed
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðUs þ UxÞ=2m

p
and e2(p) corresponds to the single-

particle excitations with an effective mass and a shift in the

energy.

In the following, we will make some discussions for two

special cases:

1. If Us¼Ux, the excitation spectrum will be simplified

as

e1ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2m

p2

2m
þ 2nUs

� �
;

s
(38)

e2ðpÞ ¼
p2

2m
þ g; (39)

and the Green’s function (34) can be reduced to

Gðp;xÞ ¼
xþ p2

2m
þ nUs

2ðx2 � e2
1Þ þ i0

þ 1

2ðx� e2Þ þ i0
:

(40)

From the form of (39) and (40), we can see that the second

spectrum e2(p) acts only as the transition state such as a1p to

aþ2p, and there is no particles really occupying on this spec-

trum. From the Green’s function (40), we can get the deple-

tion from the condensate of the first kind of particles:

n1ex ¼ lim
t!�0

ð
d3p

ð2p�hÞ3
ð

dx
i

2p
e�ixtGðp;xÞ

¼ 1

2

1

3p2�h3
ðmnUsÞ3=2: (41)

The two components are equivalent and the results can be

applied to the second kind of particles. Similar to the result

(12), we can get the energy of the gases

E

V
¼ Usn

2

2
� 1

2
gnþ 8

15

m3=2

p2�h3
ðUsnÞ5=2: (42)

The results (41) and (42) are completely same to (11) and

(12) as the case of one-component condensate. The phase

difference makes no effect in this case. It is well known that

the mean field theory is well applied for the cold dilute

atomic gases.5,6 In most experiments, the depletion of the

ground state is of the order of one percent. And the energy

from the contribution of the noncondensate atoms is only a

small part of the whole energy. However, the mean field

theory is not suitable to liquid 4He for its strong interaction

and high density.6

2. If g¼ 0, the excitation spectrum will be changed as

e1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2m

p2

2m
þ nðUs þ UxÞ

	 

;

s
(43)

e2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2m

p2

2m
þ nðUs � UxÞ

	 

:

s
(44)

In this case the spectrum can be reduced to two phonon

branches as e1¼ s1p and e2¼ s2p, where the two sound speeds

are s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðUs þ UxÞ=2m

p
and s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðUs � UxÞ=2m

p
,

respectively. The two phonon speeds s1 and s2 can be different

much from each other.

The normal Green’s function (34) can be reduced to

Gðp;xÞ ¼
xþ p2

2m
þ n

2
ðUs þ UxÞ

2ðx2 � e2
1Þ þ i0

þ
xþ p2

2m
þ n

2
ðUs � UxÞ

2ðx2 � e2
2Þ þ i0

:

(45)

Similarly we can get the depletion from the condensate of

the first kind of particles:

nlex ¼
1

2

1

3p2�h3
mn

Us þ Ux

2

� �3
2

þ 1

2

1

3p2�h3
mn

Us � Ux

2

� �3
2

:

(46)

The energy of the condensate can be calculated as

E

V
¼ 1

4
ðUs þ UxÞn2 þ 8

15

m3=2

p2�h3

� Us þ Ux

2
n

� �5=2

þ Us � Ux

2
n

� �5=2
" #

: (47)

Comparing the results (41) and (46), we can see that the den-

sity of excitation n1ex is reduced for the different interac-

tions. The condition Ux¼ 0 corresponds to the minimum of

the excitation density (46), which is
ffiffiffi
2
p

=2 times the one of

the case Us¼Ux. Comparing (47) with (42), the part of the

ground state energy from the contribution of the noncon-

densed atoms is reduced correspondingly.

IV. CONCLUSION

In this paper, we extend the Green’s function method to

the equivalent two-component Bose–Einstein condensate.

The elementary excitation spectrum is found to have two

branches. On the condition of strong coupling, the two

branches of the excitation spectrum are reduced to one pho-

non excitation and one single-particle excitation in the long

wave-length limit. When the two different kinds of interac-

tion are equal, there is no particle really occupying the

branch of the single-particle excitation spectrum, which acts

only as a transition state between two different atoms. The

depletion of the condensate is same to the one of one
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component case. When the transition between the two differ-

ent particles is forbidden, the excitation spectrum is reduced

to two phonon forms in the long wave-length limit. In this

case the depletion of the condensate is reduced for the two

different kinds of interaction. With the obtained excitation

spectrum and the Green’s function, we have also calculated

the ground state energy in this paper.
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