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a b s t r a c t

Positron work function, positron affinity, positron energy band, deformation potential and some other
important positron-related parameters are studied in the elemental semiconductors which have the dia-
mond structure, using the first-principle norm-conserving pseudopotential method. While both the local
density approximation (LDA) and the generalized gradient approximation (GGA) are employed in the
positron structure theoretical research, to deal with the positron-electron exchange-correlation (EC)
energy, only the GGA framework is adopted in electron total energy calculation. The nonlinear core cor-
rection is included in the positron-electron EC potential and the core electrons are considered within the
frozen-core model. Point-core approximation is used to model the positron-ion interact potential. The
calculation results agree well with the reference data. However, the positron band effective mass which
has a dominate part of the total effective mass is systematic lower than the result which is obtained from
other approaches. Because of the sensibility of the positron diffusion constant to the total effective mass,
it is found that the point-core approximation could not provide an accurate forecast for the diffusion
parameter.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Many experimental methods based on positron annihilation
have been applied to material science since it had been discovered
in the last century. They give much valuable information on the
electronic structures of condensed media, especially defects in
solids [1,2], and belong to one of the few methods which could
detect the electron Fermi surfaces directly [3,4]. These positron
related experimental results are usually, however, complicated in
the form of the positron or data related to the momentum content
of the annihilating electron-positron pair in a specific environment.
So, the interpretation of these data calls for theoretical methods
with quantitative predicting power [5]. Much as in the case of
other methods, the theory of positron annihilation has developed
from some models which describes the positron-solid interaction
to ‘‘first-principle” methods predicting the annihilation character-
istics for different environments and conditions [6], each method
has unique features. One of the most popular first-principle meth-
ods is the pseudopotential framework, because that it can be used
to treat large defect systems without miss much precision under
the present computing conditions, and therefore it is used in this
paper to study the positron levels and related parameters.

Although it is well known that surface effect is complicate, the
positron affinity, which is defined as the sum of the positron and
electron chemical potential, is independent of the surface proper-
ties. That is to say, the standard first-principle methods can be used
to calculate it. This positron parameter can be understood gener-
ally in two different physical pictures. The first one is that it can
be defined as the energy gained by taking a thermalized positron
from the vacuum level to the lowest bulk energy level [7,8]. The
other definition which is first established in metals by Puska
et al. [9] is related to the Fermi level in two different conductors.
In this picture, the positron affinity is often labeled as Aþ
(Aþ ¼ l� þmuþ, l� and lþ represent the electron and positron
chemical potential respectively), and is much more widely used
in positron related calculation. In this paper, the second definition
is also used. The positron work function is expressed as
uþ ¼ �u� � Aþ, where u� and uþ represent the electron and posi-
tron work function respectively. In this definition, the electron
work function is the vacuum energy level minus the Fermi energy
level.

The positrons may experience many processes such as thermal-
ization, diffusion, trapping and so on after they implanted into a
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solid. In the thermalization process, when positron energy is lower
than �1 eV, interaction between positron and longitudinal acoustic
phonons becomes much more important than the inelastic scatter-
ing effect in solids, and this gives rise to the longer positron life-
time especially at low temperature. So, the deformation potential
theory which is used to theoretical research the positron-phonon
interaction plays an important role in the low temperature posi-
tron lifetime spectroscopy experiment. In this theory scheme, the
positron diffusion constant mainly concerns with the positron
effective mass and the deformation potential at a temperature.
As a consequence, the two parameters are calculated.

During the past decades, due to the convenient of selecting the
so-called crystal zero, many researchers focused on the linear muf-
fin tin orbital approach within the atomic sphere approximation
(LMTO-ASA) when they studied the positron energy level [9–12].
In the year about 1999, Panda et al. gave a reliable result within
the first-principle norm-conserving pseudopotential (NCPP) frame-
work [8]. After that, few researchers focus on it in the field of posi-
tron energy level research, and hence, it is needed to prove the
reliability of this approach further. In the present work, this
method is used to study the positron affinity. To move forward a
single step, the other related parameters such as positron effective
mass, work function et al. are obtained.

