Exploring positron characteristics utilizing two new positron-electron correlation schemes based on multiple electronic-structure calculation methods

Zhang Wen-Shuai, Gu Bing-Chuan, Han Xiao-Xi, Liu Jian-Dang, Ye Bang-Jiao
Citation: Chin. Phys. B . 2015, 24(10): 107804. doi: 10.1088/1674-1056/24/10/107804

Journal homepage: http://cpb.iphy.ac.cn; http://iopscience.iop.org/cpb

What follows is a list of articles you may be interested in

Structural, elastic, and electronic properties of sodium atoms encapsulated type-I silicon-clathrate compound under high pressure

Zhang Wei, Chen Qing-Yun, Zeng Zhao-Yi, Cai Ling-Cang

Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX_2 (M = Mo, W; X = O, S, Se, Te): A comparative first-principles study

Zeng Fan, Zhang Wei-Bing, Tang Bi-Yu

Electronic and optical properties of lithium niobate under high pressure: A first-principles study

Sang Dan-Dan, Wang Qing-Lin, Han Chong, Chen Kai, Pan Yue-Wu

Application of artificial neural networks to the inversion of positron lifetime spectrum

An Ran, Zhang Jie, Kong Wei, Ye Bang-Jiao

Theoretical study on the positron annihilation in Rocksalt structured magnesium oxide

Liu Jian-Dang, Zhang Jie, Zhang Li-Juan, Hao Ying-Ping, Guo Wei-Feng, Cheng Bin, Ye Bang-Jiao
2013–2018

Prof. Antonio H. Castro Neto

Prof. Chia-Ling Chien

Prof. David Andelman

Prof. Masao Doi

Prof. Michiyoshi Tanaka

Prof. Werner A. Hofer

Prof. Chen Dong-Min

Prof. H. F. Braun

Prof. Academician Xing Ding-Yu

School of Physics, Nanjing University, Nanjing 210093, China

Prof. Academician Shen Bao-Gen

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Prof. Academician Gong Qi-Huang

School of Physics, Peking University, Beijing 100871, China

Prof. Sheng Ping

Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China

van der Waals-Zeeman Institute der Universiteit van Amsterdam

Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany

Prof. Chen Dong-Min

Rowland Institute for Science, Harvard University, USA

Prof. Feng Shui-Ping

Department of Physics, Beijing Normal University, Beijing 100875, China

Prof. Academician Gao Hong-Jun

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Prof. Gu Chang-Zhi

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Prof. Hu Gang

Department of Physics, Beijing Normal University, Beijing 100875, China

Prof. Academician Hou Jian-Guo

Structure Research Laboratory, University of Science and Technology of China, Hefei 230026, China

Prof. Academician Li Fang-Hua

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Prof. Academician Min Nai-Ben

Department of Physics, Nanjing University, Nanjing 210093, China

Prof. Nie Yu-Xin

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Prof. Academician Pan Jian-Wei

Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China

Prof. Shen Zhi-Xun

Stanford University, Stanford, CA 94305–4045, USA

Prof. Academician Su Zhao-Bing

Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Prof. Academician Sun Chang-Pu

Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Prof. Academician Wang En-Ge

School of Physics, Peking University, Beijing 100871, China

Prof. Academician Xia Jian-Bai

Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100603, China

Prof. Academician Xian Ding-Chang

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Prof. Academician Xiang Tao

Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Prof. Xie Xin-Cheng

School of Physics, Peking University, Beijing 100871, China

Prof. Academician Zhan Wen-Long

Chinese Academy of Sciences, Beijing 100864, China

Prof. Academician Zhu Bang-Fen

Department of Physics, Tsinghua University, Beijing 100084, China

Physicists, Nanjing University, Nanjing 210093, China

China
Exploring positron characteristics utilizing two new positron–electron correlation schemes based on multiple electronic structure calculation methods*

Zhang Wen-Shuai(张文帅)a,b, Gu Bing-Chuan(谷冰川)a,b, Han Xiao-Xi(韩小溪)a,b, Liu Jian-Dang(刘建党)a,b, and Ye Bang-Jiao(叶邦角)a,b

a) Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
b) State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China

(Received 23 April 2015; revised manuscript received 2 June 2015; published online 20 August 2015)

We make a gradient correction to a new local density approximation form of positron–electron correlation. The positron lifetimes and affinities are then probed by using these two approximation forms based on three electronic-structure calculation methods, including the full-potential linearized augmented plane wave (FLAPW) plus local orbitals approach, the atomic superposition (ATSUP) approach, and the projector augmented wave (PAW) method. Furthermore, we explore differences in calculated lifetimes using the FLAPW and ATSUP methods. The differences between calculated lifetimes using the FLAPW and ATSUP methods are clearly interpreted in the view of positron and electron transfers. We further find that a well-implemented PAW method can give near-perfect agreement on both the positron lifetimes and affinities with the FLAPW method, and the competitiveness of the ATSUP method against the FLAPW/PAW method is reduced within the best calculations. By comparing with the experimental data, the new introduced gradient correction form is proved to be competitive for positron lifetime and affinity calculations.

Keywords: positron annihilation, positron lifetime, electronic structure

PACS: 78.70.Bj, 71.60.+z, 71.15.Mb

DOI: 10.1088/1674-1056/24/10/107804

1. Introduction

In recent decades, the Positron Annihilation Spectroscopy (PAS) has become a valuable method to study the microscopic structure of solids,[1–3] and gives detailed information on the electron density and/or momentum distribution[4] in the regions scanned by positrons. An associated theory is required for a thorough understanding of the experimental results. A full two-component self-consistent scheme[5,6] has been developed to calculate positron states in solids based on the density functional theory (DFT).[7] In particular, in bulk material where the positron is delocalized and does not affect the electron states, the full two-component scheme can be reduced without losing accuracy to the conventional scheme[5,6] in which the electronic structure is determined by common one-component formalism. However, there are various kinds of approximations that can be adjusted within this calculation. To improve the analyses of experimental data, one should find out which approximations are more credible to produce the positron state.[8–10] In this paper, we focus on probing the positron lifetimes and affinities by using two new positron–electron correlation schemes that are based on three electronic-structure calculation methods.

Recently, Drummond et al.[11,12] made two calculations for a positron immersed in a homogeneous electron gas by using the Quantum Monte Carlo (QMC) method and a modified one-component DFT method, and then two forms of local density approximations (LDA) on the positron–electron correlation are derived. Kuriplach and Barbiellini[8,9] proposed a fitted LDA form and a generalized gradient approximation (GGA) form based on previous QMC calculation, and then applied these two forms to multiple calculations for positron characteristics in a solid. However, the LDA form based on the modified one-component DFT calculation has not been studied. In this work, we make a gradient correction to the IDFTLDA form and validate these two methods for positron–electron correlation schemes by applying them to multiple positron lifetimes and affinities calculations.

