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Simulation of positron backscattering and implantation
profiles using Geant4 code∗

Huang Shi-Juan(黄世娟)a)b), Pan Zi-Wen(潘子文)a)b), Liu Jian-Dang(刘建党)a)b),
Han Rong-Dian(韩荣典)a)b), and Ye Bang-Jiao(叶邦角)a)b)†

a)Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
b)State Key Laboratory of Particle Detection and Electronics,

University of Science and Technology of China, Hefei 230026, China

(Received 17 April 2015; revised manuscript received 7 July 2015; published online 20 August 2015)

For the proper interpretation of the experimental data produced in slow positron beam technique, the positron im-
plantation properties are studied carefully using the latest Geant4 code. The simulated backscattering coefficients, the
implantation profiles, and the median implantation depths for mono-energetic positrons with energy range from 1 keV to
50 keV normally incident on different crystals are reported. Compared with the previous experimental results, our simula-
tion backscattering coefficients are in reasonable agreement, and we think that the accuracy may be related to the structures
of the host materials in the Geant4 code. Based on the reasonable simulated backscattering coefficients, the adjustable
parameters of the implantation profiles which are dependent on materials and implantation energies are obtained. The most
important point is that we calculate the positron backscattering coefficients and median implantation depths in amorphous
polymers for the first time and our simulations are in fairly good agreement with the previous experimental results.

Keywords: positron beam, backscattering coefficient, implantation profile, Geant4

PACS: 78.70.–g, 78.70.Bj DOI: 10.1088/1674-1056/24/10/107803

1. Introduction
In recent decades, the positron annihilation technique[1]

has been a powerful tool that has been applied for the charac-
terization of defects of materials due to its nondestruction and
high sensitivity at the atomic level. The slow positron beam
technique can provide depth-resolved information by implant-
ing mono-energetic positrons of energies in the range from a
few hundreds of eV to dozens of keV into the samples. The
mean implantation depth increases with the increase of energy.
Therefore, it is widely used to investigate inhomogeneously
distributed defect concentrations in crystalline materials and
to study the properties of thin films, surfaces, and interfaces of
layered materials.[1–4]

We need a detailed knowledge of the depth distribution of
positrons in order to analyze the low-energy positron beam ex-
perimental data. Two separate parts must be considered, one
is the modeling of the thermalization or implantation of the
positrons, which can be slowed down to near-thermal energies
after a few picoseconds in a material, and the other one is the
modeling of the diffusion and subsequent annihilation of the
thermalized positrons.[2–5] The depth distribution of the ther-
malized positrons before diffusion is called the implantation or
stopping profile. The depth distribution due to diffusion can be
obtained by solving the steady-state diffusion equation using
the positron implantation profile as a source term. Software
has already been developed for diffusion analyses, the most

widely used is the VEPFIT program.[6–8] The VEPFIT pro-
gram is based on the Makhovian distribution, which is derived
from firstly fitting the Monte Carlo results.[9]

The Makhovian profile

P(z,E) =
mzm−1

zm
0

exp
[
−
(

z
z0

)m]
,

z0 =
z

Γ[(1/m)+1]
, z =

A
ρ

En, (1)

where z denotes the distance from the surface of the material
in the direction of the incoming beam. m, A, and n are ad-
justable parameters to fit the data, ρ is the density of the host
material, and Γ is the gamma function. In general, m = 2.0,
n = 1.6, A = 4.0 (µg/cm2)/keV1.6 are adopted, though they
are believed to be a function of both the atomic number Z
of the material and the incident positron energy E. To reveal
and verify this power law, many experiments and Monte Carlo
simulations have been done. Mills and Wilson[10] measured
the transmission of positrons through thin films for the first
time. In the following few years, the Monte Carlo schemes
of Valkealahti and Nieminen (VN),[9,11] Jensen and Walker
(JW),[12,13] McKeown et al. (BNL),[14] Ritley et al.[15] were
developed. The discrepancy among them mainly comes from
the difference of the cross section, the mean free path, the
energy loss function, the polar scattering angle, and they are
suitable over different energy ranges. The calculations based
on the PENELOPE,[16] POS-SPRITE,[17] EGSnrc4.0,[18] and

