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A B S T R A C T

Positron annihilation lifetime (PAL) spectroscopy is one of the most powerful methods to quantitatively
characterize atomic-scaled lattice imperfections in condensed materials. Generally, one needs to fit a PAL
spectrum by solving a local non-linear optimization problem which is more or less affected by initial guesses.
Therefore, by using a traditional analysis program for the same PAL spectrum, different results with close
goodnesses of fits are yielded by different researchers. Thus, it is difficult to judge the qualities of different
results. To overcome this shortage, an efficient Markov Chain Monte-Carlo Bayesian Inference (MCMC-BI)
method based on CosmoMC package is applied to analyze both simulated and experimental PAL spectra in the
present work. The same level of accuracy of traditional analysis programs is firstly acquired in this work by
using MCMC-BI method, which demonstrates that it can be directly used to analyze PAL spectra. Furthermore,
the dependence on the initial guesses of PAL analysis is significantly alleviated. Additionally, more precious
information is provided by MCMC-BI method, including different lifetime uncertainties in different confidence
intervals and the correlations between annihilation parameters.

1. Introduction

Positron annihilation lifetime (PAL) spectroscopy is a state-of-art
method to study the vacancy-type defects in condensed materials such
as semiconductors, metals, and polymers, etc [1–4]. After implantation
into a material from the positron source, the positrons firstly thermalize
(lose kinetic energy through collisions with atoms) in a few picoseconds
and then diffuse in the material prior to the eventual annihilation
with electrons. Due to the relatively long half-life of 2.6 years and
the practically simultaneously emitting of a 1.275 MeV 𝛾-ray, 22Na
source is usually utilized as the positron source for PAL experiments.
By measuring and analyzing the positron annihilation lifetime (the
time interval between the start signal (1.275 MeV 𝛾-ray) and the stop
signal (the resulted 0–511 keV 𝛾-rays) of a positron–electron pair), the
precious information on the local electron density and atomic structure
of the sample could be characterized.

To analyze an experimental PAL spectrum, it is a central and vital
task to extract physically meaningful parameters. A PAL spectrum
which consists of several decaying exponentials convoluted with the
time resolution function of the PAL measurement system, could be

∗ Corresponding author.
∗∗ Correspondence to: Department of Modern Physics, University of Science and Technology of China, 96 Jinzhai road, Hefei, AnHui, China.

E-mail addresses: wszhang@ustc.edu.cn (W.S. Zhang), bjye@ustc.edu.cn (B.J. Ye).

written as a histogram 𝑁(𝑡) [5]. A PAL spectrum 𝑁(𝑡) can be written
in the form of:

𝑁(𝑡) =
𝑘0
∑

𝑗=1
[𝐴𝑗 exp(−𝑡∕𝜏𝑗 )]⊗𝑅(𝑡) + 𝐵 (1)

where 𝑡, 𝑘0, 𝑅, 𝐵, 𝜏𝑗 , 𝐴𝑗 are the time, number of lifetime components,
time resolution function, background, mean lifetime of the 𝑗th compo-
nent, and a pre-exponential factor (𝐴𝑗𝜏𝑗 is the ‘‘area’’ of the lifetime
component), respectively. Here, 𝑅 is given by a sum of weighted Gaus-
sians (𝑘𝑝 is set to 1 to simplify the computing in this work) which may
be displaced with respect to each other. The time resolution function
𝑅(𝑡) of the PAL system is usually written as:

𝑅(𝑡) =
𝑘𝑝
∑

𝑝=1
𝜔𝑝𝐺𝑝(𝑡) (2)

where 𝜔𝑝 is the weight, and 𝐺𝑝(𝑡) is defined as:

𝐺𝑝(𝑡) =
1

√

2𝜋𝜎𝑝
exp

(

−
(𝑡 − 𝑇0 − 𝛥𝑡𝑝)2

2𝜎2𝑝

)

(3)
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Here, 𝑇0 represents the time-zero channel number (start channel) which
is used as a reference, 𝜎𝑝 is the standard deviation, and 𝛥𝑡𝑝 is a
displacement. The objective of the analysis is to extract the lifetimes
𝜏𝑗 and their weights of the components 𝐴𝑗𝜏𝑗 (usually denoted as 𝐼𝑗)
from the raw experimental spectra.

