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Low energy electron-impact ionization of hydrogen atom in Debye plasmas has been investigated

by employing the exterior complex scaling method. The interactions between the charged particles

in the plasma have been represented by Debye-H€uckel potentials. Triple differential cross sections

(TDCS) in the coplanar equal-energy-sharing geometry at an incident energy of 15.6 eV for differ-

ent screening lengths are reported. As the screening strength increases, TDCS change significantly.

The evolutions of dominant typical peak structures of the TDCS are studied in detail for different

screening lengths and for different coplanar equal-energy-sharing geometries. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4971451]

I. INTRODUCTION

As a result of the collective effects of correlated many-

particle interactions, hot, dense plasmas exhibit screened

Coulomb interactions.1–3 The screened Coulomb interactions

strongly affect the electronic structure (spectral) properties

of atoms and the properties of their collision processes with

respect to those for isolated systems.4–7 Indeed, red-shifted

spectral lines have been experimentally observed in a num-

ber of laser-produced dense plasmas;8–12 these studies have

inspired and promoted a large amount of theoretical investi-

gations on the plasma screening effects on atomic excitation

and ionization processes. The study of screened Coulomb

interactions in plasma environments becomes one of the

major subjects in plasma physics.4–7,13–15

In hot, dense plasmas, such as those created by laser

irradiation of solids, and sometimes met also in the inertial

confinement fusion research or in the stellar interiors, the

potential energy is relatively small compared to the kinetic

energy, long-range self-consistent interactions (described

by the Poisson equation) dominate over short-range two-

particle interactions (collisions), the pair-wise correlation

approximation can be applied, and the screened Coulomb

potential reduces to the well known Debye-H€uckel poten-

tial.15 For an ion of positive charge interacting with an elec-

tron, it is given by1–5

V rð Þ ¼ � Ze2

r
exp � r

D

� �
; (1)

where D is the plasma screening length, D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=4pe2ne

p
,

with kB being the Boltzmann constant, Te and ne being the

plasma electron temperature and density, respectively.

Due to its simple form and easy implementation in the

calculations, Debye-H€uckel potential has been broadly used

in the theoretical studies of quantitative plasma screening

effects on the atomic structures and collisions in hot, dense

plasmas (Debye plasmas).2–4,7,15 The most important proper-

ties of the screened Coulomb potential of Eq. (1) are that it

lifts the Coulomb-degeneracy of energy levels of hydrogen-

like systems and that for a given value of D, it supports only a

finite number of bound states.16 This implies that with

decreasing the Debye length, the binding energies of states

decrease and the energy levels successively enter into the con-

tinuum at certain critical screening lengths. For instance, the

critical screening lengths for the 1s, 2s, and 2p states of hydro-

gen atom in a Debye plasma are 0.839907, 3.222559, and

4.540956 a.u., respectively.17 Furthermore, with decreasing

D, the excitation threshold energies also decreases, and the

corresponding wave functions become increasingly more dif-

fuse.18 The atomic structures of hydrogen-like ions,17,19

hydrogen negative ions,20,21 helium,22,23 helium-like ions,24,25

positronium negative ion,26–28 and many-electron sys-

tems29–31 have also been systematically studied in Debye

plasmas with the potential (1). Note that the structures of

hydrogen atom and hydrogen molecule ion in both Debye

potentials and exponential cosine screened Coulomb poten-

tials have also been studied.32

The plasma screening effects in the dynamics of atomic

collision processes taking place in Debye plasmas has

recently been comprehensively reviewed.15 For the scatter-

ings with hydrogen atom in Debye plasmas, Ghoshal et al.33

studied the elastic electron scatterings and presented the

phase shifts of the S-wave singlet state below hydrogen

n¼ 2 excitation threshold. Zhang et al.34–36 investigated the

excitation dynamics of low-energy electron colliding with

hydrogen near the n¼ 2 and n¼ 3 excitation thresholds by

the R-matrix method with pseudostates.37 They revealed the

phenomenon of crossover of Feshbach resonances into
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shape-type resonances with varying the screening length, a

phenomenon directly related to the lifting of the Coulomb

degeneracy by the screened Coulomb potential. By using the

convergent-close-coupling method,38 Zammit et al.39 have

calculated the excitation and total ionization cross sections

in electron-hydrogen atom collisions in Debye plasmas in

the low and intermediate energy region (from threshold to

several hundreds of eV). They found that as the strength of

the screening increases, the excitation cross sections

decrease, whereas the total ionization cross section increases.