We probe in detail the effect of different electronic-structure calculation methods on positron characteristics in a solid. These methods include the full-potential linearized augmented plane-wave (FLAPW) plus local orbitals method[13] and the atomic superposition (ATSUP) method[14] and the projector augmented wave (PAW) method.[15] Among these methods, the FLAPW method is regarded as the most accurate method to calculate electronic structure, the ATSUP method performs with the best computational efficiency, the PAW method has greater computational efficiency and close accuracy because the FLAPW method but has not been completely tested on positron lifetimes and affinities calculations, except for some individual calculations.[16–19] Moreover, our previous work[20] showed that the calculated lifetimes utilizing the PAW method disagree with those uti-
lizing the FLAPW method. However, within these PAW calculations, the ionic potential was not well constructed. In this paper, we investigated the influences of the ionic pseudo-potential/full-potential and different electron–electron exchange-correlations approaches within the PAW calculations. In particular, the difference between calculated lifetimes by using the self-consistent (FLAPW) and non-self-consistent (ATSUP) methods is clearly investigated in the view of positron and electron transfers.

This paper is organized as follows. In Section 2, we give a brief and overall description of the models considered here, as well as the computational details and the analysis methods we used. In Section 3, we introduce the experimental data on positron lifetime used in this work. In Section 4, we firstly apply all approximation methods for electronic-structure and positron-state calculations to the cases of Si and Al, and give detailed analyses on the effects of these different approaches, and then assess the two new correlation schemes by using the positron lifetime/affinity data in comparison with other schemes based on different electronic-structure calculation methods.

2. Theory and methodology

2.1. Theory

In this section, we briefly introduce the calculation scheme for the positron state and various approximations investigated in this work. Firstly, we do the electronic-structure calculation without considering the perturbation by positron to obtain the ground-state electronic density $n_e(r)$ and the Coulomb potential $V_{\text{Coul}}(r)$ sensed by the positron. Then, the positron density is determined by solving the Kohn–Sham equation

$$\left[-\frac{1}{2} \nabla^2 + V_{\text{Coul}}(r) + V_{\text{corr}}(r)\right] \psi^+ = \varepsilon^+ \psi^+, \quad n_e(r) = |\psi^+(r)|^2,$$

where $V_{\text{corr}}(r)$ is the correlation potential between electron and positron. Finally, the positron lifetime can be obtained by the inverse of the annihilation rate, which is proportional to the product of positron density and electron density accompanied by the so-called enhancement factor arising from the correlation energy between a positron and electrons. The positron chemical potential μ^+ is determined by the positron ground-state energy. The electron chemical potential μ^- is derived from the Fermi energy (top energy of the valence band) in the case of a metal (a semiconductor). This scheme is still accurate for a perfect lattice, as in this case the positron density is delocalized and vanishingly small at every point and thus does not affect the bulk electronic structure.\(^{[6,21]}\)

In our calculations, each enhancement factor is applied identically to all electrons, as suggested by Jensen.\(^{[22]}\) These enhancement factors can be divided into two categories: the local density approximation (LDA) and the generalized gradient approximation (GGA), and they are parameterized by the following equation

$$\gamma = 1 + (1.23 \alpha + a_2 \alpha^2 + a_3 \alpha^3 + a_4 \alpha^4 + a_5 \alpha^5 + a_6 \alpha^6 + a_7 \alpha^7 + a_8 \alpha^8)^{1/3} e^{-a \alpha},$$

here, r_s is defined by $r_s = (3/4 \pi n_{\text{e-}})^{1/3}$, ϵ is defined by $\epsilon = [\nabla \ln(n_{\text{e-}})]^2 / \alpha_{\text{TF}}^2$ (α_{TF}^{-1} is the local Thomas–Fermi screening length), $a_2, a_3, ... a_8, \alpha$ is still accurate for a perfect lattice, as in this case the positron density is delocalized and vanishingly small at every point and thus does not affect the bulk electronic structure.\(^{[6,21]}\)

In our calculations, each enhancement factor is applied identically to all electrons, as suggested by Jensen.\(^{[22]}\) These enhancement factors can be divided into two categories: the local density approximation (LDA) and the generalized gradient approximation (GGA), and they are parameterized by the following equation

$$\gamma = 1 + (1.23 \alpha + a_2 \alpha^2 + a_3 \alpha^3 + a_4 \alpha^4 + a_5 \alpha^5 + a_6 \alpha^6 + a_7 \alpha^7 + a_8 \alpha^8)^{1/3} e^{-a \alpha},$$

where r_s is defined by $r_s = (3/4 \pi n_{\text{e-}})^{1/3}$, ϵ is defined by $\epsilon = [\nabla \ln(n_{\text{e-}})]^2 / \alpha_{\text{TF}}^2$ (α_{TF}^{-1} is the local Thomas–Fermi screening length), $a_2, a_3, ... a_8, \alpha$ are fitted parameters. We have investigated the five forms of the enhancement factor and the correlation potential marked by IDFTLDA, IQMCLDA, PHCLDA, and PHCGGA, plus a new GGA form IDFTGGA introduced in this work based on the IDFTLDA scheme. The fitted parameters of these enhancement factors are listed in Table 1. The LDA forms of V_{corr} corresponding to IDFTLDA, IQMCLDA, PHCLDA are given in Refs. [8], [12], and [25], respectively. Within the GGA, the electronic density and Coulomb potential were calculated by using various methods including: a) the all-electron full potential linearized augmented plane wave plus local orbitals (FLAPW) method,\(^{[13]}\) as implemented in Ref. [8] which is regarded as the most accurate method to calculate electronic-structure; b) the projector augmented wave (PAW) method\(^{[14]}\) with reconstruction of all-electron and full-potential performing with greater computational efficiency and closer accuracy than the FLAPW method; and, c) the non-self-consistent atomic superposition (ATSUP) method,\(^{[15]}\) which has the best computational efficiency.

Table 1. Parameterized LDA/GGA correlation schemes.

<table>
<thead>
<tr>
<th>γ</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDFTLDA</td>
<td>4.1698</td>
<td>0.1737</td>
<td>-1.567</td>
<td>-3.579</td>
<td>0.8364</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDFTGGA</td>
<td>4.1698</td>
<td>0.1737</td>
<td>-1.567</td>
<td>-3.579</td>
<td>0.8364</td>
<td>0.143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IQMCLDA</td>
<td>-0.22</td>
<td>1/6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IQMCGBA</td>
<td>-0.22</td>
<td>1/6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHCLDA</td>
<td>-0.137</td>
<td>1/6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHCGGA</td>
<td>-0.137</td>
<td>1/6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2. Computational details

In our calculations for the electronic structure we implemented the three methods that are mentioned above. For the FLAPW calculations, the WIEN2k code[28] was used, the PBE–GGA approach[29] was adopted for electron–electron exchange-correlations, the total number of k-points in the whole Brillouin zone (BZ) was set to 3375, and the self-consistency was achieved up to both levels of 0.0001 Ry for total energy and 0.001 e for charge distance. For the PAW calculations, the PWSCF code within the Quantum Espresso package[30] was used, the PBEsol-GGA,[31] and PZ–LDA[32] approaches were also implemented for electron–electron exchange–correlations besides the PBE–GGA approach. To achieve that the computational precision for each dimension was noise-free, the simple mean-absolute-deviation (MAD) described in Ref.[57] was adopted for electron–electron deviations.

