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positron–electron correlation schemes based on multiple

electronic structure calculation methods∗

Zhang Wen-Shuai(张文帅)a)b), Gu Bing-Chuan(谷冰川)a)b), Han Xiao-Xi(韩小溪)a)b),
Liu Jian-Dang(刘建党)a)b), and Ye Bang-Jiao(叶邦角)a)b)†

a)Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
b)State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China

(Received 23 April 2015; revised manuscript received 2 June 2015; published online 20 August 2015)

We make a gradient correction to a new local density approximation form of positron–electron correlation. The
positron lifetimes and affinities are then probed by using these two approximation forms based on three electronic-structure
calculation methods, including the full-potential linearized augmented plane wave (FLAPW) plus local orbitals approach,
the atomic superposition (ATSUP) approach, and the projector augmented wave (PAW) approach. The differences between
calculated lifetimes using the FLAPW and ATSUP methods are clearly interpreted in the view of positron and electron
transfers. We further find that a well-implemented PAW method can give near-perfect agreement on both the positron
lifetimes and affinities with the FLAPW method, and the competitiveness of the ATSUP method against the FLAPW/PAW
method is reduced within the best calculations. By comparing with the experimental data, the new introduced gradient
corrected correlation form is proved to be competitive for positron lifetime and affinity calculations.

Keywords: positron annihilation, positron lifetime, electronic structure

PACS: 78.70.Bj, 71.60.+z, 71.15.Mb DOI: 10.1088/1674-1056/24/10/107804

1. Introduction
In recent decades, the Positron Annihilation Spectroscopy

(PAS) has become a valuable method to study the microscopic
structure of solids[1–3] and gives detailed information on the
electron density and/or momentum distribution[4] in the re-
gions scanned by positrons. An associated theory is required
for a thorough understanding of the experimental results. A
full two-component self-consistent scheme[5,6] has been de-
veloped to calculate positron states in solids based on the
density functional theory (DFT).[7] In particular, in bulk ma-
terial where the positron is delocalized and does not affect
the electron states, the full two-component scheme can be re-
duced without losing accuracy to the conventional scheme[5,6]

in which the electronic structure is determined by common
one-component formalism. However, there are various kinds
of approximations that can be adjusted within this calculation.
To improve the analyses of experimental data, one should find
out which approximations are more credible to produce the
positron state.[8–10] In this paper, we focus on probing the
positron lifetimes and affinities by using two new positron–
electron correlation schemes that are based on three electronic-
structure calculation methods.

Recently, Drummond et al.[11,12] made two calculations
for a positron immersed in a homogeneous electron gas by
using the Quantum Monte Carlo (QMC) method and a modi-
fied one-component DFT method, and then two forms of local

density approximations (LDA) on the positron–electron cor-
relation are derived. Kuriplach and Barbiellini[8,9] proposed
a fitted LDA form and a generalized gradient approximation
(GGA) form based on previous QMC calculation, and then
applied these two forms to multiple calculations for positron
characteristics in a solid. However, the LDA form based on
the modified one-component DFT calculation has not been
studied. In this work, we make a gradient correction to the
IDFTLDA form and validate these two new positron–electron
correlation schemes by applying them to multiple positron
lifetimes and affinities calculations.

We probe in detail the effect of different electronic-
structure calculation methods on positron characteristics in a
solid. These methods include the full-potential linearized aug-
mented plane-wave (FLAPW) plus local orbitals method,[13]

the projector augmented wave (PAW) method,[14] and the
atomic superposition (ATSUP) method.[15] Among these
methods, the FLAPW method is regarded as the most ac-
curate method to calculate electronic structure, the ATSUP
method performs with the best computational efficiency, the
PAW method has greater computational efficiency and close
accuracy because the FLAPW method but has not been com-
pletely tested on positron lifetimes and affinities calcula-
tions, except for some individual calculations.[16–19] More-
over, our previous work[20] showed that the calculated life-
times utilizing the PAW method disagree with those uti-

∗Project supported by the National Natural Science Foundation of China (Grant Nos. 11175171 and 11105139).
†Corresponding author. E-mail: bjye@ustc.edu.cn
© 2015 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn
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lizing the FLAPW method. However, within these PAW
calculations, the ionic potential was not well constructed.
In this paper, we investigated the influences of the ionic
pseudo-potential/full-potential and different electron–electron
exchange-correlations approaches within the PAW calcula-
tions. In particular, the difference between calculated life-
times by using the self-consistent (FLAPW) and non-self-
consistent (ATSUP) methods is clearly investigated in the view
of positron and electron transfers.