By using a plane-wave description of incident electron, Qi

et al.40 have calculated the generalized oscillator strengths

(GOS) for the fast electron-hydrogen atom collision in a

Debye plasma and found that the screened interaction

reduces the generalized oscillator strengths for transitions

between the states with different n and increases them

between the states with the same n. They also calculated the

single differential ionization cross sections (SDCS) of

hydrogen-like ions for the geometry with a fast scattering

electron and a slow ejected electron.17,41 Abundant structures

have been revealed in the GOS, related to the shape resonan-

ces in the effective potential.

In the present work, we shall investigate the triple differ-

ential cross sections (TDCS) of low-energy electron-impact

ionization of hydrogen atom in Debye plasmas for coplanar

equal-energy-sharing kinematics. The aim of our study is to

provide information on the electron impact ionization of

hydrogen atom in Debye plasmas in the kinematics with

strongly correlated scattered and ejected electrons, and, more

specifically to reveal the plasma screening effects on TDCS.

It is demonstrated that the plasma screening of the Coulomb

interaction between interacting particles introduces signifi-

cant changes in the TDCS peak structures. The calculations

are performed with the exterior complex scaling method42–45

to fully account for the electron-electron correlations. A brief

account of the method is given in Section II. The results of

our calculations are presented and discussed in Section III,

and the conclusions are given in Section IV. Atomic units

(a.u.) are used throughout this work unless explicitly stated

otherwise.

II. METHOD OF CALCULATIONS

The theory of the exterior complex scaling (ECS)

method and its implementation for electron-hydrogen atom

collisions have been discussed in details in many papers,42–44

and it is not necessary to repeat its full description here.

Within the theory of ECS for electron-hydrogen atom scat-

tering, the total scattering wave functions wLMSP
l1l2
ðr1; r2Þ are

obtained by solving a set of bi-radial equations

ðE� Ĥ1 � Ĥ2ÞwLMSP
l1l2

�
X
l0
1
l0
2

yLM
l1l2
jV12jyLM

l0
1
l0
2

D E
wLMSP

l0
1
l0
2
¼ vLMSP

l1l2
;

(2)

where E is the total energy of the three-body system, Ĥ1 or

Ĥ2 is the single-electron Hamiltonian including the electron

kinetic part and electron-proton interaction, V12 represents

the electron-electron interaction, and yLM
l1l2

is the bi-polar

spherical function.42–44 vLMSP
l1l2

is the initial wave function,

which can be written as

vLMSP
l1l2

r1; r2ð Þ ¼
1

ki

X
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p 2lþ 1ð Þ

p
CLM

limil0
il

� hl1l2jjV12jjliliL �
1

r2

dli
l1
dl

l2

� ��

� Pnili r1ð Þĵ l kir2ð Þþ �1ð ÞSþP
1$ 2ð Þ

�
; (3)

where ki is the projectile electron momentum, CLM
limil0

is the

Clebsch-Gordan coefficient, L, M are the total angular quan-

tum number and its projection (both conserved in the colli-

sion process), li is the angular quantum number of the initial

hydrogen orbital, mi is the pertinent magnetic quantum num-

ber, and l is the partial wave of the projectile electron.

Without loss of generality, the projectile electron is chosen

along the z direction so that m¼ 0. Pniliðr1Þ represents initial

hydrogen orbital and ĵlðkir2Þ is the Ricatti-Bessel function

representing the projectile electron. The last term in Eq. (3)

represents the exchange effects between the projectile elec-

tron and the target electron; S and P are the total spin and

parity of the system, respectively.