2.3. Model comparison

An appropriate criterion must be chosen to make a comparison between different models. The root-mean-squared deviation (RMSD) is the most popular and it is defined as the square root of the mean of the squared deviation between experimental and theoretical results: $\text{RMSD} = \left[\frac{1}{N} \sum_{i=1}^{N} (X_{i}^{\text{exp}} - X_{i}^{\text{theo}})^2 \right]^{1/2}$, here N denotes the number of experimental values. In addition, since the theoretical values can be treated to be noise-free, the simple mean-absolute-deviation (MAD) denoted by $\text{MAD} = \left[\frac{1}{N} \sum_{i=1}^{N} |X_{i}^{\text{model A}} - X_{i}^{\text{model B}}| \right] / N$ is much more meaningful to quantify the overall differences between calculated results by using various models. It is obvious that the experimental data favor models producing lower values of the RMSD.

3. Experimental data

Up to five recent observed values from different literatures and groups for 21 materials were gathered to compose a reliable experimental data set. All of the experimental values for each material investigated in this work are basically collected by using the standard suggested in Ref.[57] and are listed in Table 2 with their standard deviation. Furthermore, the materials with less than five experimental measurements and/or the older experimental data were not adopted. It is reasonable to suppose that these materials have insufficient and/or unreliable experimental data that would disrupt the comparison between the models. Especially, the measurements for alkali-metals reported before 1975 are not suggested to be treated seriously.[16] The deviations of experimental results between different groups are usually much larger than the statistical errors, even when only the recent and reliable measurements are considered. That is, the systematic error is the dominant factor, so that the sole statistical error is far from enough and is not used in this work. However, the systematic error is difficult to derive from a single experimental result. In this paper, the average experimental values of each material were used to assess the positron–electron correlation models, and the systematic errors are expected to be canceled as in Ref.[57]. Because the

<table>
<thead>
<tr>
<th>Material</th>
<th>τ_{exp}</th>
<th>σ_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>216.7 a</td>
<td>216.18 a</td>
</tr>
<tr>
<td>Ge</td>
<td>220.5 a</td>
<td>220.36 a</td>
</tr>
<tr>
<td>Mg</td>
<td>225.0 a</td>
<td>225.00 a</td>
</tr>
<tr>
<td>Al</td>
<td>160.7 a</td>
<td>160.70 a</td>
</tr>
<tr>
<td>Ti</td>
<td>147.0 a</td>
<td>147.00 a</td>
</tr>
<tr>
<td>Fe</td>
<td>108.0 a</td>
<td>108.00 a</td>
</tr>
<tr>
<td>Ni</td>
<td>109.8 a</td>
<td>109.80 a</td>
</tr>
<tr>
<td>Zn</td>
<td>148.0 a</td>
<td>148.00 a</td>
</tr>
<tr>
<td>Cu</td>
<td>110.0 a</td>
<td>110.00 a</td>
</tr>
<tr>
<td>Nb</td>
<td>119.0 a</td>
<td>119.00 a</td>
</tr>
<tr>
<td>Mo</td>
<td>109.5 a</td>
<td>109.50 a</td>
</tr>
<tr>
<td>Ta</td>
<td>116.0 a</td>
<td>116.00 a</td>
</tr>
<tr>
<td>Ag</td>
<td>120.0 a</td>
<td>120.00 a</td>
</tr>
<tr>
<td>Au</td>
<td>117.0 a</td>
<td>117.00 a</td>
</tr>
<tr>
<td>Cd</td>
<td>175.0 a</td>
<td>175.00 a</td>
</tr>
<tr>
<td>In</td>
<td>194.0 a</td>
<td>194.00 a</td>
</tr>
<tr>
<td>Pb</td>
<td>194.0 a</td>
<td>194.00 a</td>
</tr>
<tr>
<td>GaAs</td>
<td>231.0 a</td>
<td>231.00 a</td>
</tr>
<tr>
<td>InP</td>
<td>241.0 a</td>
<td>241.00 a</td>
</tr>
<tr>
<td>ZnO</td>
<td>285.0 a</td>
<td>285.00 a</td>
</tr>
<tr>
<td>CdTe</td>
<td>284.0 a</td>
<td>284.00 a</td>
</tr>
</tbody>
</table>

aRef.\textsuperscript{[34], bRef.\textsuperscript{[35], cRef.\textsuperscript{[36], dRef.\textsuperscript{[37], eRef.\textsuperscript{[38], fRef.\textsuperscript{[39], gRef.\textsuperscript{[40], hRef.\textsuperscript{[41], iRef.\textsuperscript{[42], jRef.\textsuperscript{[43], kRef.\textsuperscript{[44], lRef.\textsuperscript{[45], mRef.[46, nRef.[47, oRef.\textsuperscript{[48], pRef.[49, qRef.[50, rRef.[51, sRef.[52, tRef.[53, uRef.[54, vRef.[55, wRef.[56]
observed values for defect state are insufficient and/or largely scattered, it is hard to make a clear discussion on the defect state by using these positron–electron correlation models in this paper. Thus, except for the detailed analyses in the cases of Si and Al based on three usually applied approaches for electronic-structure calculations, we mainly focus on testing the correlation models by using bulk materials’ lifetime data and positron-affinity data. The experimental data of positron affinity are listed in Table 5.

4. Results and discussion

4.1. Detailed analyses in cases of Si and Al

Representatively, panels (a) and (c) in Fig. 1 (Fig. 2) show, respectively, the self-consistent all-electron and positron densities on plane (110) for Al (Si) based on the FLAPW method together with the fQMC/CPP form of the enhancement factor and correlation potential. It is reasonable to obtain that the panel (a) in Fig. 2 shows clear bonding states of Si while the panel (a) in Fig. 1 shows the presence of the nearly free conduction electrons in interstitial regions. To make a comparison between the FLAPW and ATSUP methods for electronic-structure calculations, we also plot the ratio of their respective all-electron and positron densities in panels (b) and (d) in Fig. (Fig.) for Al (Si). These four ratio panels actually reflect the electron and positron transfers from densities based on the non-self-consistent free atomic calculations to that based on the exact self-consistent calculations. This confirms the fact that the positron density follows the changes of the electron density, which yield a small difference in the annihilation rate between these two calculations.\[15\]

Fig. 1. (color online) The self-consistent all-electron density ρ_{FLAPW}^e (a) and positron density ρ_{FLAPW}^p (c) (in unit of a.u. a.u. expresses atomic unit) on plane (110) for Al based on the FLAPW method and the fQMC/CPP approximation. The ratios of all-electron density $\rho_{\text{FLAPW}}^e/\rho_{\text{ATSUP}}^e$ (b) or positron density $\rho_{\text{FLAPW}}^p/\rho_{\text{ATSUP}}^p$ (d) calculated by using the FLAPW method to that by using the ATSUP method.