Great efforts were made in the past decades to develop a number
of computer programs to analyze PAL spectra. Generally, the analyzing
programs could be divided into two different approaches, the decon-
volution approach (such as CONTIN [6,7] and MELT [8]) and fitting a
theoretical model approach (such as POSITRONFIT [9] and the well-
tested PATFIT [10,11], PALSfit [5,12]). Additionally, some programs
such as LTv9 [13] and LT10 [14]) combine the two approaches. How-
ever, as a very ill-posed problem [8], analyzing a PAL spectrum is
rather difficult, no matter which approach is adopted. The solution is
usually a local optimum value which is ambiguous to some degree.
This indicates that, a very small disturbance (such as random noise
during the measurement) in the experimental data may induce a quite
different set of results. Therefore the researchers have to decide which
solution is the most reasonable. These uncertainties introduce more
ambiguities to the experimental results during the data analysis. Even
though various methods were harnessed to overcome these difficulties
(fixing the number of components in PATFIT [11] and LTv9 [13], using
Maximum entropy principle in MELT [8], or even using the artificial
neural network [15]), the ambiguity is alleviated to some extent but
can hardly be eliminated absolutely. Different results are obtained from
different initial guesses for the fitting parameters.

In 2009, Pascual-Izarra and his cooperators developed a new PAL
analysis program, the so-called PAScual program, by applying a very
excellent fitting algorithm by means of simulated annealing (SA) and
Markov Chain Monte-Carlo Bayesian Inference (MCMC-BI) method
[16]. And then the program was applied successfully to some ex-
periments [17,18]. Previous studies [19] also proved that by using
MCMC-BI method it is possible to improve the performance of tra-
ditional method. However, in the PAScual program, the accuracy of
global optimization method (using only the SA combining MCMC-
BI method) to analyze PAL spectrum is not high enough. Thus the
global optimization method is only used to find the region of the
global optimum to eliminate the influences of the initial guess. So the
potentials of MCMC-BI method still need to be further explored, and
the analysis results of MCMC-BI method also need to be discussed in
detail.

Inspired by PAScual program, in the present work we attempt to
employ an efficient MCMC-BI method based on a widely used MCMC
engine CosmoMC software package [20,21] to obtain a global opti-
mal solution which is robust and almost independent from the initial
guesses. Compared to previous works, we greatly improved the perfor-
mance of the MCMC-BI method. The accuracy of MCMC-BI increased
to the level of traditional programs such as LTv9 which enables it to
be directly used to analyze PAL spectra. While due to the improvement
in the accuracy, the more meaningful information of the annihilation
parameters including the likelihood of every parameter located around
the optimal region can also be obtained and analyzed. The results of
several simulated and experimental PAL spectra are compared with
those from well-tested program LTv9. The correlations between differ-
ent parameters and the uncertainties in different confidence intervals
are also discussed.

2. Theoretical models

2.1. Bayesian inference

Bayesian inference is a powerful tool to estimate parameters and
compare models. The annihilation parameters are random variables 𝜽,
and an experimental spectrum is a data set 𝑫. The conditional prob-
abilities of the parameter sets 𝜽 which are given by the experimental
spectrum 𝑫 (denoted as 𝑝(𝜽|𝑫)), are known as posterior probabilities.

For a given 𝑫, the calculation of posterior probabilities enables us to
quantify the probabilities of the unknown parameters 𝜽. Namely, one
can estimate 𝜽 by calculating the posterior probabilities for all possi-
ble solutions in parameter space. From Bayes’ theorem, the posterior
probability can be written in the form of:

𝑝(𝜽|𝑫) =
𝑝(𝑫|𝜽)𝑝(𝜽)

𝑝(𝑫)
(4)

where 𝑝(𝑫|𝜽) is the likelihood probability which is the conditional
probability of 𝑫 for a given 𝜽, 𝑝(𝜽) is the prior probability of the
model that expresses the prior knowledge of 𝜽 parameters prior to
the observed data 𝑫, 𝑝(𝑫) is the marginal likelihood (or model ev-
idence) which is independent of other parameters. In this work, the
prior probability represents only the boundaries of fitting parameters.
Therefore, 𝑝(𝜽) is a uniform distribution in its parameter space, and
𝑝(𝑫) is regarded as a scaling constant. Eventually, we have to calculate
the likelihood 𝑝(𝑫|𝜽).