Here, the elemental semiconductors diamond (C), silicon (Si)
and germanium (Ge) are taken as examples. The paper is organized
as follows: in Section 2, the calculationmodel and theoretical back-
ground are briefly introduced. Section 3 gives the calculation
results and some discussions. At last, it is concluded in Section 4.
2. Calculation model and method

All of C, Si and Ge belong to space group of Fd3m, each primitive
cell has two atoms. The input lattice constants for geometry opti-
Fig. 1. The thermalized positron density distribution in the unit cell along the h1 1 1i d
without the EC effect, the dotted lines and the solid lines express the LDA and GGA sch

Table 1
Optimized structural data, and the electron work functions of three different surfaces
for C, Si and Ge. The unit of work function is eV.

Host a0 (Å) e1 Electron work function (eV)

[1 0 0] [1 1 0] [1 1 1]

C 3.579 5.62 6.81 4.96 4.08
3.50 [31]

Si 5.478 11.90 5.13 4.91 [32] 4.47 4.74
4.74 [32]

Ge 5.783 16.00 4.98 4.67 4.63
4.80 [32]
mization of them are 3.58 Å, 5.43 Å and 5.66 Å respectively
[8,13]. Since the LDA and GGA corrections for electron energy level
calculations are not very important in positron related parameters
computations [8], only the GGA in the scheme of Perdew-Burke-
Ernzerhof (PBE) is used at the present work for correcting the
electron-electron exchange–correlation (XC) potential [14,15].
The pseudo atomic calculation is performed for C 2s22p2, Si
3s23p2 and Ge 4s24p2. The electronic wave functions are expanded
in a plane wave basis set with energy cut off 680 eV for C, 350 eV
for Si and 400 eV for Ge. The 8 � 8 � 8, 6 � 6 � 6 and 4 � 4 � 4
Monkhorst-Pack meshes are used to sample the Brillouin zones
of C, Si and Ge respectively. The convergence tolerance of maxi-
mum energy change, the maximum force, the maximum stress
and the maximum displacement for all the researched semicon-
ductors are set to 1.0 � 10�5 eV/atom, 0.03 eV/Å, 0.05 GPa,
0.001 Å, respectively. In the electron work function calculation,
the self-consistent dipole correction which was supposed by
Neugebauer and Scheffler is considered [16].

In positronic structure calculation, the nonlinear core correction
(NLCC) is included to manage the positron-electron XC energy and
the core electrons are deal within the frozen-core approximation,
which assumes that the core electrons are not polarized by the
positron. Louie et al. have shown that the addition of a pseudocore
electron density to the pseudovalence electron density gives accu-
rate estimation of the XC potential [17,18]. The point-core approx-
imation (PCA) model is used to construct the positron-ion coulomb
interaction potential, and it has been used in the positron annihila-
tion calculation within the pseudopotential framework [19–21].
However, the PCA effect on the positron energy level structure
has not been researched systematically. Therefore, there are
mainly two purposes to write this paper, one is to further prove
the reliability of the NCPP in the field of positron level calculation,
and the other is to evaluate the PCA effect on the positron level in
solids.

The positronic wavefunctions are usually expanded in the plane
wave basis set:

Wnk ¼ 1ffiffiffiffi
X

p
X
K

Cnk � expðiðkþ KÞ � rÞ ð1Þ

and the positronic schrodinger equation can be written as (in Har-
tree atomic units):X
K

½A � dKK 0 þ VtðGÞ� � CnkðKÞ ¼ 0 ð2Þ
irection within different positron-electron EC potential, the dashed lines represent
emes respectively, and (a) for C, (b) for Si and (c) for Ge.
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where G ¼ K � K 0, A = 0:5 � ðkþ KÞ2 � EnðkÞ, K is reciprocal vector of
the crystal, k is positron wave vector and VtðGÞ is the total potential
sensed by the positron in the reciprocal space:

VtðGÞ ¼ VionðGÞ þ VHðGÞ þ VxcðGÞ ð3Þ

VionðGÞ ¼ 4p
X

X
a

Za
G2 � expðiG � saÞ ð4Þ

VHðGÞ ¼ �4p
XG2 �

Z
qðr0Þ � expðiG � r0Þdr0 ð5Þ
Fig. 2. The positron density distributions of Si in the h1 1 0i and h1 1 1i directions.
The solid lines are the ATSUP results and the dotted are the NCPP results. LDA
scheme is adopted to handle the positron-electron EC potential in the two methods.

Fig. 3. The electron and positron density distribution isosurfaces of C, Si and Ge. (a1), (
isosurfaces. The colorbars represent the low density to the high density color region. (For
the web version of this article.)
where VxcðGÞ is the Fourier transform of the positron-electron XC
potential, many theoretical models have been suggested to deal
with Vxc , however, much of them are not mature. For example,
the weighted density approximation (WDA) can’t be used in the
defect systems [22–24]. Here we adopt the LDA and GGA theoretical
models which have been widely used in positron theoretical
research area, and the parameterized expressions could be found
in Refs. [25,26]. X is the volume of the unit cell, Za and qðr0Þ repre-
sent the number of valence electron and the valence electron den-
sity of the atom respectively. According to equations (2)(5), the
positron wavefunction and energy band can be obtained. A fully
thermalized positron is assumed to be, in good approximation, at
the bottom of the positron band with n = 1 and k = 0. After obtain-
ing the wavefunction, almost all of the positron related parameters
such as positron lifetime, effective mass et al. can be calculated.
Details of the calculation formulas could be found in Refs.
[6,24,27–29].

The most remarkable thing is that in positron chemical poten-
tial calculation, unlike the LMTO-ASA framework, there is a so-
called pseudocore correction in the NCPP method. That is to say,
the positron affinity Aþ ¼ l� þ lþ ¼ Ev þ E0 þ a, where Ev is the
top of electron valence band, E0 is the ground state energy of the
positron and a is just the pseudocore correction [8,30] which cor-
rects the pseudo nature of the electron ion-core potential.
3. Results and discussion

The high frequency dielectric constants e1 for C, Si and Ge are
set to 5.62, 11.90 and 16.00, respectively [13]. Finally, the opti-
mized lattice constants are 3.579 Å for C, 5.478 Å for Si and
5.783 Å for Ge, these parameters are specified in Table 1, and are
all needed for calculating the positron levels. Work function is a
surface related physical quantity, the same solid material with dif-
ferent crystal surface has a different work function. So, three sur-
faces [1 0 0], [1 1 0] and [1 1 1] have been used for calculating
the electron work functions (Table 1).
b1) and (c1) show the electronic isosurfaces and (a2) to (c2) display the positronic
interpretation of the references to color in this figure legend, the reader is referred to



Fig. 4. The positron band structures of (a) C, (b) Si and (c) Ge, along the principal
symmetry directions, the solid and dashed lines represent the results with and
without the positron-electron EC potential respectively.
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It can be seen that the electron work functions in the elemental
semiconductors agree well with the experimental results in the
Refs. [31,32], and this displays that here the NCPP can be used to
predict the parameter at least for these simple solids. The distribu-
tions of thermalized positron densities along the h1 1 1i direction
for C, Si and Ge are shown in Fig. 1. The atom positions are plotted,
it is clear that the exclusion of the positron from the ionic cores.
The dotted lines and solid lines express that the positron-
electron EC potential are deal within the LDA and GGA schemes
respectively. They have only a little difference and almost superpo-
sition with each other, so that readers may not catch sight of the
dotted lines. This superposition is due to the fundamental princi-
ples of LDA and GGA, and results in only a little difference in posi-
tron lifetime, energy band and some other positron related
parameters.