Fig. 2. (color online) The same as Fig. 1, but for Si.

Fig. 3. (color online) The total Coulomb potential $V_{\text{e+}}$ (in unit of Ry) sensed by the positron based on the ionic pseudo-potentials (V_{FP}) and reconstructed ionic full-potential (V_{FLAPW}) and the corresponding calculated positron densities $\rho^+(V_{\text{FP}})$ and $\rho^+(V_{\text{FLAPW}})$ are also plotted. The full-potentials calculated by using the FLAPW method (V_{FLAPW}) are also plotted.

Now, taking more subtle analyses, the change of lifetime within the FLAPW calculation from that within the ATSUP calculation for Al is attributed to the competition between the following two factors: (i) the lifetime is decreased by the translations of electrons (illustrated in Fig. 1(b) as T_{Al}^e) from near-nucleus regions with tiny positron densities to interstitial regions with large positron densities; and, (ii) the lifetime is increased by the translation of positron (illustrated in Fig. 1(d) as T_{Al}^p) from core regions with large electron densities to interstitial regions with small electron densities. However, in the case of Si with bonding states, the change of lifetime depends conversely on the translations of electrons and positron:
a) the lifetime is increased by the translations of electrons (illustrated in Fig. 2(b) as \(T_{\text{Si}}^{e^-} \)) from interstitial regions with the largest positron densities to bonding regions with tiny positron densities; and, b) the lifetime is decreased by the translation of positron (illustrated in Fig. 2(d) as \(T_{\text{Si}}^{e^+} \)) from the interstitial regions with tiny electron densities to bonding regions with large electron densities. Taking note of the magnitude of scale rulers, these two figures state clearly that the translations of electrons (\(T_{\text{e}}^{e^-} \)) are dominant factors for both Al and Si. Consequently, the lifetimes within the FLAPW calculations become smaller (larger) for Al (Si). These variances are proved by calculated values of lifetimes listed in Table 3. In addition, the lifetimes of Si calculated by using three GGA forms of the enhancement factor show greater differences since the large electron-density gradient terms in bonding regions giving decreases of the enhancement factor can further weaken the effect of the translation \(T_{\text{Si}}^{e^+} \).

We calculated the bulk lifetimes for Al and Si based on the PAW method. In Table 3, the label “PAW” without a suffix indicates that the electron structure is calculated by using the PBE–GGA electron–electron exchange–correlations approach\(^{[32]}\) and the positron-state is calculated by using reconstructed ionic full-potential (FP), the suffix “–PP” indicates that the PBE–GGA approach is replaced by the PZ–LDA approach\(^{[32]}\) during electron-structure calculations, and the suffix “–PZ” indicates that ionic full-potential (FP) is replaced by the ionic pseudo-potential (PP) during positron-state calculations. The ionic potential together with the Hartree potential from the valence electrons compose the total Coulomb potential in Eq. (1). It can be easily found that better implementing the PAW method by using a reconstructed full-potential can give a startling agreement with the FLAPW method on the positron-lifetime calculations for Al and Si. By comparing the results of PAW and PAW–PP approaches, the PAW–PP approach leads to smaller lifetimes with the differences up to 3.8 ps and 4.3 ps for Al and Si, respectively. These decreases are caused by the fact that the softer potential within the PAW–PP approach more powerfully attracts positron into the near-nucleus regions with much larger electron densities. This statement is illustrated by the Fig. 3 showing the total Coulomb potential \(V_{\text{coul}} \) sensed by the positron based on the ionic pseudo-potential \(V_{\text{pp}} \) and reconstructed ionic full-potential \(V_{\text{pp}} \) and the corresponding calculated positron densities \(\rho^{e^+} \) along the [100] direction between two adjacent atoms for Al (a) and Si (b), respectively. To make a further comparison, the full-potentials calculated by using the FLAPW method \(V_{\text{FLAPW}} \) are also plotted and they are found to be nearly the same as the reconstructed PAW full-potentials. This figure indicates that a change in the ionic potential approaches (FP or PP) can lead to a change of more than one order of magnitude in the positron densities near the nuclei. It should be noted that, in the cases of PAW calculations with underestimated core/semicore electron densities in the near-nucleus regions,\(^{[31]}\) the effect of overestimated positron densities based on the pseudo-potentials can be canceled, and then the excellent quality on the calculated positron lifetimes is able to be achieved. It is clear that the differences between the results of PAW–PZ and PAW are of the order of 0.1 ps, and therefore the effect of different electron–electron exchange–correlations schemes is small. We also calculated the lifetimes by using the PBEsol-GGA approach,\(^{[31]}\) which is revised for solids and their surfaces, and similar differences of the order of 0.1 ps are also obtained compared with the PBE–GGA approach.

In addition, as shown in Table 3, the positron lifetimes for monovacancy in Al and Si are calculated based on the ATSUP and PAW methods for electronic-structure calculations and six correlation schemes for positron-state calculations. The ideal monovacancy structure is used in these calculations, which means that the positron is trapped into a single vacancy without considering the ionic relaxation from the ideal lattice positions. Larger differences between the results of ATSUP and PAW are found in monovacancy-state calculations compared with that in bulk-state calculations. Besides, the IDFTGGA/IDFTLDA correlation schemes produce similar lifetime values compared with the PHCGGA/PHCLDA correlation schemes and produce much smaller lifetime values compared with the IQMC/GGA/IQMC/LDA correlation schemes in both monovacancy-state and bulk-state calculations.

4.2. Positron lifetime calculations

In this subsection, we firstly give visualized comparisons between experimental values and calculated results based on different methods for electronic-structure and positron-state calculations. Within the PAW, the positron lifetimes are all
calculated by using the reconstructed full-potential and, certainly, all-electron densities from now on.

The deviations of the theoretical results from the experimental data along with the standard deviations of observed values for all materials are plotted in Fig. 4. The scattering regions of calculated results by different forms of the enhancement factor are found to be much larger in the atom systems with bonding states compared with that in pure metal systems. Besides, the deviations of the results found by using the ATSUP method from those found by using the FLAPW method are mostly larger in GGA approximations compared with those in LDA approximations. Numerically, the MADs for different forms of the enhancement factor between the calculated lifetimes by using the ATSUP method and those by using the FLAPW method are shown in Table 4. These MADs range from 0.253 ps (IDFTLDA) to 0.316 ps (PHCGGA). Moreover, the well implemented PAW method is found to be able to give nearly the same results as the FLAPW method. Numerically, the MADs between the calculated lifetimes by the PAW method and those by the FLAPW method for different forms of the enhancement factor are also shown in Table 4. These MADs range from 0.253 ps (IDFTLDA) to 0.316 ps (IDFTGGGA). This near-perfect agreement between the PAW method and the FLAPW method proves that our calculations are quite credible.

Fig. 4. (color online) The deviations of the theoretical results based on various methods from the experimental values along with the standard deviation of experimental values for each material.