Generally, Eq. (2) can be completely solved by match-

ing the wave functions from an inner radial region with the

boundary conditions.44 Many methods are based on this idea

(e.g., the R-matrix method,46 the convergent close-coupling

method,47 etc). The ECS method attempts to avoid matching

the solutions of the inner region with the sophisticated

boundary conditions and makes a complex scaling of the real

radial coordinates as

RðrÞ ¼
r r < R0

R0 þ ðr � R0ÞeihECS r > R0;

�
(4)

where R0 is the complex scaling turning point and hECS is the

complex scaling argument. In the complex region r > R0,

the outward scattering wave functions with complex scaling

would be exponentially damped; if the complex region is

sufficiently long, the scattering wave functions should be

damped to zero. Thus, in the ECS method, the original

sophisticated boundary conditions are substituted simply by

zero. The exact scattering wave functions wLMSP
l1l2

in the r <
R0 region can be obtained, and the scattering and ionization

variables can be extracted by projecting the scattering wave

functions to the final states of the system.

In the scattering process, the scattering T-matrix TLS
l can

be calculated by projecting wLMSP
l1l2

to the continuumþ bound

compound state as

TLS
l ¼

1ffiffiffi
2
p 4p

kf
i�lCLmi

lf mf lmi�mf

� lim
R0!1

ðR0

0

Pnf lf r1ð ÞW wLMS
lf l r1; r2ð Þ; ĵl kf r2ð Þ

h i
R0

dr1;

(5)

where kf is the scattering electron momentum in the final

state, CLmi

lf mf lmi�mf
is the Clebsch-Gordan coefficient, R0 is the
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complex scaling turning point, Pnf lf is the hydrogen orbital

for the final state, W½a; b�R0
¼ a0ðR0ÞbðR0Þ � aðR0Þb0ðR0Þ is

the Wronskian of the two functions, and ĵ lðkf r2Þ is the

Ricatti-Bessel function representing the scattered electron.

The integral cross sections (ICS) can be obtained from the

T-matrix,48 and the complete cross section (CCS) is the sum

of ICS

rLS
f i ¼

kf

ki

2Sþ 1

4

1

4p2

X
lL0

TLS
fi;lT

L0S�
fi;l ; rf i ¼

X
LS

rLS
f i : (6)

The relation between CCS and the collision strength is

rf i ¼
pa2

0

k2
i 2Li þ 1ð Þ 2Si þ 1ð ÞXf i: (7)

In the ionization process, the entire ionization amplitudes

can be calculated by projecting wLMSP
l1l2

to the continuum

þ continuum compound state as

FSðk1; k2Þ ¼
X

l1l2LM

i�l1�l2 eiðr1þr2ÞyLM
l1l2
ðk̂1; k̂2Þf LMS

l1l2
ðk1; k2Þ;

(8)

where

f LMS
l1l2

k1; k2ð Þ ¼ 2ffiffiffi
p
p q

k1k2

�
ðp=2

0

/1/2

@

@q
wLMS

l1l2
� wLMS

l1l2

@

@q
/1/2

� �
da;

(9)

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
2

p
; a ¼ arctanðr2=r1Þ, r1, r2 are the

Coulomb phase shifts, /1; /2 are the Coulomb wavefunc-

tions.42–44 Finally, the triple differential cross section

(TDCS) of the ionization process that contains the contribu-

tions of both the singlet and triplet two-electron states can be

calculated as

dr

dk̂1dk̂2dE2

¼ drS¼0

dk̂1dk̂2dE2

þ drS¼1

dk̂1dk̂2dE2

¼ 1

4

k1k2

ki
jFS¼0j2 þ 3

4

k1k2

ki
jFS¼1j2: (10)