This paper is organized as follows. In Section 2, we give
a brief and overall description of the models considered here,
as well as the computational details and the analysis meth-
ods we used. In Section 3, we introduce the experimental
data on positron lifetime used in this work. In Section 4,
we firstly apply all approximation methods for electronic-
structure and positron-state calculations to the cases of Si and
Al, and give detailed analyses on the effects of these different
approaches, and then assess the two new correlation schemes
by using the positron lifetime/affinity data in comparison with
other schemes based on different electronic-structure calcula-
tion methods.

2. Theory and methodology
2.1. Theory

In this section, we briefly introduce the calculation
scheme for the positron state and various approximations in-
vestigated in this work. Firstly, we do the electronic-structure
calculation without considering the perturbation by positron
to obtain the ground-state electronic density ne−(𝑟) and the
Coulomb potential VCoul(𝑟) sensed by the positron. Then,
the positron density is determined by solving the Kohn–Sham
equation [

− 1
2

∇𝑟 +VCoul(𝑟)+Vcorr(𝑟)

]
ψ

+

= ε
+

ψ
+, ne+(𝑟) = |ψ+(𝑟)|2, (1)

where Vcorr(𝑟) is the correlation potential between electron
and positron. Finally, the positron lifetime can be obtained
by the inverse of the annihilation rate, which is proportional
to the product of positron density and electron density accom-
panied by the so-called enhancement factor arising from the
correlation energy between a positron and electrons.[21] The
equations are written as follows:

τe+ =
1
λ
, λ = πr2

0c
∫

d𝑟ne−(𝑟)ne+(𝑟)γ(ne−), (2)

where r0 is the classical electron radius, c is the speed of light,
and γ(ne−) is the enhancement factor of the electron density
at the position 𝑟. The positron affinity can be calculated by
adding electron and positron chemical potentials together:

A+ = µ
−+µ

+. (3)

The positron chemical potential µ+ is determined by the
positron ground-state energy. The electron chemical potential
µ− is derived from the Fermi energy (top energy of the valence
band) in the case of a metal (a semiconductor). This scheme
is still accurate for a perfect lattice, as in this case the positron
density is delocalized and vanishingly small at every point and
thus does not affect the bulk electronic structure.[6,21]

In our calculations, each enhancement factor is applied
identically to all electrons, as suggested by Jensen.[22] These
enhancement factors can be divided into two categories: the
local density approximation (LDA) and the generalized gradi-
ent approximation (GGA), and they are parameterized by the
following equation

γ = 1+(1.23rs +a2r2
s +a3r3

s +a3/2r3/2
s

+a7/3r7/3
s +a8/3r8/3

s )e−αε , (4)

here, rs is defined by rs = (3/4πne−)
1/3, ε is defined

by ε = |∇ ln(ne−)|2/q2
TF (q−1

TF is the local Thomas–Fermi
screening length), a2, a3, a3/2, a5/2, a7/3, a8/3, and α

are fitted parameters. We have investigated the five forms
of the enhancement factor and the correlation potential
marked by IDFTLDA,[12] fQMCLDA,[8,9] fQMCGGA,[8,9]

PHCLDA,[23] and PHCGGA,[24] plus a new GGA form
IDFTGGA introduced in this work based on the IDFTLDA
scheme. The fitted parameters of these enhancement fac-
tors are listed in Table 1. The LDA forms of Vcorr corre-
sponding to IDFTLDA, fQMCLDA, PHCLDA are given in
Refs. [8], [12], and [25], respectively. Within the GGA, the
corresponding correlation potential takes the form V GGA

corr =

V LDA
corr e−αε/3.[26,27] The electronic density and Coulomb po-

tential were calculated by using various methods includ-
ing: a) the all-electron full potential linearized augmented
plane wave plus local orbitals (FLAPW) method,[13] as im-
plemented in Ref. [8] which is regarded as the most accu-
rate method to calculate electronic-structure; b) the projector
augmented wave (PAW) method[14] with reconstruction of all-
electron and full-potential performing with greater computa-
tional efficiency and closer accuracy than the FLAPW method;
and, c) the non-self-consistent atomic superposition (ATSUP)
method,[15] which has the best computational efficiency.