<table>
<thead>
<tr>
<th>Method</th>
<th>MAD/ps</th>
<th>RMSD/ps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATSUP</td>
<td>PAW</td>
</tr>
<tr>
<td>fQMCGGA</td>
<td>2.503</td>
<td>0.303</td>
</tr>
<tr>
<td>IDFTGGGA</td>
<td>5.068</td>
<td>0.316</td>
</tr>
<tr>
<td>PHCGGA</td>
<td>3.667</td>
<td>0.287</td>
</tr>
<tr>
<td>fQMCLDA</td>
<td>2.184</td>
<td>0.290</td>
</tr>
<tr>
<td>IDFTLDA</td>
<td>1.966</td>
<td>0.253</td>
</tr>
<tr>
<td>PHCLDA</td>
<td>1.936</td>
<td>0.260</td>
</tr>
</tbody>
</table>

Table 4 also presents the RMSDs between the theoretical results and the experimental data τ_{exp} by using six positron–electron correlation schemes. Two interesting phenomena can be found in this table. Firstly, the RMSDs produced by the IDFTLDA scheme are always worse among the RMSDs based on three electron structure approaches, but are similar to those produced by the PHCLDA scheme. Thus, the gradient correction (IDFTGGA) to this LDA form (IDFTLDA) is needed. It is clear that the corrected IDFTGGA scheme largely improves the calculations and performs better than the PHCGGA scheme but is still worse than the fQMCGGA scheme. The fQMCGGA scheme together with the FLAPW method produced the best RMSD. This fact indicates that the quantum Monte Carlo calculation implemented in Ref. [11] is more credible than the modified one-component DFT calculation [12] on the positron–electron correlation. Secondly, compared to the RMSD produced by using the FLAPW/PAW method, the RMSD produced by using the simple ATSUP method is a little smaller based on the LDA correlation schemes but is distinctly larger based on the GGA (especially fQMCGGA) correlation schemes. This phenomenon implies that the benefit of the exact electronic-structure calculation approach (PAW/FLAPW) is swamped by the inaccurate approximation of the enhancement factor. Meanwhile, the competitiveness of the ATSUP approach against the FLAPW/PAW method is reduced based on the most accurate positron–electron correlation schemes.

4.3. Positron affinity calculations

The positron affinity A^+ is an important bulk property which describes the positron energy level in a solid, and which allows us to probe the positron behavior in an inhomogeneous material. For example, the difference of the lowest positron energies between two elemental metals in contact is given by the positron affinity difference, and this determines how the positron samples behave near the interface region. Besides, if the electron work function ϕ^- is known, then the positron work function ϕ^+ can be derived by the equation: $\phi^+ = -\phi^- - A^+$. The crystal (e.g., W metal) with a stronger negative positron work function can emit a slow-positron to the vacuum from the surface and, therefore, can be utilized as a more efficient positron moderator for the slow-positron beam.

The theoretical and experimental positron affinities for eight common materials by using the new IDFTLDA and IDFTGGA correlation schemes are listed in Table 5. To make a comparison, the results corresponding to the PHCGGA and fQMCGGA schemes are also listed. During the electron structure calculation, the ATSUP method was not implemented because the ATSUP method is inappropriate for positron energetics calculations and gives much negative positron work functions [15]. Within PAW calculations, both PBE–GGA and PZ–LDA approaches are used for electron–electron exchange correlations. The RMSDs between theoretical and experimental positron affinities are also presented in Table 5.
As in previous lifetime calculations, the calculated positron affinities found by using the FLAPW method are also nearly the same as that by using the PAW method. Besides, our calculated positron affinities that are found by using the fQMCGGA & PZ–LDA approaches are in excellent agreement with those reported in Ref. [8] with a MAD being 0.06 eV. Moreover, the differences between the RMSDs produced by using the PBE–GGA and PZ–LDA approaches are not negligible and the PBE–GGA approach performs much better than the PZ–LDA approach, except for the case related to fQMCGGA. In addition, the gradient correction (IDFTGGA) to the IDFTLDA form is needed to improve the performance for positron affinity calculations. Meanwhile, the IDFTGGA correlation scheme makes distinct improvement upon positron affinity calculations compared with the PHCGGA scheme, which is similar to the cases of positron lifetime calculations of bulk materials. Nevertheless, the best agreement between the calculated and experimental positron lifetimes/affinities is still given by the fQMCGGA & PZ–LDA approaches.

5. Conclusion

In this work, we probe the positron lifetimes and affinities utilizing two new positron–electron correlation schemes (IDFTLDA and IDFTGGA) that are based on three common electronic-structure calculation methods (ATSUP, FLAPW, and PAW). Firstly, we apply all approximation methods for electronic-structure calculation methods (ATSUP, FLAPW, and PAW). Secondly, we apply all approximation methods for electronic-structure calculation methods (ATSUP, FLAPW, and PAW). Theoretical and experimental positron affinities A^+ (in unit of eV) based on four positron–electron correlation schemes and several electron structure calculation methods. The RMSDs between the theoretical and experimental positron affinities are also presented. Here, the PZ–LDA approach is labeled by PZ, and the PBE–LDA approach is labeled by PBE for short.

<table>
<thead>
<tr>
<th>A^+</th>
<th>IDFTGGA</th>
<th>IDFTLDA</th>
<th>PHCGGA</th>
<th>fQMCGGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLAPW</td>
<td>PAW</td>
<td>FLAPW</td>
<td>PAW</td>
</tr>
<tr>
<td>Si</td>
<td>PBE</td>
<td>PBE</td>
<td>PZ</td>
<td>PBE</td>
</tr>
<tr>
<td>RMSD</td>
<td>0.285</td>
<td>0.283</td>
<td>0.546</td>
<td>0.570</td>
</tr>
</tbody>
</table>

Acknowledgment

We would like to thank Han Rong-Dian, Li Jun and Huang Shi-Juan for the helpful discussions. Part of the numerical calculations in this paper were completed on the supercomputing system in the Supercomputing Center of the University of Science and Technology of China.