It is easy to understand that the above theory of ECS is

independent on the interaction potentials; however, the ini-

tial and final states should be treated exactly. In the present

work, we study the electron collision with a hydrogen atom

in Debye plasmas, and the electron-proton and electron-

electron interactions are screened. Specifically, the single

electron Hamiltonian with the Debye-H€uckel potential is

FIG. 1. 1s-1s elastic collision strengths. Lines: RMPS results;34 crosses: present ECS results. Upper panel: unscreened case; lower panels: different screening

lengths. (The screening length decreases from right to left.)
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Hi ¼ �
1

2
r2

i �
1

ri
exp � ri

D

� �
; (11)

and the electron-electron interaction is34

V12 ¼
1

r12

exp � r12

D

� �
; (12)

where r12 ¼ jr1 � r2j is the inter-electron distance.

With the Hamiltonian of Eq. (11), the hydrogen bound

orbitals Pnili is obviously different from that of the pure

Coulomb case, Pnili in Eqs. (3) and (5) should be substituted

by the screened bound orbitals; the continuum states of

Hamiltonian Eq. (11) are not Coulomb wave functions any-

more, and ri and /i ði ¼ 1; 2Þ should be replaced by the real

continuum wave functions in the screened Coulomb field. In

this work, the bound orbitals and the continuum wave func-

tions in the screened field are numerically calculated by the

RADIAL program.52 The present ECS code is based on the

modification of packages hex-ecs43 and hex-db.48

III. RESULTS AND DISCUSSIONS

To verify the ECS packages for collisions in Debye plas-

mas, the elastic collision strengths (1s–1s) of electron-

hydrogen atom collisions are calculated and compared with

the published works34 for different screening lengths. The

calculated results for the unscreened case are shown in the

upper panel of Fig. 1. They agree very well with the R-

matrix method with pseudostates (RMPS) calculations of

Zhang et al.34 Peak structures contributed by the resonant

states for different screening lengths are shown in the lower

panels of Fig. 1. The figure shows that the present ECS cal-

culations reproduce the RMPS results very well. Note that

when calculating the very low energy impact excitations

(e.g., 1s–2s excitation with the incident electron energy just

above the n¼ 2 excitation threshold), the momentum of the

outgoing free electron is small, large coordinate grid and

many grid points are needed, and the ECS could meet

numerical instabilities. In the following, TDCS of electron

impact ionization of hydrogen in Debye plasmas are pre-

sented and discussed.

The calculations are performed in the conventional three

different geometries of the coplanar equal-energy sharing

kinematics. Fig. 2 shows the angles of the scattered and ion-

ized electrons (or of two detectors) h1 and h2, respectively,

relative to the direction of projectile electron. Let the angle

clockwise be positive and vise versa. In the first geometry,

the relative angle between the two detectors is kept constant

(fixed h12 ¼ h1 � h2), with the two detectors rotated together

in the plane; the second one has a fixed angle h2 for one

detector, with the other detector rotated in the plane; while in

the last, so-called coplanar symmetric geometry, both detec-

tors are rotated in the plane on either side of the incident

electron beam with h2 ¼ �h1.

The TDCS for the three coplanar equal-energy sharing

geometries for the unscreened interaction case at 15.6 eV inci-

dent energy are shown in Fig. 3. Excellent agreement is found

between the results of ECS theories and the experiment.49,50

The present ECS results and the ECS results of Baertschy

et al.51 agree very well for all scattering angles, except for the

small amplitude differences around the peaks of the struc-

tures. Note that the normalization of the experimental data

could be incorrect.51,53,54

The TDCS in the screened interaction case for the copla-

nar geometry with fixed h12 at 15.6 eV incident energy are

shown in Fig. 4 as a function of the angle of scattered electron

h1 for a number of h12-values between 180� and 80� and for

screening lengths D between 50a0 and 5a0. The TDCS for the

unscreened Coulomb potential for the same values of h12 are

also shown in this figure for comparison. The figure shows

that the general structure of the TDCS in both the screened

and unscreened cases is the same, indicating that the physical

mechanisms involved in the collision dynamics are in both

cases the same. The amplitudes of the peaks in the screened

case, however, differ significantly from those in the

unscreened case and their dependence on the screening length

depends on the value of h12. Thus, for the cases of h12 ¼ 180�

and 150�, the amplitudes of the peaks decrease as the screen-

ing length D decreases, while for the h12 � 120� cases, they

increase with decreasing D (this increase being stronger for

the smaller h12 values). It should be noted that the values of

the dips in the cross section structures in the screened case are

also different from those in the unscreened case, and their D
dependence is different for the larger (h12 � 120�) and