For a PAL spectrum which is a histogram, the measurement of
each channel is an independent measurement that following Poisson
statistics. For a large number of events, Poisson distribution can be
approximated by normal distribution. Then the likelihood 𝑝(𝑫|𝜽) can
be written as:

𝑝(𝑫|𝜽) =
exp(− 1

2𝜒
2)

∏

𝑘
√

2𝜋𝑁(𝑘)
(5)

where

𝜒2 =
∑

𝑘

[𝑁𝜽(𝑘) −𝑁(𝑘)]2

𝑁𝜽(𝑘)
(6)

𝑁𝜽(𝑘) and 𝑁(𝑘) represent the number of counts in the 𝑘th channel
of the theoretical spectra from a set of 𝜽 parameters and from the
experimental spectra, respectively.

For the analysis of PAL spectra, it is the main task to find the solu-
tions which yield the largest posterior probabilities 𝑝(𝜽|𝑫) in parameter
space. Noticing that the smaller 𝜒2 the larger likelihood 𝑝(𝑫|𝜽), 𝜒2

is selected as the objective function to represent the goodness of fit.
Therein, the main task is to find the solutions with smaller 𝜒2 values
in parameter space.

After the calculation of posterior probabilities, further inferences
can be made. In the present work, we use posterior mean (expectation
value) as the point estimation of parameters, which can be written in
the form of:

⟨𝜽⟩ = ∫ 𝑝(𝜽|𝑫)𝜽𝑑𝜽 (7)

2.2. Markov Chain Monte-Carlo

It is an extremely tough work to calculate all solution points in a
high-dimensional parameter space, because the computing time and
storage requirements increase exponentially with increasing number
of parameters. Practically, we are more interested in the results near
the optimal solution rather than those far away from the optimum.
Markov Chain Monte-Carlo (MCMC) is a useful method to deal with
this problem [22,23]. By using the Markov chain mechanism, one can
generate a chain of samples in a sample space where more samples are
generated in the most important region. In other words, the samples are
generated from target distribution (𝑝(𝑫|𝜽) in this study). Here we use
the Metropolis–Hastings algorithm [24,25] to generate a Markov Chain
with its equilibrium distribution equates to the likelihood distribution
𝑝(𝑫|𝜽).

According to Metropolis–Hastings algorithm, assuming that we are
proposed a movement from current state 𝜽 to a new state 𝜽′, the
probability of accepting this movement is:

(𝜽′,𝜽) = min
(

1,
𝑝(𝜽′|𝑫)
𝑝(𝜽|𝑫)

𝑞(𝜽|𝜽′)
𝑞(𝜽′|𝜽)

)

(8)
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Table 1
The results of four simulated PAL spectra fitted by LTv9 program and MCMC-BI method. For MCMC-BI method, the posterior
mean results are listed.

Spec. Methods FWHM (ps) 𝜏1 (ps) 𝐼1 (%) 𝜏2 (ps) 𝐼2 (%) 𝜏3 (ps) 𝐼3 (%)

A Simulation 150 200 50 400 30 1500 20
LTv9 148.0 199.5 ± 0.6 48.4 ± 0.6 396.0 ± 7.6 30.8 ± 0.6 1499.2 ± 6.5 20.8 ± 0.3
MCMC-BI 157.9 ± 1.7 200.9 ± 3.8 48.9 ± 2.2 400.3 ± 12 30.1 ± 2.1 1497.7 ± 7.8 21.0 ± 0.2

B Simulation 150 200 85 400 13 1500 2
LTv9 148.0 200.1 ± 1.2 84.6 ± 0.7 400.9 ± 5.2 13.2 ± 0.8 1435.0 ± 71 2.2 ± 0.2
MCMC-BI 159.7 ± 1.3 200.0 ± 1.7 84.4 ± 1.4 398.6 ± 19 13.4 ± 1.5 1410.2 ± 48 2.2 ± 0.1