Table 1. Parameterized LDA/GGA correlation schemes.

γ a2 a3 a3/2 a7/3 a8/3 α

IDFTLDA 4.1698 0.1737 –1.567 –3.579 0.8364 0

IDFTGGA 4.1698 0.1737 –1.567 –3.579 0.8364 0.143

fQMCLDA –0.22 1/6 0 0 0 0

fQMCGGA –0.22 1/6 0 0 0 0.05

PHCLDA –0.137 1/6 0 0 0 0

PHCGGA –0.137 1/6 0 0 0 0.10
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2.2. Computational details

In our calculations for the electronic structure we im-
plemented the three methods that are mentioned above. For
the FLAPW calculations, the WIEN2k code[28] was used,
the PBE–GGA approach[29] was adopted for electron–electron
exchange-correlations, the total number of k-points in the
whole Brillouin zone (BZ) was set to 3375, and the self-
consistency was achieved up to both levels of 0.0001 Ry
for total energy and 0.001 e for charge distance. For the
PAW calculations, the PWSCF code within the Quantum
ESPRESSO package[30] was used, the PBEsol-GGA,[31] and
PZ–LDA[32] approaches were also implemented for electron–
electron exchange–correlations besides the PBE–GGA ap-
proach, the PAW pseudo-potential files named PSLibrary 0.3.1
and generated by Corso (SISSA, Italy) were employed,[33] the
k-points grid was automatically generated with the parame-
ter being set at least (333) in Monkhorst–Pack scheme, the
kinetic energy cut-off of more than 100 Ry (400 Ry) for the
wave-functions (charge density) and the default convergence
threshold of 10−6 were adopted for self-consistency. For AT-
SUP calculations, the electron density and Coulomb potential
for each material were simply approximated by the superposi-
tion of the electron density and Coulomb potential of neutral
free atoms,[15] while the total number of the node points was
set to the same as in PAW calculations. Besides, 2×2×2 su-
percells were used to calculate the electron structures of mono-
vacancy in Al and Si. To obtain the positron state, the three-
dimensional Kohn–Sham equation, i.e. Eq. (1), was solved
by the finite-difference method while the unit cell of each
material was divided into about 10 mesh spaces per Bohr in
each dimension. All of the important variable parameters were
checked carefully to achieve that the computational precision
of lifetime and affinities are in the order of 0.1 ps and 0.01 eV,
respectively.

2.3. Model comparison

An appropriate criterion must be chosen to make a com-
parison between different models. The root-mean-squared de-
viation (RMSD) is the most popular and it is defined as the
square root of the mean of the squared deviation between
experimental and theoretical results: RMSD = [∑N

i=1(X
exp
i −

X theo
i )2/N]1/2, here N denotes the number of experimental val-

ues. In addition, since the theoretical values can be treated to
be noise-free, the simple mean-absolute-deviation (MAD) de-
fined by MAD = ∑

N
i=1[|Xmodel A

i −Xmodel B
i |/N] is much more

meaningful to quantify the overall differences between calcu-
lated results by using various models. It is obvious that the
experimental data favor models producing lower values of the
RMSD.

3. Experimental data

Up to five recent observed values from different litera-
tures and groups for 21 materials were gathered to compose
a reliable experimental data set. All of the experimental val-
ues for each material investigated in this work are basically
collected by using the standard suggested in Ref. [57] and
are listed in Table 2 with their standard deviation. Further-
more, the materials with less than five experimental measure-
ments and/or the older experimental data were not adopted.
It is reasonable to suppose that these materials have insuf-
ficient and/or unreliable experimental data that would dis-
rupt the comparison between the models. Especially, the
measurements for alkali-metals reported before 1975 are not
suggested to be treated seriously.[8] The deviations of exper-
imental results between different groups are usually much
larger than the statistical errors, even when only the recent
and reliable measurements are considered. That is, the sys-
tematic error is the dominant factor, so that the sole statis-
tical error is far from enough and is not used in this work.
However, the systematic error is difficult to derive from a
single experimental result. In this paper, the average ex-
perimental values of each material were used to assess the
positron–electron correlation models, and the systematic er-
rors are expected to be canceled as in Ref. [57]. Because the

Table 2. The experimental values of lifetime τexp, the related mean value
τ∗exp and the corresponding standard deviation σexp for each material in-
volved in this work.