Aourag et al. have researched the positron level of C [33] within
the empirical nonlocal pseudopotential method. The positron den-
sity distribution of C in this paper agrees well with their result
which is shown in their Fig. 7. It is noteworthy that in order to have
an optimal display, they added a constant to the positron density.

Panda et al. have used a pseudopotential method to study the
positron level in Si [34]. In their paper, the positron-ion interaction
potential was also calculated in the frozen-core approximation, but
without point-core approximation, and the positron-electron EC
potential was handled only within LDA scheme. They give a posi-
tron wave function along h1 1 1i direction with and without the
EC potential in Fig. 2 in their paper. The square of the wave func-
tion is the probability density, and then multiply a normalized
coefficient is just the density. It is apparent that there are two
peaks between 4.5 a.u. and 16.0 a.u., they are located at about
8.75 a.u. and 13.25 a.u., this characteristic is similar to our result
as is displayed in Fig. 1(b). However, Panda et al. given almost
the same value of the two peaks. Here, the peak value at position
13.25 a.u. is obvious larger than the peak value at 8.75 a.u., this
is not due to the point-core approximation effect in our scheme,
but attribute to the electron density distribution. That is to say,
positron wavefunction or to say positron density is sensitive to
the accuracy of the valence charge density, this statement is differ-
ent from Panda et al. [34]. In order to confirm our conclusion fur-
ther, the free-atom superposition (ATSUP) method which was first
proposed by Puska et al. [35] is also used to compute the positron
density and the result is shown in Fig. 2. In order to have the com-
parability, the positron-electron EC potential is handled within
LDA scheme both in the ATSUP and NCPP methods. Obviously,
the positron densities have distinguished discrepancy in the inter-
val and the bonding zones. Hence, not the positron wavefunction
but the lifetime is not sensitive to the accuracy of the valence
charge density.

Bouarissa et al. have studied the behavior of the positron in Ge
by using the empirical pseudopotential method (EPM) coupled
with the independent particle approximation [36]. In their paper,
due to flat feature in the interstitial region, they didn’t considered
the positron- electron EC potential, and so the results are relatively
coarse.

Due to the repulsion effect, the positron densities reduce to a
vanishing point at the vicinity of the ion cores as is clear seen in
Figs. 1 and 2. In addition, the positron tends to be pushed out of
the primitive cell containing a larger valence and a larger ion core
as had been pointed by Soudini et al. [37]. 3D views of the electron
and positron density isosurfaces of C, Si and Ge in Fig. 3 could give
a much more direct impression. Besides, the sp3 electron orbital
hybridization covalent bond could be seen intuitively, and the
positron is inclined to stay in the tetragonal site than in the hexag-
onal site because of much more repulsion of ion core at the hexag-
onal site.
The positron energy bands of C, Si and Ge are shown in Fig. 4.
The positron band structures in the figure with and without the
positron-electron EC potential are plotted using solid and dashed
lines respectively in order to resolve the difference. The bands of
the three hosts are lined with their lowest energies set to zero.
The lowest positron level is the most important level compared
to other levels due to that the thermalized positron locates at this
position. Generally, the lowest level is rather near the vacuum
level, and the positron work function would be positive if the level
is lower than the vacuum level, under this circumstance, the mate-



Fig. 5. The positron affinities (eV) of (a) C, (b) Si and (c) Ge as functions of the primitive cell volumes. The triangle and round dots represent the theoretical results within LDA
and GGA respectively. The dashed and solid lines are the corresponding fitting results.

Fig. 6. Positron diffusion constant (unit: cm2 s�1) as a function of the positron
effective mass m* (atomic unit) for C, Si and Ge. Eþ

d comes from GGA result and the
absolute temperature T = 300 K.

Fig. 7. The thermalized positron charge density along the h1 1 1i direction at
normal pressure (solid lines) and under 1010 Pa (dashed lines).
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rial may be used as a positron moderation. So, it has significant
implications of the theoretical research on positron work function
for finding the more appropriate moderation.