References

Chinese Physics B

Volume 24 Number 10 October 2015

GENERAL

100101 Rapid identifying high-influence nodes in complex networks
Song Bo, Jiang Guo-Ping, Song Yu-Rong and Xia Ling-Ling

100201 Singular and non-topological soliton solutions for nonlinear fractional differential equations
Ozkan Guner

100202 Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method
Cheng Yu-Min, Liu Chao, Bai Fu-Nong and Peng Miao-Juan

100203 Conservative method for simulation of a high-order nonlinear Schrödinger equation with a trapped term
Cai Jia-Xiang, Bai Chuan-Zhi and Qin Zhi-Lin

100204 Transformation optics for efficient calculation of transmembrane voltage induced on cells
Liao Yin-Hong, Zhu Hua-Cheng, Tang Zheng-Ming and Huang Ka-Ma

100301 Time-domain nature of group delay
Wang Jian-Wu and Feng Zheng-He

100302 A new kind of special function and its application
Fan Hong-Yi, Wan Zhi-Long, Wu Ze and Zhang Peng-Fei

100303 Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well
Sun Guo-Hua, Dušan Popov, Oscar Camacho-Nieto and Dong Shi-Hai

100304 Characterizing the dynamics of quantum discord under phase damping with POVM measurements
Jiang Feng-Jian, Ye Jian-Feng, Yan Xin-Hu and Lü Hai-Jiang

100305 Non-Markovianity of a qubit coupled with an isotropic Lipkin–Meshkov–Glick bath
Tian Li-Jun, Ti Min-Min and Zhai Xiang-Dong

100306 Scheme for purifying a general mixed entangled state and its linear optical implementation
Dong Dong, Zhang Yan-Lei, Zou Chang-Ling, Zou Xu-Bo and Guo Guang-Can

100307 Deterministic joint remote state preparation of arbitrary single- and two-qubit states
Chen Na, Quan Dong-Xiao, Xu Fu-Fang, Yang Hong and Pei Chang-Xing

100501 A perturbation method to the tent map based on Lyapunov exponent and its application
Cao Lv-Chen, Luo Yu-Ling, Qiu Sen-Hui and Liu Jun-Xiu

100502 A novel adaptive-impulsive synchronization of fractional-order chaotic systems
Leung Y. T. Andrew, Li Xian-Feng, Chu Yan-Dong and Zhang Hui

100503 Synchronization of coupled chaotic Hindmarsh Rose neurons: An adaptive approach
Wei Wei

100504 Dynamics and stabilization of peak current-mode controlled buck converter with constant current load
Leng Min-Rui, Zhou Guo-Hua, Zhang Kai-Tun and Li Zhen-Hua

(Continued on the Bookbinding Inside Back Cover)
ATOMIC AND MOLECULAR PHYSICS

103201 The ac Stark shifts of the terahertz clock transitions of barium
Yu Geng-Hua, Geng Ying-Ge, Li Long, Zhou Chao, Duan Cheng-Bo, Chai Rui-Peng and Yang Yong-Ming

103202 Extreme ultraviolet and x-ray transition wavelengths in Rb XXIV
Indu Khatri, Arun Goyal, Sunny Aggarwal, A. K. Singh and Man Mohan

103203 Role of elastic scattering in high-order above threshold ionization
Chen Zhang-Jin, Ye Jian-Mian and Xu Yang-Bing

103204 The VMI study on angular distribution of ejected electrons from Eu 4f7 6p1/2 6d autoionizing states
Zhang Kai, Shen Li, Dong Cheng and Dai Chang-Jian

103401 Resonant charge transfer in slow Li+–Li(2s) collisions

103402 Site preferences and lattice vibrations of Nd₆Fe₁₃−ₓTxSi (T = Co, Ni)
Huang Tian-Shun, Cheng Hai-Xia, Wang Xiao-Xu, Zhang Zhen-Feng, An Zhi-Wei and Zhang Guo-Hua

103403 Single ionization of helium atoms by energetic fully stripped carbon ions
Ebrahim Ghanbari-Adivi and Sadjad Eskandari

103601 Modeling the interaction of nitrate anions with ozone and atmospheric moisture
A. Y. Galashev

ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS

104101 Reciprocity principle-based model for shielding effectiveness prediction of a rectangular cavity with a covered aperture
Jiao Chong-Qing and Li Yue-Yue

104102 Design and development of high linearity millimeter wave traveling-wave tube for satellite communications
He Jun, Huang Ming-Guang, Li Xian-Xia, Li Hai-Qiang, Zhao Lei, Zhao Jian-Dong, Li Yue and Zhao Shi-Lei

104103 Exploring electromagnetic response of tellurium dielectric resonator metamaterial at the infrared wavelengths
Song Jia-Kun, Song Yu-Zhi, Li Kang-Wen, Zhang Zu-Yin, Xu Yun, Wei Xin and Song Guo-Feng

104104 Tunable wideband absorber based on resistively loaded lossy high-impedance surface
Dang Ke-Zheng, Shi Jia-Ming, Wang Jia-Chun, Lin Zhi-Dan and Wang Qi-Chao

104201 Absorption enhancement in thin film a-Si solar cells with double-sided SiO₂ particle layers
Chen Le, Wang Qing-Kang, Shen Xiang-Qian, Chen Wen, Huang Kun and Liu Dai-Ming

104202 Superscattering-enhanced narrow band forward scattering antenna
Hu De-Jiao, Zhang Zhi-You and Du Jing-Lei

104203 Ghost imaging with broad distance
Duan De-Yang, Zhang Lu, Du Shao-Jiang and Xia Yun-Jie

(Continued on the Bookbinding Inside Back Cover)
An iterative virtual projection method to improve the reconstruction performance for ill-posed emission tomographic problems
Liu Hua-Wei, Zheng Shu and Zhou Huai-Chun

Field-free orientation of diatomic molecule via the linearly polarized resonant pulses
Li Su-Yu, Guo Fu-Ming, Wang Jun, Yang Yu-Jun and Jin Ming-Xing

Photon pair source via two coupling single quantum emitters
Peng Yong-Gang and Zheng Yu-Jun

Movement of a millimeter-sized oil drop pushed by optical force
Zhang Li and She Wei-Long

Entanglements in a coupled cavity–array with one oscillating end-mirror
Wu Qin, Xiao Yin and Zhang Zhi-Ming

Plasmonic emission and plasma lattice structures induced by pulsed laser in Purcell cavity on silicon
Huang Wei-Qi, Huang Zhong-Mei, Miao Xin-Jian, Liu Shi-Rong and Qin Chao-Jian

Analysis of gain distribution in cladding-pumped thulium-doped fiber laser and optical feedback inhibition problem in fiber-bulk laser system
Ji En-Cai, Liu Qiang, Hu Zhen-Yue and Gong Ma-Li

Arbitrary frequency stabilization of a diode laser based on visual Labview PID VI and sound card output
Feng Guo-Sheng, Wu Ji-Zhou, Wang Xiao-Feng, Zheng Ning-Xuan, Li Yu-Qing, Ma Jie, Xiao Lian-Tuan and Jia Suo-Tang

Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device
Hu Fa-Jie, Jin Peng, Wu Yan-Hua, Wang Fei-Fei, Wei Heng and Wang Zhan-Guo

An optical fiber spool for laser stabilization with reduced acceleration sensitivity to \(10^{-12}/g\)
Hu Yong-Qi, Dong Jing, Huang Jun-Chao, Li Tang and Liu Liang

V–L decomposition of a novel full-waveform lidar system based on virtual instrument technique
Xu Fan and Wang Yuan-Qing

Confinement-induced nanocrystal alignment of conjugated polymer by the soft-stamped nanoimprint lithography
Li Xiao-Hui, Yu Ji-Cheng, Lu Nai-Yan, Zhang Wei-Dong, Weng Yu-Yan and Gu Zhen

Analysis of the spatial filter of a dielectric multilayer film reflective cutoff filter-combination device
Zhang Ying, Qi Hong-Ji, Yi Kui, Wang Yan-Zhi, Sui Zhan and Shao Jian-Da