Material τexp τ∗exp σexp

Si 216.7a 218a 218a 222a 216a 218.1 2.323
Ge 220.5a 230a 230a 228a 228a 227.3 3.931
Mg 225b 225a 220a 238a 235a 228.6 7.569
Al 160.7a 166a 163a 165a 165a 163.9 2.114
Ti 147b 154a 145a 152a 143a 148.2 4.658
Fe 108a 106a 114a 110a 111a 109.8 3.033
Ni 109.8a 107a 105a 109a 110a 108.2 2.127
Zn 148b 153a 145a 154a 152a 150.4 3.781
Cu 110.7a 122a 112a 110a 120a 114.9 2.514
Nb 119a 120a 122a 122a 125a 121.6 2.302
Mo 109.5a 103a 118a 114a 104a 109.7 6.418
Ta 116b 122a 120a 125a 117a 120.0 3.674
Ag 120a 130a 131a 133c 131b 129.0 5.147
Au 117a 113a 113a 117a 123a 116.6 4.098
Cd 175b 184a 167a 172a 186a 176.8 8.043
In 194.7a 200a 192a 193a 189a 193.7 4.066
Pb 194b 200a 204a 200a 209a 201.4 5.550

GaAs 231.6d 231e 230f 232g 220h 228.9 5.043
InP 241i 240j 247k 242l 244m 242.8 2.775
ZnO 153n 159o 158p 161q 171r 160.4 6.618
CdTe 284s 285t 285u 289v 291w 286.8 3.033

aRef. [34], bRef. [35], cRef. [36], dRef. [37], eRef. [38], fRef. [39],
hRef. [40], hRef. [41], iRef. [42], jRef. [43], kRef. [44], lRef. [45], mRef. [46],
nRef. [47], oRef. [48], pRef. [49], qRef. [50], rRef. [51], sRef. [52], tRef. [53],
uRef. [54], vRef. [55], wRef. [56]
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observed values for defect state are insufficient and/or largely

scattered, it is hard to make a clear discussion on the defect

state by using these positron–electron correlation models in

this paper. Thus, except for the detailed analyses in the cases

of Si and Al based on three usually applied approaches for

electronic-structure calculations, we mainly focus on testing

the correlation models by using bulk materials’ lifetime data

and positron-affinity data. The experimental data of positron

affinity are listed in Table 5.

4. Results and discussion

4.1. Detailed analyses in cases of Si and Al

Representatively, panels (a) and (c) in Fig. 1 (Fig. 2)

show, respectively, the self-consistent all-electron and positron

densities on plane (110) for Al (Si) based on the FLAPW

method together with the fQMCGGA form of the enhance-

ment factor and correlation potential. It is reasonable to obtain

that the panel (a) in Fig. 2 shows clear bonding states of Si

while the panel (a) in Fig. 1 shows the presence of the nearly

free conduction electrons in interstitial regions. To make a

comparison between the FLAPW and ATSUP methods for

electronic-structure calculations, we also plot the ratio of their

respective all-electron and positron densities in panels (b) and

(d) in Fig. (Fig. ) for Al (Si). These four ratio panels ac-

tually reflect the electron and positron transfers from densi-

ties based on the non-self-consistent free atomic calculations

to that based on the exact self-consistent calculations. This

confirms the fact that the positron density follows the changes

of the electron density, which yield a small difference in the

annihilation rate between these two calculations.[15]
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Fig. 1. (color online) The self-consistent all-electron density ρ
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FLAPW (a) and

positron density ρ
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FLAPW/ρ

e−
ATSUP (c) (in unit of a.u., a.u. expresses atomic

unit) on plane (110) for Al based on the FLAPW method and the fQM-
CGGA approximation. The ratios of all-electron density ρ
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ATSUP