Because of some important distinctions with related exist
research results, and there are more comparable data of Si, the Si
positronic band structure is first discussed here. According to
Fig. 4(b), there is almost no energy gap between the first and the
second band when the positron-electron EC potential is not consid-
ered. This character is consistent with Refs. [34,38]. Due to that
Aourag et al. also without considered the positron- electron EC
potential [38], their results are of course very rough. This had chan-
ged more or less later in the Panda’s paper [34] where the EC
potential was included.

On the whole, the change performances of the two lowest bands
in Fig. 4(b) are similar with Fig. 3 in [38] and Fig. 1 in [34]. How-
ever, in the higher bands, there are some visible differences. For
example, the third and fourth band in the C-X direction are almost
in the degenerate state from Fig. 4(b). This is consistent with refer-
ence [34] but different from [38]. The reason is that, the EPM
Aourag et al. had used is not precise enough to construct the
valence charge density and hence the band structure they obtained
is not very accurate. At the C point, there is a large gap between
the second and third band in paper [34], however, Aourag et al.
and us give an invisible energy gap. This feature mainly comes
from the point-core approximation effect, because if we don’t
adopt this approximation, a large gap also exists in the same posi-
tion. In addition, when the positron-electron EC potential is consid-
ered, a small energy gap appears between the first and second
band in the X-W direction, it is different from the results in [34].
This is mainly due to the different EC potential we use, and the
EC potential effect will produce systematically more influence in
several lower band levels than higher band levels.

Similar conclusions also exist in host C and Ge [33,36]. How-
ever, it should be pointed that Fig. 2(a) and (b) in paper [36] may
display oppositely for positron and electron band structures. That
is to say, Fig. 2(a) in reference [36] is the positronic band and
Fig. 2(b) should be the electronic band of Ge. The reason for this
is simple: there should be no positronic energy gap between band
4 and band 5, and also there should be no electronic energy gap
between band 1 and band 2.

Here, the so called ‘‘band-gap problem” is simply discussed. In
the first-principle electronic structure calculations based on the
standard Kohn-Sham (KS) scheme of density-functional theory
(DFT), the band gaps in semiconductors or insulators are typically
underestimated. In recent years, many approaches have been
developed for dealing with this problems in different material sys-
tems. For example, in functionally graded phononic crystals, the
explicit functionally graded model and the multilayer model, in
conjunction with the transfer matrix method have been developed
to treat the band gaps [39,40]. However, in usual crystals, there are
mainly two theoretical schemes to solve this gap problem. One is
the conventional DFT and the other is the many-body perturbation
theory (MBPT) basing on the Green’n function. In DFT, the band gap
Eg is the difference of KS eigenvalues plus a contribution which



Table 2
The specific values of positron band effective mass (atomic unit), positron affinity Aþ (eV), positron work function (eV), positron annihilation rate k (ns�1), and positron lifetime s
(ps). ‘‘NON” in the table represents that the positron-electron EC energy is not considered. k is divided into two parts: the core electron (kc) and valence electron (kv ) annihilation
rare.

Host EC Band effective mass Aþ (eV) Positron work function (eV) k (ns�1) s (ps)

[1 0 0] [1 1 0] [1 1 1] h1 0 0i h1 1 0i h1 1 1i kc kv

C NON 1.10 1.11 1.13 — — — — — — —
LDA 1.08 1.09 1.12 �2.72 �4.09 �2.24 �1.36 0.253 10.273 95

�2.64 [8] �3.83 [48] 0.145 [49] 11.88 [49] 83 [49]
GGA 1.08 1.10 1.11 �2.46 �4.35 �2.50 �1.62 0.189 10.015 98

�2.20 [8] 0.100 [18] 9.900 [18] 100 [18]

Si NON 1.16 1.18 1.20 — — — — — — —
1.360 [34] 1.362 [34] 1.361 [34]

LDA 1.12 1.15 1.18 �6.84 1.71 2.37 2.10 0.192 4.416 217
1.326 [34] 1.333 [34] 1.332 [34] �6.95 [9,32] 2.04 [32] 2.21 [32] 0.103 [49] 4.471 [49] 219 [49]

