
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 218.22.21.3

This content was downloaded on 26/11/2014 at 02:41

Please note that terms and conditions apply.

The application of artificial neural networks to the inversion of the positron lifetime spectrum

View the table of contents for this issue, or go to the journal homepage for more

2012 Chinese Phys. B 21 117803

(http://iopscience.iop.org/1674-1056/21/11/117803)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1674-1056/21/11
http://iopscience.iop.org/1674-1056
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Chin. Phys. B Vol. 21, No. 11 (2012) 117803

The application of artificial neural networks

to the inversion of the positron lifetime spectrum∗

An Ran(安 然), Zhang Jie(张 杰), Kong Wei(孔 伟), and Ye Bang-Jiao(叶邦角)†

Department of modern physics, University of Science and Technology of China, Hefei 230026, China

(Received 29 November 2011; revised manuscript received 22 June 2012)

A new method of processing positron annihilation lifetime spectra is proposed. It is based on an artificial neural

network (ANN)-back propagation network (BPN). By using data from simulated positron lifetime spectra which are

generated by a simulation program and tested by other analysis programs, the BPN can be trained to extract lifetime

and intensity from a positron annihilation lifetime spectrum as an input. In principle, the method has the potential to

unfold an unknown number of lifetimes and their intensities from a measured spectrum. So far, only a proof-of-principle

type preliminary investigation was made by unfolding three or four discrete lifetimes. The present study aims to design

the network. Besides, the performance of this method requires both the accurate design of the BPN structure and a

long training time. In addition, the performance of the method in practical applications is dependent on the quality

of the simulation model. However, the chances of satisfying the above criteria appear to be high. When appropriately

developed, a trained network could be a very efficient alternative to the existing methods, with a very short identification

time. We have used the artificial neural network codes to analyze data such as the positron lifetime spectra for single

crystal materials and monocrystalline silicon. Some meaningful results are obtained.
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1. Introduction

Positron annihilation technology (PAT) is a

sensitive and non-destructive detection means in

studying the micro-defects of materials.[1−5] In-

version of discrete positron lifetimes and their

distributions, as well as the corresponding am-

plitudes from positron lifetime spectra are tra-

ditionally solved by algorithmic procedures such

as POSITRONFIT,[6−8] CONTIN,[9,10] MELT,[11−15]

and PAScual.[16,17] These programs use an arithmetic

based on the statistical minimization principle or the

maximum entropy principle.

An alternative methodology that has been widely

used to solve several types of physical chemistry cal-

culation problems is called an artificial neural network

(ANN). By using data from simulated positron spec-

tra which are created by a simulation program (PAS-

cual), an ANN can be trained with various parame-

ters, such as lifetime and intensity. One advantage of

this method is, as usual for ANN, that once the net-

work is trained, the identification procedure is very

fast when many spectra are processed. In its most

advanced form, the number of lifetimes and distribu-

tions do not need to be known in advance, and it can

be determined by the program itself. However, exist-

ing studies show that to achieve the same flexibility

with MELT, i.e., to identify an unknown number of

distributions, the network and the training must be

very carefully designed.

2. General principles

Determining parameters of a distribution from

measured spectra is a so-called inverse task. It is very

seldom that an inverse task can be solved analytically

in an exact manner by inverting the relationship. Even

so, the inversion is seldom unique, and thus some extra

criteria need to be used to select the true solution. In

addition, a measured distribution often contains fluc-

tuations and measurement errors. Thus, the inversion

also needs to be the most likely one and needs to be

optimized in some sense.

An artificial neural network represents a powerful

method for dealing with such problems.[17] In partic-

ular, they are very effective in extracting parameters

from a distribution which is a non-linear function of
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the searched parameters, and also contains noise. In

order to achieve this, the network needs to be trained

with a large number of training samples, i.e., realiza-

tions of the distribution where the searched parame-

ters are also known. We do not need to know an ac-

tual analytical relationship connecting the parameters

with the distributions at this stage, except numerical

values of the training samples (input and output).