∗Project supported by the National Natural Science Foundation of China (Grant Nos. 11175171 and 11105139).
†Corresponding author. E-mail: bjye@ustc.edu.cn
© 2015 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn
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Geant4,[19] programs were also done. Baker, Coleman, Maki-
nen, et al.[20–24] measured the backscattering coefficients and
implantation profiles of the positrons in elemental metals, and
Algers et al.[25] and Palacio et al.[26] measured the implanta-
tion depths of the positrons in polymers. Almost all of them
indicate that the fitting parameters of the backscattering coeffi-
cients and the implantation profiles are not fixed constants and
are dependent on the materials.

It is necessary to point out that the direct measurement of
the implantation profiles is very difficult, so far all of these
profiles are indirectly obtained from the fitting data which
are derived from the positron lifetime spectroscopy or the
Doppler broadening spectroscopy.[21,22,25,26] In fact, positrons
backscattered from the target into the vacuum may return to
the sample, while the positrons implanted into the substrate
may diffuse into the overlays. These uncontrolled factors lead
to the low statistical accuracy of the measured profiles. In
the low energy region, their influence could be larger. There-
fore, developing simple theoretical calculations or computer
simulations is essential. Geant4[27] is a very strong toolkit
that is dedicated to accurate and comprehensive simulations
of the passage of particles through matter over a wide en-
ergy range. The atomic data used in this software are ex-
tracted from a set of publicly distributed evaluated data li-
braries. In the latest version, some favorable improvements
have been implemented.[28] While the backscattering coeffi-
cients can be measured easily and correctly, it is feasible to
analyze the implantation profiles based on the fact that the sim-
ulated backscattering coefficients are in good agreement with
the experimental data.

2. Simulation details
The normal incident mono-energetic positrons first slow

down to the thermal energy through scattering elastically and
inelastically in materials, they then diffuse, and they finally
annihilate with random electrons. In this paper, we only focus
on the first process; that is, the implantation process.

In the first process, positrons interact with the host
material through the following ways: the elastic scattering
with the nuclei, the inelastic scattering with the electrons,
and radiation at high energy. Corresponding to them, we
carefully choose five models to simulate the thermalization
process in the latest Geant4 (Release 10.1). G4Goudsmit-
SaundersonMscModel[29,30] is applicable only for electrons
and positrons and is fully based on the same theory as Penelop
and EGSnrc, we use it to handle the elastic scattering pro-
cess. G4PenelopeIonisationModel is used to handle ion-
ization and energy loss, G4PenelopeBremsstrahlungModel,
G4SynchrotronRadiationModel, and G4PositronNuclearPro-
cess are also included for high energy. The G4PenelopeXXX
models are inherited from the PENELOPE code,[16] which is

specially used to simulate the interaction between low energy
electrons or positrons and materials, and is valid for energies
down to a few hundred eV. The cut value is set to 1 nm and
the minimum energy is 20 eV. The path length traveled by the
positron between 20 eV and near-thermal energies(a few meV)
is insignificant compared to the implantation depths. Other-
wise, the second particles’ interaction is not considered, be-
cause we only need the information of the primary particle.

Our simulations are performed for many elemental met-
als, semiconductors, and polymers. Figure 1 shows the
schematic diagram, taking Al as an example. The thickness of
each kind of material is set to the order of centimeter, which is
far greater than its corresponding positron implantation depth.
The implantation positron energies are varied from 1 keV to
50 keV. There is no gap between the incident positron and
the material at the beginning. We select the incident energy,
and then the energy loss and position change are determined
through the five procedures mentioned above. We record the
position of the positron when it is slowed down to near zero
energy. For the backscattered positrons, their energies are usu-
ally high, so we do not record them. The trajectories of 105

particles implanting normally to the entrance surface are stud-
ied. It must be pointed out that the detailed crystal structure of
the host material has not been implemented in Geant4, so the
crystal effects such as channeling are not modeled, although
they may strongly affect the results for some kinds of crystals,
we will discuss this in more detail in the following.
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Fig. 1. (color online) The schematic diagram, taking Al as an example.
The blue points denote the end positions of the positrons.