�6.45 [8]
GGA 1.12 1.14 1.19 �6.56 1.43 2.09 1.82 0.131 4.520 215

�5.91 [8] 0.125 [18] 4.505 [18] 216 [18]

Ge NON 1.16 1.18 1.19 — — — — — — —
LDA 1.11 1.14 1.17 �7.35 2.37 2.68 2.72 0.309 4.039 230

�6.69 [9] 2.77 [50] 1.98 [32] 0.301 [49] 4.129 [49] 226 [49]
�6.79 [32] 2.85 [50]

GGA 1.12 1.13 1.17 �7.08 2.10 2.41 2.45 0.263 4.047 232
0.288 [18] 4.098 [18] 228 [18]

Table 3
The values of positron deformation potential Eþ

d (eV), elastic constant and diffusion constant (the total positron effective masses are all chosen as 1.5, absolute temperature
T = 300 K) in the hosts.

Host Eþ
d (eV) c11 (Mbar) c12 (Mbar) c44 (Mbar) hciii (Mbar) D+ (cm2 s�1)

LDA GGA

C �11.78 �11.59 10.34 1.15 5.52 11.26 4.81
�11.92 [8] �11.67 [8] 10.79 [51] 1.24 [51] 5.78 [51] 11.80 [51]

Si �6.24 �6.21 1.51 0.55 0.99 2.02 3.00
�6.19 [9,32] �5.91 [8] 1.66 [52] 0.64 [52] 0.80 [52] 1.95 [52] 3.05 [32]
�6.39 [8] 2.3 [54]

Ge �6.43 �6.45 1.03 0.34 0.73 1.41 1.94
�6.62 [9,32] 1.29 [53] 0.48 [53] 0.67 [53] 1.56 [53] 2.13 [32]

0.9–2.1 [54]
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comes from the discontinuity Dxc of the EC potential at integer par-
ticle numbers. The DFT scheme usually carried out within the LDA/
GGA, whose Dxc ¼ 0. This is one of the most important reason for
the gap problem. The other significant point originates in the errors
in the KS eigenvalues resulting from the approximate nature of the
functional. In order to solve the two problems, many approximate
models have been proposed. For example, the hybrid functional
methods PBE0 (first proposed by Perdew et al. [41]), HSE06 (first
proposed by Heyd et al., and then further improved by Krukau
et al. in the year 2006 [42,43]) and so on. Although PBE0 and
HSE06 yield realistic generalized KS gaps for typical semiconduc-
tors, but they can over or underestimate gaps of many other solids,
for example, molecular crystals seem to need 1/e of long range
exact exchange. MBPT, especially the GW approximation have
yielded electronic structures in good agreement with experiments
in many materials [44]. Base on the GW, many methods such as the
G0W0 [45], QSGW [46] et al. have been developed. However, the
former G0W0 fails for compounds with d electrons, especially when
d states hybridize with p states close to the Fermi energy and the
later QSGW generates too large energy gap in many materials. In a
word, great developments have been made. But these new approx-
imation functions express a kind of great randomicity or empiri-
cism, and they have limited application.

In positronic structure calculation, this gap problem becomes
much more difficult. Because that there are positron-electron and
positron-positron EC interactions. Both of them are not understood
clearly so far. Therefore, few researchers give reliable systemic
results of the positron energy gap and it needs for further study.