(b) or positron density ρ
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ATSUP (d) calculated by using the FLAPW

method to that by using the ATSUP method.
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Fig. 2. (color online) The same as Fig. 1, but for Si.
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Fig. 3. (color online) The total Coulomb potential V e+ (in unit of Ry)
sensed by the positron based on the ionic pseudo-potentials (VPP) and re-
constructed ionic full-potential (VFP) and the corresponding calculated
positron densities ρe+ (in unit of a.u.) along the [100] direction between
two adjacent atoms for Al (a) and Si (b), respectively. To make a further
comparison, the full-potentials calculated by using the FLAPW method
(VFLAPW) are also plotted.

Now, taking more subtle analyses, the change of lifetime
within the FLAPW calculation from that within the ATSUP
calculation for Al is attributed to the competition between the
following two factors: (i) the lifetime is decreased by the trans-
lations of electrons (illustrated in Fig. 1(b) as T e−

Al ) from near-
nucleus regions with tiny positron densities to interstitial re-
gions with large positron densities; and, (ii) the lifetime is in-
creased by the translation of positron (illustrated in Fig. 1(d)
as T e+

Al ) from core regions with large electron densities to in-
terstitial regions with small electron densities. However, in
the case of Si with bonding states, the change of lifetime de-
pends conversely on the translations of electrons and positron:
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a) the lifetime is increased by the translations of electrons (il-
lustrated in Fig. 2(b) as T e−

Si ) from interstitial regions with the
largest positron densities to bonding regions with tiny positron
densities; and, b) the lifetime is decreased by the translation of
positron (illustrated in Fig. 2(d) as T e+

Si ) from the interstitial
regions with tiny electron densities to bonding regions with
large electron densities. Taking note of the magnitude of scale
rulers, these two figures state clearly that the translations of
electrons (T e−) are dominant factors for both Al and Si. Con-
sequently, the lifetimes within the FLAPW calculations be-
come smaller (larger) for Al (Si). These variances are proved
by calculated values of lifetimes listed in Table 3. In addi-
tion, the lifetimes of Si calculated by using three GGA forms
of the enhancement factor show greater differences since the
large electron-density gradient terms in bonding regions giv-
ing decreases of the enhancement factor can further weaken
the effect of the translation T e+

Si .
We calculated the bulk lifetimes for Al and Si based on

the PAW method. In Table 3, the label “PAW” without a suf-
fix indicates that the electron structure is calculated by us-
ing the PBE–GGA electron–electron exchange–correlations
approach[32] and the positron-state is calculated by using re-
constructed ionic full-potential (FP), the suffix “–PZ” indi-
cates that the PBE–GGA approach is replaced by the PZ–LDA
approach[32] during electron-structure calculations, and the
suffix “–PP” indicates that ionic full-potential (FP) is replaced
by the ionic pseudo-potential (PP) during positron-state calcu-
lations. The ionic potential together with the Hartree potential
from the valence electrons compose the total Coulomb poten-
tial in Eq. (1). It can be easily found that better implement-
ing the PAW method by using a reconstructed full-potential
can give a startling agreement with the FLAPW method on
the positron-lifetime calculations for Al and Si. By compar-
ing the results of PAW and PAW–PP approaches, the PAW–
PP approach leads to smaller lifetimes with the differences up
to 3.8 ps and 4.3 ps for Al and Si, respectively. These de-
creases are caused by the fact that the softer potential within
the PAW–PP approach more powerfully attracts positron into
the near-nucleus regions with much larger electron densities.
This statement is illustrated by the Fig. 3 showing the to-
tal Coulomb potential V e+ sensed by the positron based on
the ionic pseudo-potential (VPP) and reconstructed ionic full-
potential (VFP) and the corresponding calculated positron den-
sities ρe+ along the [100] direction between two adjacent
atoms for Al (a) and Si (b), respectively. To make a fur-
ther comparison, the full-potentials calculated by using the
FLAPW method (VFLAPW) are also plotted and they are found
to be nearly the same as the reconstructed PAW full-potentials.
This figure indicates that a change in the ionic potential ap-
proaches (FP or PP) can lead to a change of more than one
order of magnitude in the positron densities near the nuclei.
It should be noted that, in the cases of PAW calculations with