C Simulation 250 200 50 400 30 1500 20
LTv9 248.9 199.7 ± 5.4 48.6 ± 2.0 398.0 ± 15 30.6 ± 2.1 1505.0 ± 7.6 20.8 ± 0.9
MCMC-BI 251.2 ± 2.3 202.7 ± 4.7 49.1 ± 2.5 398.7 ± 13 29.8 ± 2.4 1493.9 ± 7.7 21.1 ± 0.2

D Simulation 250 200 85 400 13 1500 2
LTv9 248.9 199.7 ± 0.7 84.2 ± 0.2 393.5 ± 14 13.6 ± 1.1 1415.0 ± 26 2.2 ± 0.1
MCMC-BI 253.2 ± 1.8 200.8 ± 2.2 84.4 ± 1.9 393.9 ± 21 13.3 ± 1.8 1370.6 ± 46 2.3 ± 0.2

The other Simulation information: offset = 1024 channels, time calibration = 25.54 ps/channel, total counts = 2 × 106 for
each spectrum, background = 100 counts with Poisson noise. The spectra are generated by a simple Matlab code. The code
and generated spectra are provided as research data.

where 𝑞(𝜽′|𝜽) is an arbitrary proposal density distribution (conditional
probability of a proposed state 𝜽′ for a given 𝜽). The choice of pro-
posal density distribution greatly affects the efficiency of an algorithm.
Generally, we propose a distribution similar with the shape of target
distribution to get a higher acceptance probability. Besides, if one
parameter correlates with another, proposing of longer steps along
the degeneracy directions will also increase the acceptance rate. In
this work, covariances between parameters are used to improve the
efficiency of sampling. The great advantage of this method is that it
scales approximately linearly with the number of parameters at its best.
This enables us to calculate more parameters without significant adding
of computational cost.

MCMC method is widely used in various fields such as cosmology
[26]. CosmoMC is a publicly available Markov Chain Monte Carlo en-
gine which has been successfully used to explore cosmological param-
eter space [20,27,28]. In this work, we apply MCMC algorithm based
on CosmoMC to analyze PAL spectroscopy. Besides the marginalized
distributions, this method provides the shape of full posterior.

3. Results and discussion

To verify the validity of MCMC-BI method, we generated a series of
simulated spectra by computer. The four spectra which are labeled from
A to D, are analyzed by MCMC-BI method and LTv9 program. After
calculating the parameters (background 𝐵, start time 𝑇0), we input
all the lifetimes, intensities, and time resolution in full width at half
maximum (FWHM) into MCMC-BI process. Therefore, the parameters
of background 𝐵, start time 𝑇0, and displacement 𝛥𝑡𝑝 are not presented
as the MCMC-BI results, even though they are calculated in this method.
The fitting region of interest ranges from 𝐶𝑝𝑒𝑎𝑘−3 to 𝐶𝑝𝑒𝑎𝑘 + 600 (𝐶𝑝𝑒𝑎𝑘
denotes the peak channel). The parameters and results are shown in
Table 1.

In Table 1, spectra A and B are typical PAL spectra in solid ma-
terials. Accurate results are obtained by both methods. However, for
a very small 𝐼3 intensity of 2%, both programs underestimate 𝜏3.
The mean results given by MCMC-BI method are almost the same as
those given by LTv9, while the uncertainties of most parameters are
slightly larger. This is most probably due to the calculation method of
marginal posterior of MCMC-BI. To calculate one parameter, MCMC-BI
method considers all the other parameters as random variables in global
parameter space but not the local optimal values. Compared to LTv9,
MCMC-BI slightly overestimate the FWHM.

However, for spectra C and D (FWHM of 250 ps), the accuracy
of FWHM is greatly improved compared to that of spectra A and B,
while the accuracies of other parameters remain nearly unchanged.

Table 2
The results of four simulated PAL spectra fitted by LTv9 program, the BI method of
PAScual program, and MCMC-BI method. For MCMC-BI method, we list the posterior
mean results.