smaller (h12 � 100�) values of h12 (cf. Fig. 4). The TDCS is

symmetric with respect to the scattering angles h1 ¼ 1
2
h12 and

1
2
h12 þ 180�, where only the singlet contribution (S¼ 0) is

retained in TDCS.55 The pairs of peaks around the scattering

angles h1 ¼ 1
2
h12 and 1

2
h12 þ 180� are called forward peaks

FIG. 2. Coplanar equal-energy-sharing kinematics for electron impact ion-

izations. Scattering happens at one plane, the direction of the incoming elec-

tron is chosen at z axis, the relative angles to z axis of the directions of the

scattered, and ionized electrons are h1 and h2, respectively.
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and backward peaks, respectively, and have been discussed in

several papers.55,56 It should be noted in Fig. 4 that when the

screening length varies, the positions of the forward and back-

ward peaks are shifted with respect to those for the

unscreened case. The angle differences Dhf and Dhb between

the forward and backward peaks and h1 ¼ 1
2
h12 and

1
2
h12 þ 180�, respectively, for the different screening lengths

D and h12 angles extracted from Fig. 4 are shown in Fig. 5.

When the screening length decreases, the forward peaks grad-

ually shift towards the forward symmetric center h1 ¼ 1
2
h12

(Dhf decreases), whereas the backward peaks shift oppositely

towards the backward symmetric center 1
2
h12 þ 180� (Dhb

increases). These properties are consistent with the changes of

the peaks as h12 increases for the unscreened case, where the

FIG. 3. Equal-energy-sharing TDCS at 15.6 eV incident energy for various coplanar geometries. Absolute experimental data (multiplied by 0.5)49,50 and ECS

calculations of Baertschy et al.51 are compared.
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electron-electron interaction decreases with the increasing of

h12, as shown in Fig. 5.

The TDCS for the coplanar geometry with fixed h2 at

15.6 eV incident energy are shown in Fig. 6 for different

screening lengths and for the unscreened case as a function of

the angle h1. The contributions from the singlet and triplet

states are also presented in the figure (the middle and the low-

est sets of panels) to show their different contributions to the

total cross section. Three typical cases with fixed

h2 ¼ �120�;�90�, and �60� are studied. The figure shows

that the main features of the total TDCS in the unscreened

case are the backward peak just below h1 ¼ 180� and the for-

ward peak around h1 ¼ 0� (or 360�). The singlet and triplet

contributions to these peaks are different: in the backward

peak, the triplet contribution is negligible, while in the for-

ward peak, they are roughly equal. Note that when h2 goes to

�180�, the backward peak disappears and only the forward

peak exists at h1 ¼ 0�; and when h2 goes to 0�, no forward

peak exists anymore, the only backward peak is at h1 ¼ 180�.
In the case of plasma screened Coulomb interactions, the gen-

eral structure of TDCS remains roughly the same, but the

amplitudes of the peaks and their positions change signifi-

cantly. With the decrease in the screening length, the ampli-

tude of the forward peak increases, whereas that of the

backward peak decreases. The position of the forward peak

shifts towards smaller h1 values (counter clockwise) while

that of the backward peak shifts towards larger h1 values

(clockwise). In the plasma, the singlet state continues to give

the main contribution to the backward peak, while both sin-

glet and triplet states contribute roughly equal to the forward

peak, as in the unscreened case. Note that in the case of

h2¼�60�, the forward peak structure is very broad and

shows a small shoulder (significant for D¼ 12 a.u.), which

results from multi-peak structures contributed by the triplet

state.