Quantitative calculation of reaction performance in sonochemical reactor by bubble dynamics
Xu Zheng, Yasuda Keiji and Liu Xiao-Jun

Wavefront modulation of water surface wave by a metasurface
Sun Hai-Tao, Cheng Ying, Wang Jing-Shi and Liu Xiao-Jun

(Continued on the Bookbinding Inside Back Cover)
Temperature imaging with speed of ultrasonic transmission tomography for medical treatment control: A physical model-based method
Chu Zhe-Qi, Yuan Jie, Stephen Z. Pinter, Oliver D. Kripfgans, Wang Xue-Ding, Paul L. Carson and Liu Xiao-Jun

Nonlinear parametrically excited vibration and active control of gear pair system with time-varying characteristic

Skew-gradient representation of generalized Birkhoffian system
Mei Feng-Xiang and Wu Hui-Bin

Effects of the computational domain on the secondary flow in turbulent plane Couette flow
Gai Jie, Xia Zhen-Hua and Cai Qing-Dong

Ferrofluid nucleus phase transitions in an external uniform magnetic field
B. M. Tanygin, S. I. Shulyma, V. F. Kovalenko and M. V. Petrychuk

Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films
Ali Badawi and N. Al-Hosiny

Effect of microwave frequency on plasma formation in air breakdown at atmospheric pressure
Zhao Peng-Cheng, Guo Li-Xin and Li Hui-Min

Investigation of high sensitivity radio-frequency readout circuit based on AlGaN/GaN high electron mobility transistor
Zhang Xiao-Yu, Tan Ren-Bing, Sun Jian-Dong, Li Xin-Xing, Zhou Yu, Lü Li and Qin Hua

Complementary method to locate atomic coordinates by combined searching method of structuresensitive indexes based on bond valence method
Song Zhen, Liu Xiao-Lang, He Li-Zhu, Xia Zhi-Guo and Liu Quan-Lin

Influences of surface and flexoelectric polarization on the effective anchoring energy in nematic liquid crystal
Guan Rong-Hua, Ye Wen-Jiang and Xing Hong-Yu

Determination of electrostatic parameters of a coumarin derivative compound C_{17}H_{13}NO_3 by x-ray and density functional theory
Youcef Megrouss, Nadia Benhalima, Rawia Bahoussi, Nouredine Boukabcha, Abdelkader Chouaib and Fodil Hamzaoui

New crystal structure and physical properties of TcB from first-principles calculations
Zhang Gang-Tai, Bai Ting-Ting, Yan Hai-Yan and Zhao Ya-Ru

Influences of neutral oxygen vacancies and \(E' \) centers on \(\alpha \)-quartz
Li Hui-Ran, Cheng Xin-Lu, Zhang Hong and Zhao Feng
Analysis of functional failure mode of commercial deep sub-micron SRAM induced by total dose irradiation
Zheng Qi-Wen, Cui Jiang-Wei, Zhou Hang, Yu De-Zhao, Yu Xue-Feng, Lu Wu, Guo Qi and Ren Di-Yuan

Analysis of recoverable and permanent components of threshold voltage shift in NBT stressed p-channel power VDMOSFET
Danijel Danković, Ninoslav Stojadinović, Zoran Prijić, Ivica Manić, Vojkan Davidović, Aneta Prijić, Snežana Djorić-Veljković and Snežana Golubović

Mechanical strains in pecvd SiNx:H films for nanophotonic application
O. Semenova, A. Kozelskaya, Li Zhi-Yong, and Yu Yu-De

CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES

Structural, elastic, and electronic properties of sodium atoms encapsulated type-I silicon–clathrate compound under high pressure
Zhang Wei, Chen Qing-Yun, Zeng Zhao-Yi and Cai Ling-Cang

Nano LaAlO₃ buffer layer-assisted tunneling current in manganite p–n heterojunction
Ma Jun-Jie, Wang Deng-Jing, Huang Hai-Lin, Wang Ru-Wu and Li Yun-Bao

Influences of Pr and Ta doping concentration on the characteristic features of FTO thin film deposited by spray pyrolysis
Güven Turgut, Adem Koçyiğit and Erdal Sönmez

High response Schottky ultraviolet photodetector formed by PEDOT:PSS transparent electrode contacts to Mg₀.₁Zn₀.₉O
Hu Zuo-Fu, Wu Huai-Hao, Lv Yan-Wu and Zhang Xi-Qing

Effect of the annealing temperature on the long-term thermal stability of Pt/Si/Ta/Ti/4H–SiC contacts
Cheng Yue, Zhao Gao-Jie, Liu Yi-Hong, Sun Yu-Jun, Wang Tao and Chen Zhi-Zhan

Rectification and electroluminescence of nanostructured GaN/Si heterojunction based on silicon nanoporous pillar array
Wang Xiao-Bo, Li Yong, Yan Ling-Ling and Li Xin-Jian

A C-band 55% PAE high gain two-stage power amplifier based on AlGaN/GaN HEMT
Zheng Jia-Xin, Ma Xiao-Hua, Lu Yang, Zhao Bo-Chao, Zhang Hong-He, Zhang Meng, Cao Meng-Yi and Hao Yue

Fermi level pinning effects at gate–dielectric interfaces influenced by interface state densities
Hong Wen-Ting, Han Wei-Hua, Lyu Qi-Feng, Wang Hao and Yang Fu-Hua

Lateral resistance reduction induced by light-controlled leak current in silicon-based Schottky junction
Wang Shuan-Hu, Zhang Xu, Zou Lv-Kuan, Zhao Jing, Wang Wen-Xin and Sun Ji-Rong

Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices
Ersin Kantar

(Continued on the Bookbinding Inside Back Cover)
107502 Exact solution of Heisenberg model with site-dependent exchange couplings and Dzyloshinsky–Moriya interaction
Yang Li-Jun, Cao Jun-Peng and Yang Wen-Li

107503 Effects of oxidation of DyH₃ in Nd–Fe–B sintered magnets
Yan Gao-Lin and Fang Zhi-Hao

107504 Effects of R-site compositions on the meta-magnetic behavior of Tb₁₋ₓPrₓ(Fe₀.₄Co₀.₆)₁.₈₀C₀.₀₅ (x = 0, 0.8, and 1)
Huang Jun-Wei, Xia Zheng-Cai, Cheng Gang, Shi Li-Ran, Jin Zhao, Shang Cui and Wei Meng

107505 Magnetic–optical bifunctional CoPt₃/Co multilayered nanowire arrays
Su Yi-Kun, Yan Zhi-Long, Wu Xi-Ming, Liu Huan, Ren Xiao and Yang Hai-Tao

107506 Lumped-equivalent circuit model for multi-stage cascaded magnetoelectric dual-tunable bandpass filter
Zhang Qiu-Shi, Zhu Feng-Jie and Zhou Hao-Miao