Spec. Methods 𝜏1 (ps) 𝜏2 (ps) 𝜏3 (ps) 𝜏4 (ps)
𝐼1 (%) 𝐼2 (%) 𝐼3 (%) 𝐼4 (%)

E Simulation 100 250 600 1000
25 25 25 25

LTv9 97.4 ± 4.4 238 ± 14 593 ± 21 1001 ± 7
23.6 ± 1.3 25.5 ± 0.7 26.0 ± 0.6 25.5 ± 0.9

PAScualBI 96 ± 3 238 ± 5 597 ± 16 1003 ± 8
23.5 ± 0.9 25.8 ± 1.1 26.2 ± 0.8 24.6 ± 1.2

MCMC-BI in this
work

97.8 ± 1.3 240.8 ± 7.1 603.2 ± 15.6 1007 ± 7

23.7 ± 0.8 25.7 ± 0.4 26.4 ± 0.5 24.2 ± 1.0

F Simulation 150 250
50 50

LTv9 149.9 ± 4.5 249.0 ± 3.5
48.8 ± 2.4 51.2 ± 2.4

PAScualBI 144 ± 2 243 ± 1
42.2 ± 2.1 57.8 ± 2.1

MCMC-BI in this
work

150.0 ± 2.6 250.2 ± 2.3

49.6 ± 2.2 50.4 ± 2.2

G Simulation 150 220
50 50

LTv9 149.3 ± 7.0 218.5 ± 5.4
47.6 ± 5.5 52.4 ± 5.5

PAScualBI 157 ± 5 226 ± 6
58.5 ± 7.6 41.5 ± 7.6

MCMC-BI in this
work

149.6 ± 4.0 220.3 ± 3.8

49.4 ± 5.2 50.6 ± 5.2

H Simulation 150 190
50 50

LTv9 152 ± 18 190 ± 15
50.1 ± 20.8 49.9 ± 20.8

PAScualBI 142 ± 16 189 ± 11
42.4 ± 23.8 57.6 ± 23.8

MCMC-BI in this
work

147.9 ± 6.8 190.2 ± 6.3

47.1 ± 14.3 52.9 ± 14.3

The other Simulation information: FWHM = 270 ps, offset = 100 channels, time
calibration = 58 ps/channel, total counts = 2 × 107 for spectrum E, and total counts =
2 × 106 for spectra from F to H, background = 100 counts. The generated spectra are
provided as research data.

The estimation of FWHM is mostly determined by the region near
the start channel 𝑇0. For a larger FWHM value, it is much easier to
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Fig. 1. Various posterior constraints of (a) (FWHM, 𝜏3) panel, (b) (𝐼2, 𝐼1) panel, (c) (𝜏2, 𝜏1) panel, and (d) (𝜏3, 𝐼3) panel near the optimal solution for spectrum A calculated by
MCMC-BI method. In each subfigure, the three black contours are plotted to denote the 68%, 95%, and 99% confidence limits joint 2D marginalized contours. The intensity scale
represents the normalized posterior distribution.

estimate FWHM using just several channels around the peak of spectra.
Therefore, the selection of peak region may influence the estimation.
The fitting results of spectra C and D (comparing with A and B,
respectively) show that, the small deviation of FWHM affect slightly
on the estimation of other annihilation parameters.

To compare PAScual program and MCMC-BI method, four spectra
(E, F, G, and H) are generated by PAScual program at the same condi-
tions in the previous articles [8,13,16]. The spectra have been analyzed
by LTv9, PAScual, and MCMC-BI method. To make the comparison
more relevant, in case of PAScual, the fit was performed using the
global optimization BI method (the other global optimization methods
including SA and SA + BI are also tested and the results are not
significantly better than the BI method). The four simulated PAL spectra
and their analysis results are shown in Table 2.