3. Results and discussion
3.1. Backscattering coefficients

The backscattering coefficient is the most accurate quan-
tity for a direct comparison of Monte Carlo simulations of a
keV electron and positron slowing down in solids and experi-
mental data. Firstly, we investigate the backscattering coeffi-
cients of the elemental crystals including bellium and actinium
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with atomic numbers ranging from 4 to 89 over the energy
range 1 keV–50 keV.

3.1.1. Al, Cu, Ag, and Au

The backscattering coefficients of Al, Cu, Ag, and Au
against implantation positron energy have been widely stud-
ied previously. In Fig. 2, we make a comparison of our Monte
Carlo results and other simulated and experimental data. The
backscattering coefficients increase with the increase of im-
plantation positron energy in the low energy region and they
then saturate. Our simulated results for these four crystals are

all in very good agreement with the experimental data reported
by Coleman et al.[23] The experimental data points of Al, Cu,
and Ag reported by Baker et al.[20] are slightly smaller than the
others. The Monte Carlo results for Cu reported by Valkealahti
and Nieminen[11] are clearly bigger than the others when the
implantation energy is above 5 keV. The Monte Carlo results
of Ag reported by Aydın[31] are systematically large compared
with our simulations and those of others. There is a great dif-
ference between the Monte Carlo results of Au reported by
Dryzek and Horodek[19] and those of others.
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Fig. 2. (color online) The backscattering coefficients versus incident positron energy for Al (a); for Cu (b); for Ag (c); for Au (d). Our
simulation results (Geant4), Exp. Baker1988 (Ref. [20]), Exp. Coleman1992 (Ref. [23]), MC. VN1984 (Ref. [11]), MC. Jensen1993
(Ref. [13]), MC. Fernandez1995 (Ref. [32]), MC. Aydin2000 (Ref. [31]), MC. Jensen1990 (Ref. [12]), MC. Geant2008 (Ref. [19]),
MC. Makinen1992 and Exp. Makinen1992 (Ref. [24]).

3.1.2. Be and Zn

In Fig. 3, the backscattering coefficients of Be and Zn ver-

sus incident positron energy are presented. Our calculation of

Zn seems to be consistent with the experimental data reported

by Coleman et al.[23] For the case of Be, the Monte Carlo re-

sults reported by Coleman et al.[23] and Jensen et al.[13] are

almost identical. According to our best knowledge, there are

very few experimental data points of the backscattering coeffi-

cients of Be up to now. Although there is only one data point of

the backscattering coefficient of Be measured by Massoumi et

al.[33] at 35 keV, it seems to be much closer to our calculations

than the other two. For further comparison, more experiments

need to be done.

3.1.3. C, Si, and Ge

The backscattering coefficients of semiconductors such
as graphite, diamond, Si and Ge in diamond structure are pre-
sented in Fig. 4. In Geant4, the difference between graphite
and diamond is the density, while we obtain almost the same
backscattering coefficients for these two crystals, and the ex-
perimental data of graphite reported by Makinen et al.[24] are
obviously higher than ours. The results of diamond, Si and
Ge reported by Dryzek et al.,[19] who also used the Geant4
code but selected different models, show that the backscatter-
ing coefficient decreases with the increase of implantation en-
ergy and saturates at the energies higher than 20 keV, while
our results give the opposite trend. This is consistent with the
experimental results; however, our results do not fit very well
with the experiments and those of others.
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Fig. 3. (color online) The backscattering coefficients versus incident positron energy for Be (a); for Zn (b). Our simulation results
(Geant4), Exp. Massoumi1991 (Ref. [33]), MC. Coleman and Exp. Coleman1992 (Ref. [23]), MC. Jensen1993 (Ref. [13]).
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Fig. 4. (color online) The backscattering coefficients versus incident positron energy for graphite (a); for diamond (b); for Si (c); for
Ge (d). Our simulation results (Geant4), MC. Makinen1992 and Exp. Makinen1992 (Ref. [24]), MC. Geant2008 (Ref. [19]).