underestimated core/semicore electron densities in the near-
nucleus regions,[58] the effect of overestimated positron densi-
ties based on the pseudo-potentials can be canceled, and then
the excellent quality on the calculated positron lifetimes is able
to be achieved. It is clear that the differences between the
results of PAW–PZ and PAW are of the order of 0.1 ps, and
therefore the effect of different electron–electron exchange–
correlations schemes is small. We also calculated the lifetimes
by using the PBEsol-GGA approach,[31] which is revised for
solids and their surfaces, and similar differences of the order
of 0.1 ps are also obtained compared with the PBE–GGA ap-
proach.

Table 3. Calculated results of positron lifetimes (in unit of ps) for Al, Si, and
ideal monovacancy in Al and Si based on various methods for electronic-
structure and positron-state calculations.

IDFT IDFT fQMC fQMC PHC PHC
GGA LDA GGA LDA GGA LDA

Al

ATSUP 160.778 152.470 173.347 169.357 163.036 156.438
FLAPW 156.615 149.852 169.972 166.530 159.397 153.878

PAW 156.649 149.898 170.016 166.584 159.432 153.925
PAW–PP 154.113 146.814 166.507 162.798 156.574 150.587
PAW–PZ 157.208 150.204 170.421 166.906 159.898 154.220

Si

ATSUP 201.770 186.634 213.260 207.345 201.363 190.484
FLAPW 211.843 188.285 217.520 208.477 208.639 191.790

PAW 211.779 188.245 217.466 208.431 208.586 191.752
PAW–PP 208.407 184.675 213.320 204.125 205.060 187.976
PAW–PZ 211.248 188.388 217.399 208.625 208.247 191.905

VAl
ATSUP 229.441 216.639 246.294 240.941 229.686 220.274

PAW 212.176 201.245 229.481 224.429 214.050 205.570

VSi
ATSUP 227.458 208.972 239.524 232.309 225.922 212.690

PAW 236.052 208.712 241.816 231.443 231.504 212.145

In addition, as shown in Table 3, the positron lifetimes
for monovacancy in Al and Si are calculated based on the
ATSUP and PAW methods for electronic-structure calcula-
tions and six correlation schemes for positron-state calcula-
tions. The ideal monovacancy structure is used in these cal-
culations, which means that the positron is trapped into a sin-
gle vacancy without considering the ionic relaxation from the
ideal lattice positions. Larger differences between the results
of ATSUP and PAW are found in monovacancy-state calcula-
tions compared with that in bulk-state calculations. Besides,
the IDFTGGA/IDFTLDA correlation schemes produce sim-
ilar lifetime values compared with the PHCGGA/PHCLDA
correlation schemes and produce much smaller lifetime val-
ues compared with the fQMCGGA/fQMCLDA correlation
schemes in both monovacancy-state and bulk-state calcula-
tions.

4.2. Positron lifetime calculations

In this subsection we firstly give visualized comparisons
between experimental values and calculated results based on
different methods for electronic-structure and positron-state
calculations. Within the PAW, the positron lifetimes are all

107804-5



Chin. Phys. B Vol. 24, No. 10 (2015) 107804

calculated by using the reconstructed full-potential and, cer-
tainly, all-electron densities from now on.

The deviations of the theoretical results from the exper-
imental data along with the standard deviations of observed
values for all materials are plotted in Fig. 4. The scattering re-
gions of calculated results by different forms of the enhance-
ment factor are found to be much larger in the atom systems
with bonding states compared with that in pure metal sys-
tems. Besides, the deviations of the results found by using
the ATSUP method from those found by using the FLAPW
method are mostly larger in GGA approximations compared
with those in LDA approximations. Numerically, the MADs
for different forms of the enhancement factor between the cal-
culated lifetimes by using the ATSUP method and those by
using the FLAPW method are shown in Table 4. These MADs
range from 1.936 ps (PHCLDA) to 5.068 ps (IDFTGGA).
Moreover, the well implemented PAW method is found to be
able to give nearly the same results as the FLAPW method.
Numerically, the MADs between the calculated lifetimes by
the PAW method and those by the FLAPW method for differ-
ent forms of the enhancement factor are also shown in Table 4.
These MADs range from 0.253 ps (IDFTLDA) to 0.316 ps
(IDFTGGA). This near-perfect agreement between the PAW
method and the FLAPW method proves that our calculations
are quite credible.
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Table 4. The MADs between the calculated results by using the AT-
SUP/PAW method and that by using the FLAPW method, and the
RMSDs between the theoretical results and the experimental data τ∗exp.