In general, in the event of a positron annihi-

lation lifetime spectroscopy (PALS), a measurable

spectrum consists of three (or more) exponential de-

cay components, each of which has a different in-

tensity and lifetime(Ii, τi). As discussed in several

literatures,[12,17] one component of a measured spec-

trum y(t) can be written as

y(t) = N0R(t)

∫ ∞

0

f(τ)

τ
exp

(
− t

τ

)
dτ +B, (1)

where R(t) is the detector resolution function which

is usually assumed to be a quasi-Gaussian function

convoluted with the measured signal, B is the back-

ground, and f(τ) is the positron lifetime profile which

can be expressed as

f(τ) =
3∑

i=1

Iiδ(τ − τi), (2)

where Ii is the intensity, and τi is the lifetime of

the i−th component. In more general cases, any of

the three lifetimes can display a variation around the

mean value, which enables us to use a narrow Gaus-

sian distribution instead of the distribution given by

Eq. (2), i.e.,

f(τ) =
3∑

i=1

Ii√
2πσi

exp

[
− (τ − τi)

2

2σ2
i

]
. (3)

As mentioned above, the fourth lifetime constant τ4
can be present sometimes.

To determine the unknown intensities and lifetime

parameters (which form a PALS spectrum) by means

of a neural network is through the use of a large num-

ber of spectra with known intensities and lifetimes to

train samples. The training samples for each pair of

intensity and lifetime parameters must be different.

That is to say, the training samples are required to be

chosen to cover the whole region of possible values in

the application of the trained network. Obviously, it is

impractical to use measurements as training samples.

However, the samples can be very easily generated by

a simulation program such as PAScual. The program

has also been used to test various algorithms.[17]

3. The PALS spectrum generator

The simulation lifetime spectra were generated

with an algorithm based on Eqs. (1) and (3). We use

the PAScual program to produce a batch of positron

annihilation spectra, and test them with another pro-

gram: Lifetime 9. It seems that all simulation spectra

are credible.

In this paper, the extent of the variation of the

intensities and lifetimes were set as: I1 = 0.25, τ1 =

0.130 ns, I2 = 0.45, τ2 = 0.35 ns, I3 = 0.32, and

τ3 = 2.5 ns. The range of the parameters is described

in detail in Table 1. The total number of counts was

taken to be 10 million. In theory, these parameters

could also be changed during the training, so as to

make the trained network capable of interpreting data

from various measurements with different number of

counts. However, we only check the algorithm with

simulated data in the recall phase, and can choose the

number of counts to be 10 million also for the test pat-

terns. Then, data for training can be collected to test

the network. Finally, a background and random noise

are added to the simulated counts in each channel. A

channel width of 24.5 ps was similarly chosen as other

reported simulation studies and measurements. An

example of a simulated spectrum is shown in Fig. 1.
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Fig. 1. (colour online) Simulated positron lifetime spec-

trum.

4. Network structure and train-

ing

We have used a simple three-layered feed-forward

network with a backward error propagation-Back

propagation network. The principles of such net-

works are described in standard textbooks and review

articles.[18] The structure of the network is shown in

Fig. 2. The number of the input and output nodes is

defined by the number of input and output data; the

number of the nodes in the hidden layers is a random
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parameter. The best value in each case can be found

by trial and error. In the present situation, the input

networks contain the PALS spectrum data which has

the same channel length. In this work, 1024 channels

were used. The number of the output nodes is equal to

six, i.e., three intensities and three lifetime constants.

The number of nodes in the hidden layers is chosen to

be 20, 30, 40, 50, 60, and 70.

I

I

I

τ

τ

τ

input layer   

hidden layer output layer

Fig. 2. Structure of the neural network for three lifetimes

and three intensities.

We trained 920 samples, and different spectra

with different intensities and lifetimes were used in a

random arrangement until the root-mean-square net-

work error is below the desired limit of 0.04%. The

root-mean-square error is defined as the squared sum

of deviations of each actual node output from the cor-

rect (”target”) value, which serves as a measure of

the training network. The precision of the network

will be comparable to the root-mean-square value of

the training.

It is seen that in these exploration tests, we have

used a root-mean-square value which leads to a bet-

ter precision than the usual traditional algorithms.

The reason for this is that to achieve better precision,

the networks need more smaller root-mean-square val-

ues and more training samples, more training epochs,

smaller training error goals, and a much longer train-

ing time.[18] At this stage it was clear that, due to the

large size of the networks, i.e., 1024 input nodes, the

training time is quite long.