3.1.4. W

Because of its low positron affinity, W is widely used as
a moderator in the slow positron beam technique. In Fig. 5,
we present the relationship between its backscattering coef-
ficients and the incident positron energy. Our results show
that the backscattering coefficient increases as the energy in-
creases, while this is very different from the experimental data
reported by Baker et al.[20] which almost saturates at all en-
ergies. Although there are only a few data points reported by
Makinen et al.[24] and Coleman et al.,[23] the trend of their
results is similar to ours.
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Fig. 5. (color online) The backscattering coefficients versus inci-
dent positron energy for W. Our simulation results (Geant4), Exp.
Baker1988 (Ref. [20]), Exp. Massoumi1991 (Ref. [33]), Exp. Maki-
nen1992 (Ref. [24]), Exp. Coleman1992 (Ref. [23]).
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3.1.5. Amorphous polymers

Algers et al.[25] and Palacio et al.[26] indirectly measured
the implantation profiles of the positrons in amorphous poly-
mers, such as atactic polystyrene (PS), atactic poly (methyl–
methacrylate) (PMMA), and poly (styrene–co–acrylonitrile)
(SAN), but there are still no calculations or experimental data
of their backscattering coefficients. We calculate these data
for the first time and present the relationship between their
backscattering coefficients and the incident positron energy in
Fig. 6. The backscattering coefficients of these amorphous
polymers also increase as the energy increases. However, their
values are very low, even less than 5%.
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Fig. 6. (color online) The backscattering coefficients versus incident
positron energy for amorphous polymers.

3.1.6. The backscattering coefficient versus atomic
number ZZZ

Previous studies have indicated that the backscattering
coefficient is not only related to the implantation energy but
is also related to the atomic number Z of the host material.
In Fig. 7, we also present our simulations of the backscat-
tering coefficients as a function of atomic number Z for sev-
eral values of the positron implantation energy. It can be no-
ticed that the backscattering coefficient increases with the in-
crease of implantation energy and the atomic number, respec-
tively. Moreover, our simulations reproduce the values of the
backscattering coefficients and their tendencies fairly well, es-
pecially at high energies.
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Fig. 7. (color online) The backscattering coefficients as the function
of atomic number Z. Our simulation results (Geant4), Makinen1992
(Ref. [24]), Massoumi1991 (Ref. [33]), Coleman1992 (Ref. [23]).

3.1.7. Discussion

From the results listed above, we can notice that there is a
big discrepancy among the experimental data measured by dif-
ferent authors, even for the same materials, especially for the
low-Z materials and in the low energy region. For low-Z ma-
terials, such as Be and graphite, the uncertainties are large be-
cause of their small backscattering coefficients. In the low en-
ergy region, complications arise from positronium formation
at the surface and the sensitivity of low-energy positrons to the
surface condition. In addition, the uncertainty of the counts,
the possible detection of the annihilation radiation from the
backscattered positrons, and the angle of incidence that is not
strictly normal to the surface of the target all give rise to the
systematic error, and they are very hard to be avoided.