It is interesting that in these elemental semiconductors, the
positron-electron EC interaction has not important role on the
shape of the several lowest bands, especially on the first band. In
other words, only the positron-electron coulomb interaction pro-
duces significant role on the positron band effective mass m�

b,
according to its definition (in atomic unit):

m�
b ¼

@2E

@k2

 !�1

ð6Þ

where E is the band level and k is the wave vector.
The specific values of band effective mass in C, Si and Ge are

given in Table 2. From Table 2, it can be seen clearly that this mass
is not sensitive of EC energy, and hence the results coming from
LDA, GGA and without EC effect are very close to each other.
Besides, the band effective mass is almost to being isotropic in
these hosts, and becomes slightly heavier along the [1 1 1] direc-
tion due to that the positron experience more coulomb repulsive
interaction. Due to the point-core approximation effect, this mass
in Si is systematically a little lower than reference result. The total
positron effective mass mainly contains two parts, one is just the
m�

b due to the periodic lattice, the other is so-called correlation
effective mass coming from the screening electron cloud. When
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m�
b is obtained, the total effective mass could be easily calculated

from the expression (3.1) in Ref. [34]. However, the strict determi-
nation of the total effective mass is a difficult many-body problem
and different approximate approach would generate quite large
different results [32,47]. Therefore, here we don’t intend to give
the specific values of this parameter for these semiconductors.

The calculated positron affinity, work function, positron annihi-
lation rate and lifetime within LDA and GGA schemes are all given
in Table 2. These results are consistent with related credible theo-
retical or experimental data in references. However, some of them
are not found in existing papers as we have searched.

The deformation potential theory is usually adopted to research
the positron-phonon interaction which plays a dominant role in
the positron diffusion stage [26]. In the theory, the coupling
strength is determined by the deformation potential Eþ

d . For a posi-
tron in a solid, it is the volume derivatives of positron affinity:

Eþ
d ¼ X

@Aþ
@X

ð7Þ

In practical calculation, the volume derivatives of the positron
affinity is determined by performing band structure calculations
for several slightly different lattice constants. Fig. 5 shows the
A+as a function of volume around the equilibrium structure in C,
Si and Ge, and Table 3 gives the values of Eþ

d for all the hosts. At
last, the positron diffusion constant within the deformation poten-
tial theory scheme is given by:

Dþ ¼ 8p
9

� �1=2

� �h4 � hciii
m�52 � ðkBTÞ1=2 � Eþ2

d

ð8Þ

where m⁄ is the positron effective mass, T is the absolute tempera-
ture and hciii is the elastic constant associated with longitudinal
waves. For simplicity, here we approximate it for the [1 1 0] plane
by:

hciii ¼ 0:5ðc11 þ c12 þ 2c44Þ ð9Þ
According to Eq. (8), it could be easily seen that Dþ is sensitive

to the physical quantity m⁄. Because of the difficulty for strict com-
puting the total effective mass, the specific values of positron dif-
fusion constants in Table 3 are given with all of the m⁄ are
chosen as 1.5 (this chosen is reasonable [32]), and D+are displayed
as a function of m⁄ as shown in Fig. 6.

4. Conclusions

The positron level and related positron parameters such as posi-
tron affinity, work function, deformation potential, effective mass
and so on are systematic researched in diamond structure elemen-
tal semiconductors using the first-principle NCPP method. Only the
GGA scheme is adopted in the electronic band structure calcula-
tions, while in the positronic computations, both the LDA and
GGA are used. The so- called nonlinear core correction is included
and the core electrons are deal within the frozen-core approxima-
tion. The point-core approximation is used to model the ionic
potential. It is found that although the positron lifetime is not sen-
sitive to the electron density distribution, the positron wavefunc-
tion or to say positrton density has an opposite behavior,
especially in the interstitial and bonding sites.

The positron-electron EC energy has not very important role in
shapes of the several low energy bands especially in the first band,
this gives rise to that the EC energy doesn’t generate a significant
influence on the effective band mass. However, it will produce a lit-
tle energy gap in the X-W direction between the band 1 and band
2.

Through the systematic research of the positron related param-
eters in elemental semiconductors, it can be seen that point-core
approximation could provide reliable theoretical result within in
NCPP framework. However, because of the loss of the exact
positron-ion potential, it could not give a precise positron effective
band mass. The band mass is the key component of the total posi-
tron effective mass, and the diffusion coefficient is sensitive to this
total effective mass. Therefore, the approximation model could not
predict the positron diffusion coefficient accurately.
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