MAD/ps RMSD/ps

ATSUP PAW FLAPW PAW ATSUP

fQMCGGA 2.503 0.303 4.503 4.591 6.309
IDFTGGA 5.068 0.316 4.809 4.821 5.611
PHCGGA 3.667 0.287 6.148 6.013 7.672

fQMCLDA 2.184 0.290 11.36 11.19 10.35
IDFTLDA 1.966 0.253 25.19 24.99 23.88
PHCLDA 1.936 0.260 22.83 22.63 21.54

Table 4 also presents the RMSDs between the theoretical
results and the experimental data τ∗exp by using six positron–
electron correlation schemes. Two interesting phenomena can
be found in this table. Firstly, the RMSDs produced by the
IDFTLDA scheme are always worse among the RMSDs based
on three electron structure approaches, but are similar to those
produced by the PHCLDA scheme. Thus, the gradient cor-
rection (IDFTGGA) to this LDA form (IDFTLDA) is needed.
It is clear that the corrected IDFTGGA scheme largely im-
proves the calculations and performs better than the PHCGGA
scheme but is still worse than the fQMCGGA scheme. The
fQMCGGA scheme together with the FLAPW method pro-
duced the best RMSD. This fact indicates that the quantum
Monte Carlo calculation implemented in Ref. [11] is more
credible than the modified one-component DFT calculation[12]

on the positron–electron correlation. Secondly, compared to
the RMSD produced by using the FLAPW/PAW method, the
RMSD produced by using the simple ATSUP method is a little
smaller based on the LDA correlation schemes but is distinctly
larger based on the GGA (especially fQMCGGA) correlation
schemes. This phenomenon implies that the benefit of the ex-
act electronic-structure calculation approach (PAW/FLAPW)
is swamped by the inaccurate approximation of the enhance-
ment factor. Meanwhile, the competitiveness of the ATSUP
approach against the FLAPW/PAW method is reduced based
on the most accurate positron–electron correlation schemes.

4.3. Positron affinity calculations

The positron affinity A+ is an important bulk property
which describes the positron energy level in a solid, and which
allows us to probe the positron behavior in an inhomogeneous
material. For example, the difference of the lowest positron
energies between two elemental metals in contact is given
by the positron affinity difference, and this determines how
the positron samples behave near the interface region. Be-
sides, if the electron work function φ− is known, then the
positron work function φ+ can be derived by the equation:
φ+ = −φ−−A+. The crystal (e.g., W metal) with a stronger
negative positron work function can emit a slow-positron to
the vacuum from the surface and, therefore, can be utilized
as a more efficient positron moderator for the slow-positron
beam.

The theoretical and experimental positron affinities for
eight common materials by using the new IDFTLDA and
IDFTGGA correlation schemes are listed in Table 5. To make
a comparison, the results corresponding to the PHCGGA and
fQCMGGA schemes are also listed. During the electron struc-
ture calculation, the ATSUP method was not implemented be-
cause the ATSUP method is inappropriate for positron en-
ergetics calculations and gives much negative positron work
functions.[15] Within PAW calculations, both PBE–GGA and
PZ–LDA approaches are used for electron–electron exchange
correlations. The RMSDs between theoretical and experimen-
tal positron affinities are also presented in Table 5.
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Table 5. Theoretical and experimental positron affinities A+ (in unit of eV) based on four positron–electron correlation schemes and several electron
structure calculation methods. The RMSDs between the theoretical and experimental positron affinities are also presented. Here, the PZ–LDA approach is
labeled by PZ, and the PBE–LDA approach is labeled by PBE for short.