As we know, the elastic scattering process is the main fac-
tor to determine the backscattering coefficients in the Monte
Carlo program. In our simulations, the backscattering coeffi-
cients are in very good agreement with the experimental data
and this indicates that our model is reasonable. In Geant4
code, the detailed crystal structure of the host material has not
been incorporated; that is to say, the atoms are randomly uni-
formly distributed and the structure is only up to the density
and its atomic number. For crystals with a cubic close packed
structure, such as Al, Cu, Ag, and Au and so on, the simulation
structures are very close to their actual structures, so the influ-
ence of the structure on the backscattering coefficients can be
neglected. For Zn with hexagonal close packed structure, sim-
ilar to Al, Cu, Ag, and Au, our results are very close to the
experimental data points. While for the crystals with the dia-
mond structure, our simulations are a little different from the
experimental data, so the influence of the structure should be
considered carefully. For W with body centered cubic struc-
ture, although there are only few experimental data points, we
conclude that the influence of the structure may not be ne-
glected and the low positron affinity may be another factor that
we should take into account.

3.2. Positron implantation profiles

Based on the above discussion, we study the positron im-
plantation profiles in Al, Cu, Zn, Ag, and Au when the im-
plantation positron energies are 10 keV, 20 keV, and 35 keV,
respectively. Our simulation profiles of Al are shown in Fig. 8,
the shape of the profile becomes wide with the increase of im-
plantation positron energy, the same rule is found for the pro-
files of Cu, Zn, Ag, and Au, and this is consistent with the
previous studies. Otherwise, we make a comparison of our
simulation profile and the profile reported by Baker et al.[22]

of Al at 10 keV, and find that they are in reasonable agreement,
except that the peak of our simulation curve is a little higher
than theirs. However, it should be mentioned that the red solid
line in Fig. 8 denotes a Padé fit of their experimental data, and
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the experimental data are higher than the fitting data in fact,[22]

which means that our simulation results are very close to the
experimental data.
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Fig. 8. (color online) The positron implantation profiles in Al at 10 keV,
20 keV, and 35 keV. The data of Baker1991 comes from Ref. [22].

We list the parameters from best fits of the Monte Carlo
data to Eq. (1) in Table 1. The value of m decreases with the
increase of atomic number Z, and has a small change versus
different implantation energies. For Al, it is very close to the
commonly used one, 2.0. In Fig. 9 and Fig. 10, we present the
simulation profiles of these five crystals and their correspond-
ing best Makhovian fitting curves when the implantation ener-
gies are 10 keV and 35 keV, respectively. It is clear to see that
the peak of the fitting curve is more forward and higher than
that of our simulation data, especially for the profile of Al at
10 keV, while for the profile of Au at 35 keV, our simulation
result is in fairly good agreement with the fitting curve.

Table 1. The value of m from best fits of our Monte Carlo profiles in
Al, Cu, Zn, Ag, and Au to Eq. (1) at 10 keV, 20 keV, and 35 keV.

Material Z Energy/keV m m

10 1.968
Al 13 20 1.975 1.975

35 1.983

10 1.816
Cu 29 20 1.817 1.821

35 1.829

10 1.817
Zn 30 20 1.831 1.818

35 1.805

10 1.752
Ag 47 20 1.748 1.755

35 1.766

10 1.725
Au 70 20 1.717 1.734

35 1.759

To improve the case mentioned above, Ghosh et al.[14,34]

proposed a modified version of the Makhovian equation, as
follows:

P(z) =
Nlm

z

(
z

clmz

)l

exp
[
−
(

z
clmz

)m]
, (2)

where Nlm, l, m, and clm are adjustable parameters. We make a
comparison of the best fits to Eq. (1) and Eq. (2) for the profile
of Al at 35 keV in Fig. 11. Obviously, our simulation data can
also fit well to Eq. (2) with Nlm = 1.096, l = 0.546, m = 3.400,
and clm = 1.589. In further study, we find that these parameters
are also dependent on the materials and implantation positron
energies. Moreover, considerable effort is required if we want
to apply it in the VEPFIT program.
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3.3. Mean implantation depths and median implantation
depths