Fig. 7 shows the TDCS for the coplanar symmetric

geometry with h2 ¼ �h1 at the incident energy of 15.6 eV

FIG. 4. Triple differential cross sections in Debye plasmas at incident energy of 15.6 eV in the coplanar equal-energy sharing geometry for different fixed angle h12.

FIG. 5. Relative angles Dhf (Dhb) between the forward peaks (backward

peaks) to h1 ¼ 1
2
h12 (h1 ¼ 1

2
h12 þ 180�) with respect to the screening

lengths.

123511-6 Li et al. Phys. Plasmas 23, 123511 (2016)



for different screening lengths. Note that the triplet state

cannot be formed in this geometry due to the Pauli exclu-

sion principle, and only the singlet state contributes to the

total TDCS. As shown in the figure, two peak structures

dominate the TDCS: the backward peak is located at around

120� and the forward peak is below 90�. With the decrease

in Debye screening length, the amplitude of the backward

peak decreases and its position moves towards higher h1

values. The amplitude of the forward peak decreases with D
decreasing until D ¼ 12a0 and then increases significantly

with further decreasing of D. Its peak position shifts signifi-

cantly towards the smaller scattering angles. For D ¼ 5a0,

the forward peak becomes dominant (higher than the back-

ward one) and even a third peak clearly shows up at 0�,
which results from the complex softening of the Coulomb

potentials.

The origin of the significant differences between the

TDCS in the screened and unscreened Coulomb interaction

cases is in the short-range character of the Debye-H€uckel

potential. As we mentioned in the Introduction, the energies

of bound states in this potential decrease with decreasing

screening length D, and their wave functions become

increasingly more diffuse. The amplitude of electron radial

density distribution of the 1s bound state of hydrogen atom

in the screened case is significantly smaller than in the pure

Coulomb case in the region near the proton (decreasing with

decreasing D), but it becomes larger than the amplitude in

the Coulomb case at large radial distances (increasing with

decreasing D).57,58 At the same time, the maximum of the

distribution shifts to larger radial distances when D
decreases. For a given (relatively small) continuum energy,

the continuum wave function in the screened case is pushed

FIG. 6. Triple differential cross sections (upper panels) in Debye plasmas at incident energy of 15.6 eV in the coplanar equal-energy sharing geometry for dif-

ferent fixed angle h2. Middle and lower panels are the corresponding contributions from the singlet and triplet states, respectively.
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out further from the coordinate origin than in the unscreened

case. With decreasing the screening length, the amplitude of

the continuum wave function increases, while its frequency

decreases.17 These properties become more pronounced

when the energy of the continuum electron decreases. The

described differences between the bound state and contin-

uum state electron wave functions involved in the ionization

process generate the observed differences in the calculated

TDCS. It should also be noted that due to the screening of

electron-electron interaction, its role in the ionization

dynamics should be reduced with respect to the unscreened

case (e.g., the exchange effects).

IV. CONCLUSIONS

In this work, the exterior complex scaling method is

employed to study scattering and ionization processes for

electron hydrogen atom collisions in the Debye-H€uckel

potential for the first time. Our results for 1s–1s collision

strengths for electron scattering with hydrogen atom in

Debye plasmas show good agreements with previous calcu-

lations by the RMPS method and verify the method of calcu-

lations of this work. TDCS for electron impact ionization of

hydrogen atom in Debye plasmas at an incident energy of

15.6 eV are studied and presented for three different coplanar

equal-energy sharing geometries. The study shows that

TDCS change significantly with the increasing screening

effects. Different peak structures dominate the TDCS for dif-

ferent coplanar equal-energy-sharing geometries, and the

evolutions of peak structures are studied in detail. The origin

of the differences between the TDCS in the screened and

unscreened Coulomb interaction cases is briefly discussed.

SUPPLEMENTARY MATERIAL

See supplementary material for the complete ASCII data

for Figures 4, 6, and 7.
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