For spectrum E, the results of three programs are almost the same.
All programs slightly underestimate 𝜏2 and 𝐼1, but overestimate 𝐼3.
Spectra from F to H are generated to check the capability to distinguish
the two lifetime components which are quite close to each other. With
𝜏2 diminishing from 250 ps (for spectrum F) to 190 ps (for spectrum H),
the uncertainties from all programs increase significantly. Especially for
the intensities of 𝐼1 and 𝐼2, the uncertainties increase drastically from
less than 3% to nearly 20%. However, LTv9 and MCMC-BI are still able
to give a relatively accurate answer, even for spectrum H (the posterior
constraints results shown in Fig. S1 in the supplementary information).
This evidently exhibits that LTv9 and MCMC-BI perform better than
PAScualBI on the estimation of intensities of 𝐼1 and 𝐼2. These analysis

results also clarify that the performance of MCMC-BI method has been
improved to the same accuracy level of LTv9.

The above analysis results demonstrate that, the MCMC-BI method
is a feasible tool to provide a very accurate answer to the researchers.
The accuracy of MCMC-BI method is comparable to those of traditional
local optimization programs (such as LTv9). Furthermore, MCMC-BI
could provide precious information on the probability distribution of
all parameters. Because MCMC-BI method calculates plenty of possible
solutions around the optimal solution, for each parameter we can
get a visualized posterior constraint which represent the probability
distribution. For all the simulated PAL spectra, we successfully acquired
the posterior constraints of each parameter which confirmed that the
mean solution is the corresponding global optimum of each parameter.

In Fig. 1 we show various posterior constraints of spectrum A
near the optimal solution from a multi-dimensional (7-dimensional
in this study) solution space. In each panel, the shading shows the
posterior as a function of two different parameters, and the three black
contours show the 68%, 95%, and 99% confidence limits from the
marginalized distribution. Theoretically, in a long computing time the
MCMC-BI method can always reach the global optimal solution not
only the local ones. Compared to the results of traditional methods, the
visualized solutions are able to illustrate whether there exists another
local optimal solution around the best estimate results in the parameter
space.

In the four subfigures of Fig. 1, the correlations between every
two parameters are clearly illuminated. From Fig. 1a, it is obvious
that FWHM is almost independent of the third lifetime component
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Fig. 2. Posterior constraints of all seven parameters near the optimal solution for spectrum A calculated by MCMC-BI method. The marginalized posterior probability (shown in
black) and mean likelihood (shown in green) of all seven parameters are shown at the top of each column.

𝜏3. So, it is reasonable that the fitted result of FWHM influences 𝜏3
slightly. Similar results can be found for other parameters (𝜏1, 𝜏2, and
etc.). On the contrary, as shown in Fig. 1b, the intensities of the first
two lifetime components (𝐼1 and 𝐼2) exhibit a very close correlation.
According to Fig. 1b, if the user overestimates 𝐼1, 𝐼2 is more likely to
be underestimated. In Fig. 1d, a similar tendency is also found for the
correlation between the longest lifetime component 𝜏3 and its intensity
𝐼3, although their correlation is relatively weaker. While on the other
hand, the direction of the correlation between 𝜏1 and 𝜏2 is opposite to
that of mentioned above, which shown in Fig. 1c.

This figure also explains why we should consider all parameters as
variables but not a fixed optimal value to estimate the uncertainties.
As shown in Fig. 1b, the 99% confidence interval of 𝐼2 is around
10%. However, if we fix 𝐼1 at its optimal value of 48.9%, all the
three confidence intervals of 𝐼2 decrease dramatically, even the 99%
confidence interval is drastically reduced to around 1%. This suggests
that MCMC-BI method which considers all parameters as random vari-
ables, is more comprehensive and informative for the calculation of
standard deviation of each parameter. These results are necessary for
users to understand the uncertainties more integrally and profoundly
from another perspective.

Actually, the constraints of one parameter (of the 7 parameters)
with another can be given, as shown in Fig. 2. It is clear that the
correlations between FWHM and the other parameters are quite weak.
This evidently explains that, the small deviation of FWHM can hardly
influence the fitting of other parameters. At the top of all columns
of Fig. 2, the posterior constraints of 7 parameters are plotted and
denoted as (a)–(g). The black solid lines are the fully marginalized
posteriors, while the green dashed lines represent the relative mean
likelihoods of the samples. For Gaussian distributions, the black and

green lines should be similar. While for skew distributions and the
poorly converged chains, the black and green lines may be different
[20]. The consistency of the marginalized posteriors and the mean
likelihoods in this figure indicate that the MCMC chains are well
converged. These curves show clearly the location of all optima and
the types of distributions. And it is also evident that there is no other
local optimum around the global optimal solution.