We also investigate the mean implantation depths of the
positrons in several metals, in which the positron backscatter-
ing coefficients are reproduced well by the latest Geant4 code.
We find that all of our simulations can fit well to the equation:
z = (A/ρ)En, as shown in Fig. 12. The adjustable parameters
A and n from the best fits of our Monte Carlo data are listed in
Table 2. The fitting values of A are systematically smaller and
those of n are larger than the common used ones.
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Fig. 12. (color online) The mean depths versus the implantation
positron energy for Al, Cu, Zn, Ag, and Au.
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Alger et al.[25] and Palacio et al.[26] have measured the
positron median implantation depths of the positrons in amor-

phous polymers PS and PMMA indirectly. To our best knowl-
edge, there has not yet been theoretical calculation of them.
In this paper, we calculate their positron backscattering coef-
ficients and median implantation depths for the first time, at
the same time, we compare our calculation results of the me-
dian implantation depths with the experimental data reported
by Algers et al. and Palacio et al., as shown in Fig. 13. Our
simulations for either PS or PMMA seem to be much closer to
that reported by Algers et al. Further, we obtain the values of
the fitting parameters A1/2 and n and list them in Table 2.

Table 2. The values of the fitting parameters A and n in the power-law
fit of the mean implantation depth z = (A/ρ)En for Al, Cu, Zn, Ag, and
Au.

Material Z Density/(g/cm3) A/(µg/cm2) n

Al 13 2.70 2.18 1.763 (±0.003)
Cu 29 8.96 2.27 1.713 (±0.006)
Zn 30 7.14 2.18 1.719 (±0.007)
Ag 47 10.5 2.47 1.682 (±0.008)
Au 79 18.3 3.42 1.612 (±0.006)

Amorphous polymers
PS – 1.040 2.40 1.739 (±0.018)

PMMA – 1.197 2.38 1.733 (±0.024)

According to the discussions above, the positron
backscattering coefficients of PS and PMMA are very low, so
the influence of the backscattering positrons on experiments
should be very weak. The fact that our simulations of amor-
phous polymers are very close to the experimental data indi-
cates that it is feasible to simulate the implantation profiles
using the latest Geant4 code, at least in amorphous polymers.

4. Summary
In this paper, we simulated the positron backscattering co-

efficients, implantation profiles, and mean implantation depths
for mono-energetic positrons with an energy range from 1 keV
to 50 keV normally incident on metals, semiconductors, and
amorphous polymers using the latest Geant4 code. Compared
with the previous experimental results, especially in high
positron implantation energy region, our simulation backscat-
tering coefficients of Al, Cu, Zn, Ag, and Au with the close
packed structure are in fairly good agreement with them, while
for the backscattering coefficients of Be, graphite, and dia-
mond with low-Z, Si and Ge with the diamond structure, there
exits a discrepancy between our simulations and the experi-
mental data. Considering that the detailed crystal structure of
the host material has not been incorporated, we think the ac-
curacy may be relate to the structures of the host materials in
Geant4.

Based on the reasonable simulated backscattering coef-
ficients, we investigated the implantation profiles and mean
depths of Al, Cu, Zn, Ag, Au, PS, and PMMA. The implanta-
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tion profiles are well consistent with the Makhovian distribu-
tion and the form proposed by Ghosh et al., in some ways, our
simulations can fit better than the results in the latter, while
the fact that the four adjustable parameters are dependent on
materials and implantation energies causes some trouble. The
values of m from the best fits of our simulation data to Eq. (1)
decrease with the increase of atomic number Z, and have a
small change versus different implantation energies. For Al, it
is very close to 2.0, which is used as the common value. The
relationship between the mean implantation depth and the im-
plantation energy well obeys the exponential distribution. The
fitting values of A are systematically smaller and those of n are
larger than the commonly used ones.

We calculated the positron backscattering coefficients and
median implantation depths of the positrons in amorphous
polymers PS and PMMA for the first time, the backscatter-
ing coefficients are very low compared with the other crystals.
Our simulated median implantation depths are in fairly good
agreement with the previous experimental results. Combined
with our discussion above, we think it is simple and feasible
to simulate the implantation profiles using the latest Geant4
code, and this has significant consequences for the convenient
calculation of positron implantation, especially in elemental
and multilayer systems.
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