107701 The interface density dependence of the electrical properties of 0.9Pb(Sc₀.₅Ta₀.₅)O₃–0.1PbTiO₃/0.55Pb(Sc₀.₅Ta₀.₅)O₃–0.45PbTiO₃ multilayer thin films
Li Xue-Dong, Liu Hong, Wu Jia-Gang, Liu Gang, Xiao Ding-Quan and Zhu Jian-Guo

107702 Nanoscale domain switching mechanism of Bi₃.₁₂Eu₀.₈₅Ti₃O₁₂ thin film under the different mechanical forces
Zhu Zhe, Chen Yu-Bo and Zheng Xue-Jun

107703 Effects of surface adsorbed oxygen, applied voltage, and temperature on UV photoresponse of ZnO nanorods
Zong Xian-Li and Zhu Rong

107704 C–H complex defects and their influence in ZnO single crystal
Xie Hui, Zhao You-Wen, Liu Tong, Dong Zhi-Yuan, Yang Jun and Liu Jing-Ming

107705 Temperature dependences of ferroelectricity and resistive switching behavior of epitaxial BiFeO₃ thin films
Lu Zeng-Xing, Song Xiao, Zhao Li-Na, Li Zhong-Wen, Lin Yuan-Bin, Zeng Min, Zhang Zhang, Lu Xu-Bing, Wu Su-Juan, Gao Xing-Sen, Yan Zhi-Bo and Liu Jun-Ming

107801 Multifunctional disk device for optical switch and temperature sensor
Bian Zhen-Yu, Liang Rui-Sheng, Zhang Yu-Jing, Yi Li-Xuan, Lai Gen and Zhao Rui-Tong

107802 Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots
Qi Li-Mei, Li Chao, Fang Guang-You and Li Shi-Chao

107803 Simulation of positron backscattering and implantation profiles using Geant4 code
Huang Shi-Juan, Pan Zi-Wen, Liu Jian-Dang, Han Rong-Dian and Ye Bang-Jiao

107804 Exploring positron characteristics utilizing two new positron–electron correlation schemes based on multiple electronic structure calculation methods
Zhang Wen-Shuai, Gu Bing-Chuan, Han Xiao-Xi, Liu Jian-Dang and Ye Bang-Jiao

(Continued on the Bookbinding Inside Back Cover)
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY

108101 Temperature-dependent photoluminescence spectra of GaN epitaxial layer grown on Si (111) substrate
Zhao Dan-Mei, Zhao De-Gang, Jiang De-Sheng, Liu Zong-Shun, Zhu Jian-Jun, Chen Ping, Liu Wei, Li Xiang and Shi Ming

108102 Influences of hydrogen dilution on microstructure and optical absorption characteristics of nc-SiO\textsubscript{x}∶H film
Zhao Wei, Du Lin-Yuan, Jiang Zhao-Yi, Yin Chen-Chen, Yu Wei and Fu Guang-Sheng

108201 Ion and water transport in charge-modified graphene nanofibers
Qiu Ying-Hua, Li Kun, Chen Wei-Yu, Si Wei, Tan Qi-Yan and Chen Yun-Fei

108202 Influence of hydrogen dilution on microstructure and optical absorption characteristics of nc-SiO\textsubscript{x}∶H film
Zhao Wei, Du Lin-Yuan, Jiang Zhao-Yi, Yin Chen-Chen, Yu Wei and Fu Guang-Sheng

108203 Surface morphology and electrochemical characterization of electrodeposited Ni–Mo nanocomposites as cathodes for hydrogen evolution
Elhachmi Guettal Temam, Hachemi Ben Temam and Said Benramache

108301 Closed-form solution of mid-potential between two parallel charged plates with more extensive application
Shang Xiang-Yu, Yang Chen and Zhou Guo-Qing

108401 Dual-band LTCC antenna based on 0.95Zn\textsubscript{2}SiO\textsubscript{4}·0.05CaTiO\textsubscript{3} ceramics for GPS/UMTS applications
Dou Gang, Li Yu-Xia and Guo Mei

108402 Charge and spin-dependent thermal efficiency of polythiophene molecular junction in presence of dephasing
Z. Golsanamlou, M. Bagheri Tagani and H. Rahimpour Soleimani

108501 Simulation study of the losses and influences of geminate and bimolecular recombination on the performances of bulk heterojunction organic solar cells
Zhu Jian-Zhuo, Qi Ling-Hui, Du Hui-Jing and Chai Ying-Chun

108502 An improved GGNMOS triggered SCR for high holding voltage ESD protection applications
Zhang Shuai, Dong Shu-Rong, Wu Xiao-Jing, Zeng Jie, Zhong Lei and Wu Jian

108503 A novel diode string triggered gated-PiN junction device for electrostatic discharge protection in 65-nm CMOS technology
Zhang Li-Zhong, Wang Yuan, Lu Guang-Yi, Cao Jian and Zhang Xing

108504 Electrical properties of zinc-oxide-based thin-film transistors using strontium-oxide-doped semiconductors
Wu Shao-Hang, Zhang Nan, Hu Yong-Sheng, Chen Hong, Jiang Da-Peng and Liu Xing-Yuan

108505 A threshold voltage model of short-channel fully-depleted recessed-source/drain (Re-S/D) SOI MOSFETs with high-\textit{k} dielectric
Gopi Krishna Saramekala, Sarvesh Dubey and Pramod Kumar Tiwari

108506 Fabrication and characterization of novel high-speed InGaAs/InP uni-traveling-carrier photodetector for high responsivity
Chen Qing-Tao, Huang Yong-Qing, Fei Jia-Rui, Duan Xiao-Feng, Liu Kai, Liu Feng, Kang Chao, Wang Jun-Chu, Fang Wen-Jing and Ren Xiao-Min

(Continued on the Bookbinding Inside Back Cover)
Ultrafast structural dynamics studied by kilohertz time-resolved x-ray diffraction
Guo Xin, Jiang Zhou-Ya, Chen Long, Chen Li-Ming, Xin Jian-Guo, Peter M. Rentzepis and Chen Jie

Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method
Bao Yuan, Wang Yan, Gao Kun, Wang Zhi-Li, Zhu Pei-Ping and Wu Zi-Yu

Flexible-reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique
Li Jing, Cai Cong-Bo, Chen Lin, Chen Ying, Qu Xiao-Bo and Cai Shu-Hui

Analysis of the interdigitated back contact solar cells: The n-type substrate lifetime and wafer thickness
Zhang Wei, Chen Chen, Jia Rui, Sun Yun, Xing Zhao, Jin Zhi, Liu Xin-Yu and Liu Xiao-Wen

GaInP/GaAs tandem solar cells with highly Te- and Mg-doped GaAs tunnel junctions grown by MBE

Improved routing strategy based on gravitational field theory
Song Hai-Quan and Guo Jin

Spatiotemporal distribution characteristics and attribution of extreme regional low temperature event
Feng Tai-Chen, Zhang Ke-Quan, Su Hai-Jing, Wang Xiao-Juan, Gong Zhi-Qiang and Zhang Wen-Yu