Finally, PAL measurements are performed for Si and GaN single
crystals by using an ORTEC fast–fast coincidence system at room tem-
perature. The time resolution of the system is about 230 ps in FWHM.
A 20 μCi source of22Na is sandwiched between two identical sample
pellets for measurements. Each spectrum is collected with a total count
of 2 × 106. The experimental data are analyzed by MCMC-BI and LTv9
program.

The results of our experiments and other previous reports [29–33]
are listed in Table 3. For the two single crystal samples, three lifetime
components are observed. The first component 𝜏1 is the lifetime in the
crystal, while 𝜏2 (around 380 ps) and 𝜏3 (around 2 ns) are regarded
as source contribution. For Si and GaN, the lifetime 𝜏1 calculated by
MCMC-BI agrees well with that obtained by LTv9 program, and with
those from the literature.

In terms of usability, the MCMC-BI method based on CosmoMC
in this work is not as convenient as the other widely used programs,
since CosmoMC is coded in Fortran and requires Linux environment
without a graphic interface for users. Instead of a user-friendly soft-
ware as LTv9 and PAScual, it is more like a specialized package for
calculation. A brief description of how to use CosmoMC is provided in
the supplementary information.

Besides, unlike the local optimization methods such as LTv9 and
PAScualLOCAL which only take a few seconds to fit a spectrum, the

41



B.C. Gu, W.S. Zhang, J.D. Liu et al. Nuclear Inst. and Methods in Physics Research, A 928 (2019) 37–42

Table 3
The results of experimental PAL spectra for Si and GaN fitted by LTv9 and MCMC-BI
(posterior mean results). The corresponding results in literature are also listed.

LTv9 MCMC-BI Ref

Si

𝜏1 (ps) 221.3 ± 1.3 220.2 ± 2.2 223 [29] 218 [30] 221 ± 1 [31]
𝐼1 (%) 86.6 ± 0.1 87.5 ± 2.9 – – –
𝜏2 (ps) 384.5 ± 5.2 389.6 ± 19 – – –
𝐼2 (%) 13.1 ± 0.1 12.0 ± 2.9 – – –
𝜏3 (ns) 2.3 ± 0.2 1.8 ± 0.2 – – –
𝐼3 (%) 0.27 ± 0.02 0.47 ± 0.03 – – –

GaN

𝜏1 (ps) 167.5 ± 0.3 168.7 ± 1.5 166 [32] 165 ± 1 [33] –
𝐼1 (%) 85.9 ± 3.7 87.3 ± 3.2 – – –
𝜏2 (ps) 376.0 ± 12 380.8 ± 22 – – –
𝐼2 (%) 13.8 ± 3.7 12.3 ± 3.2 – – –
𝜏3 (ns) 2.0 ± 0.4 1.9 ± 0.3 – – –
𝐼3 (%) 0.3 ± 0.07 0.37 ± 0.05 – – –

global optimization methods spend much longer time (highly depends
on the number of samples) to calculate the posteriors. For PAScualBI,
it takes less than an hour to fit a spectrum, while for MCMC-BI in this
work it takes relatively long time, around 3 h on a personal computer.
The detail description about the time consumption is shown in the
supplementary information see Fig. S2 and Fig. S3.

4. Conclusion

In summary, an efficient MCMC computer program has been em-
ployed to analyze PAL spectroscopy data. By using Markov Chain
Monte-Carlo (MCMC) combining with Bayesian Inference, the program
is directly utilized to analyze PAL spectra and provides a robuster and
more reliable global optimal result which is almost independent of
initial guesses. The reliability of MCMC-BI program has been tested
by both simulated and experimental PAL data. Accurate mean results
are achieved by using MCMC-BI method, which agree well with that of
LTv9 program. On the other hand, the MCMC-BI approach yields more
reasonable and slightly larger confidence intervals, and provides more
visualized and detailed information to help us to avoid missing the
global optimal solution. The correlations between every two parameters
are found necessary to analyze the uncertainty of each parameter.
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