We construct six neural networks which are dif-

ferent from the number of hidden layer neurons. The

number of hidden layer neurons is 20, 30, 40, 50, 60,

and 70. After the training is over, i.e., the root-mean-

square value decreases to lower than 0.04%, another

100 samples were produced by PAScual which was

then used to test the performance of the network.

5. Results

The results are summarized in Table 1 and Fig. 3.

In both cases, the relative error is used to describe net-

work performance. In Table 1, the relative standard

deviation is given, which is calculated based on the

results of all test samples using the traditional pro-

grams. In Fig. 3, the relative error is shown for each

test sample as a function of the parameters to be de-

termined. Since the lifetime spectra contain physical

information, the errors regarding to the lifetimes are

shown.

It is seen that the relative standard deviation

of the number of hidden layer neurons (20, 30, 40,

and 50) is larger than that obtained from tradi-

tional algorithms. However, when the number of

hidden layer neurons is 60 and 70, the relative stan-

dard deviation is smaller than the traditional algo-

rithms. In addition, when the number of the hidden

layer neurons is 60, the networks can have a bet-

ter performance. If the number of the hidden layer

neurons is too large, the networks will overfit.[19]

This results in the capability that a network with a

suitable number of hidden layer neurons can pro-

vide a smaller error in this situation. If we set

Table 1. Parameters of all simulated positron lifetime spectra. The number of output-input training patterns is

920, and the number of test patterns is 100. The desired target limit for the training root-mean-square error was

0.04%. The number of the hidden layer neurons for average errors 1–6 is 20, 30, 40, 50, 60, and 70, respectively.

I1/% τ1/ns I2/% τ2/ns I3/% τ3/ns

Average error 1 1.62 10.71 1.07 3.37 10.34 1.18

Average error 2 11.47 10.24 2.04 4.48 8.25 0.56

Average error 3 1.39 11.03 1.96 5.64 1.51 0.55

Average error 4 17.69 10.44 3.52 0.28 7.72 1.6

Average error 5 4.84 0.07 1.60 0.68 6.73 1.21

Average error 6 7.51 0.28 1.95 0.13 4.03 0.83
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Fig. 3. Overall relative error versus the number of hidden

layer neurons.

a smaller training error and more training epochs, the

networks can reach any desired level that is compa-

rable with current methods. In this direction, appli-

cations of both faster training methods and a parallel

algorithm are planned.

Besides the simulated positron spectra, we also

use the networks to inverse the real positron annihi-

lation lifetime spectra such as a lifetime spectrum of

silicon single crystal structure material. We have 30

spectra of silicon to analyze. We use the Lifetime9

program to analyze the silicon spectra recorded by

our apparatus. The distribution from the intensities

and lifetimes is shown in Table 2. Then, we use the

trained networks to inverse these spectra, and the re-

sults are also shown in Table 2. We can see that

the network result is a little larger than that from

Lifetime9. The results demonstrate that the network

can analyze single-crystal-structure material, but we

should use more samples to train the networks to ob-

tain more accurate results.

Table 2. Distributions of the lifetime and intensity obtained from the positron spectrum measured for silicon.

I1 τ1/ps I2 τ2/ps I3 τ3/ps

Lifetime9 83.9% 213.2 15.5% 383.2 0.660% 1.795

network 84.1% 216.8 15.1% 408.9 0.860% 2.048

6. Conclusions

An extrapolation of the results shown here in-

dicates that several factors determine the intensities

and lifetimes, and the ANN training procedure can be

very stable. It can also be used to extract three life-

times and three intensities without prior knowledge

of the number of lifetimes present in the measure-

ments. Determination of the lifetime distributions has

not been as successful as the maximum entropy pro-

gram MELT.

The largest advantage of the ANN is expected

from its extreme speed in identification. It takes a

very long time to train a network, and the running

time is only one epoch of millisecond. Thus, if a large

number of unfolding procedures need to be made, the

ANN-based identification procedure may show signifi-

cant advantages. We have already used the ANN code

to analyze single-crystal materials such as silicon and

iron. The results show that this method is effective.
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