A+

IDFTGGA IDFTLDA PHCGGA fQMCGGA

Exp.FLAPW PAW FLAPW PAW FLAPW PAW FLAPW PAW

PBE PBE PZ PBE PBE PZ PBE PBE PZ PBE PBE PZ

Si –6.481 –6.478 –6.683 –6.884 –6.881 –7.070 –6.728 –6.726 –6.926 –6.182 –6.179 –6.373 –6.2
Al –4.497 –4.504 –4.683 –4.624 –4.631 –4.813 –4.641 –4.648 –4.828 –3.981 –3.988 –4.169 –4.1
Fe –3.914 –3.877 –4.290 –4.323 –4.289 –4.707 –4.120 –4.084 –4.498 –3.544 –3.508 –3.925 –3.3
Cu –4.381 –4.437 –4.932 –4.875 –4.933 –5.435 –4.614 –4.671 –5.168 –4.073 –4.130 –4.630 –4.3
Nb –3.847 –3.841 –4.085 –4.112 –4.107 –4.355 –4.020 –4.014 –4.260 –3.399 –3.394 –3.641 –3.8
Ag –5.147 –5.083 –5.577 –5.670 –5.615 –6.109 –5.398 –5.337 –5.831 –4.875 –4.817 –5.310 –5.2
W –1.956 –1.982 –2.304 –2.225 –2.254 –2.580 –2.121 –2.149 –2.472 –1.491 –1.520 –1.844 –1.9
Pb –5.954 –5.936 –6.305 –6.328 –6.305 –6.683 –6.186 –6.166 –6.538 –5.622 –5.601 –5.977 –6.1

RMSD 0.285 0.283 0.546 0.570 0.566 0.899 0.431 0.427 0.740 0.314 0.314 0.272 –

As in previous lifetime calculations, the calculated
positron affinities found by using the FLAPW method are also
nearly the same as that by using the PAW method. Besides, our
calculated positron affinities that are found by using the fQM-
CGGA & PZ–LDA approaches are in excellent agreement
with those reported in Ref. [8] with a MAD being 0.06 eV.
Moreover, the differences between the RMSDs produced by
using the PBE–GGA and PZ–LDA approaches are not negli-
gible and the PBE–GGA approach performs much better than
the PZ–LDA approach, except for the case related to fQM-
CGGA. In addition, the gradient correction (IDFTGGA) to
the IDFTLDA form is needed to improve the performance
for positron affinity calculations. Meanwhile, the IDFTGGA
correlation scheme makes distinct improvement upon positron
affinity calculations compared with the PHCGGA scheme,
which is similar to the cases of positron lifetime calculations of
bulk materials. Nevertheless, the best agreement between the
calculated and experimental positron affinities is still given by
the fQMCGGA & PZ–LDA approaches.

5. Conclusion
In this work, we probe the positron lifetimes and affini-

ties utilizing two new positron–electron correlation schemes
(IDFTLDA and IDFTGGA) that are based on three common
electronic-structure calculation methods (ATSUP, FLAPW,
and PAW). Firstly, we apply all approximation methods for
electronic-structure and positron-state calculations to the cases
of Si and Al, and give detailed analyses on the effects of these
different approaches. In particular, the difference between cal-
culated lifetimes by using the self-consistent (FLAPW) and
non-self-consistent (ATSUP) methods is clearly investigated
in the view of positron and electron transfers. The well imple-
mented PAW method with reconstruction of all-electron and
full-potential is found to be able to give near-perfect agree-
ment with the FLAPW method, which proves that our calcu-
lations are quite credible. Meanwhile, the competitiveness of

the ATSUP method against the FLAPW method is reduced by
utilizing the best positron–electron correlation schemes (fQM-
CGGA). We then assess the two new positron–electron corre-
lation schemes, the IDFTLDA form and the IDFTGGA form,
by using a reliable experimental data on the positron life-
times and affinities of bulk materials. The gradient correction
(IDFTGGA) to the IDFTLDA form introduced in this work is
necessary to promote the positron affinity and/or lifetime cal-
culations. Moreover, the IDFTGGA performs better than the
PHCGGA scheme in both positron affinity and lifetime calcu-
lations. However, the best agreement between the calculated
and experimental positron lifetimes/affinities is obtained by
using the fQMCGGA positron–electron correlation scheme.
Nevertheless, the new introduced gradient corrected correla-
tion form (IDFTGGA) is currently competitive for positron
lifetime and affinity calculations.
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