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Implementation of a quantum algorithm to solve the Bernstein-Vazirani parity problem
without entanglement on an ensemble quantum computer
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Bernstein and Varizani have given the first quantum algorithm to solve the parity problem in which a strong
violation of the classical information theoretic bound comes about. In this paper we refine this algorithm with
fewer resources and implement a two-qubit algorithm in a single query on an ensemble quantum computer.
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Associated with the model of a quantum compuiie2], a  solve binary problems and coin-weighing problems effec-
variety of quantum algorithms have been propdsed7]. In  tively [30].
the theoretical view, these algorithms have relevance to the In this paper, based on Bersntein-Vazirani's parity prob-
entanglement phenomena, the peculiar quantum propertgm[6], we propose a scheme to solve this problem by using
identified by Erwin Schidinger[8], which is invoked as the less physics resource than the previous algorifl2@,29,
mechanism for the speedup of quantum computing over theibut without loss of effectivity. Further, we demonstrate this
classical counterparf9]. Until recently these algorithms algorithm on a two-qubit NMR quantum computer.
were only of theoretical interest, as it proved extremely dif- Bernstein and Vazirani's parity problem can be described
ficult to build a quantum computer. In the last few years,as a functionf:{0,1}"—{0,1}, which is of the formf,(x)
however, there has been substantial progress based era-x=(X!_ja;x;) mod2, where n-bit strings a, x
nuclear magnetic resonan¢dMR) [10]. Up to now some <{0,1}", a, and x; are theith bits of a and x, and a- x
simple quantum algorithms have been realized step by stegenotes the bitwiseND (or mod 2 scalar produgta-x
on a NMR quantum computer, including Deutsch’s algorithm= (a; Ax;) ® (a,AX,) ®---® (a,AX,). The answer is to find
[11-17, Grover’s algorithn{18-22, and ordering find's al-  the n-bit string a. The previous quantum algorithfi28,29
gorithm[23]. However, a sharp criticism has been proposedsolved this problem theoretically by a pair of registétsh),
by Braunsteiret al. that NMR experiments have not actually wherex e {0,14", be{0,1}. The quantum network to imple-
realized quantum algorithm because at each step the state @lnt the algorithm is shown in Fig. 1, time+ 1 qubits reg-
the system can be described as a probabilistic ensemble gfer (x, b) start in the state|x)|b)= (|0))"(1~2)(|0)
unentangled quantum statE&4]. On the other hand, some —|1)). The functionf,(x)=a-x is designed within a uni-
scientists believe that for a specific quantum algorithm theary operatotU; which denotes the transform
power of a quantum computer derives from quantum super-
position and parallelism, other than entanglenj@t-2§. Uy

The problem we considered in this paper is the parity )| bY— [ x)|y® f(x))=|x)|b& (a-x mod 2)).
problem about a databagethat contains an arbitrarg-bit
string a. The answer to queries representednHlyit string x
to the database is the parity of the bits commox@nda  The Hadmard gatél denotes the transform
given by @,x)=a-x. Note that the problem is to determine
ain its entirety, not to merely determine the parityafThe 1
classical determination of ambit stringa requires at least |0Y— —(|0)+]1)),
query operationgsince n-bit string a containsn bits of in- V2
formation and each classical evaluation of query operation
yields a single bit of information Bernstein and Vazirani |u_>E ]
have given the first quantum algorithm in whiokbit string -
a can be determined in only two queries to the datalhéke lU_>E
But by preparing the output one-bit register in an initial su-
perposition (2)(|0)—|1)), the algorithm can be simpli- by 121D —I:
fied to comprise a single quefg9]. Terhal and Smolin re-
discovered this algorithm, which was underappreciated, t0 F|G. 1. A(schematif quantum circuit implementing Bersntein-

Vazirani's algorithm in a single query. The uppeline corresponds
to n qubits of registerX, while the lower line corresponds to one
*Email address: djf@ustc.edu.cn qubit of registerb.
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[ ] and the unitary transformatiobd, can be decomposed as
direct products of single-qubit operators

[ : :
- U,=UloU%--@U'®---oU" laUu",

FIG. 2. The(schematig refined version of the quantum circuit B
shown in Fig. 1; note that one-qubit regiskeis removed by chang- U= L a=0 | = 10 10
ing the unitary operator. o,, a=1 0 1 0 —-1/°

Measure

’ 0,=

1 The first Hadmard gatHW=HeoH®---®H takes |q)
|1>—>%(|0>—|1>), =(ON" to |g)=(1N2MS2 Y x). After the unitary
transformationU, responds to this quantum query, the
state s | )= (122510 (~ 1) a)x) = (1123715
He i( 11 ) (—1)**|x). The final Hadmard gateH™ outputs |y3)
v2\1 —-1 =(1/@)2§i}12§1})1(—1)d'X+X'y|y>=|a>. Whereupon
measuring the whola-qubits register identifiea with prob-
If we apply n Hadmard gate$iW=H®H®---®H parallel  ability 1 (the output states for differerats are orthogonal
to ann qubit, then then-qubit state transforms as Quantum entanglement and quantum interference are usu-
ally thought to be the key gradient in a quantum algorithm
1 2"-1 and the reason why the quantum algorithm exceeds a classi-
— > (—1)*Yy). cal algorithm. But in the above refined quantum algorithm,
V2" =0 there is no entanglement in it. The initial state |ig,)
=(]0))", which is obviously separable. After the Hadamard
Therefore, acting on the input@))"(1#72)(|0)—[1)), with  transformation, the state isy;)=(1/y2")(|0)+|1))®(]0)
fa)=a-x and (1/2)32{(—-1)***Y=5,  we can +|1))®--®(|0)+[1)). Performed by query operations

H(n):|X>—>

evaluate the state of the input register as U,, the state becomdss,)=(1/2")(|0)+€'™0|1))® (|0)
+€e'711))®---®(|0)+€'™n|1)). And the state after the
HD g 2n—1 10)—|1) second Hadamard transformation is the output sfatg
(Joynay — > e =lag)|as)---|a,). In the whole procedure, the state is a ten-
V2" =0 V2 sor product of the states of the individual qubits, so it is

unentangled. And because the operators in the algorithm
(HM, U,, and H™M) are also tensor products of the

vo1 200 0)—[1) individual local operators on th bitsH(™
123 caepme 2 " o o i
Nt= V3 =H®H®--®H, U,=U'oU2%®--eU'®---oU" taU".
Such a unitary transformation cannot change the entangle-
ment of a state.
pomq 2771201 |0y—|1) Experimentally, this quantum algorithm without entangle-
— > > (—1)2 Y y)® ment was implemented using the nuclear spins of the two
2"x=0 y=0 V2 hydrogen atoms in a deuterated cytosine moledi¢|1))
describes the spin state aligned wi{dgainst an externally
=|a)® |0>_|1>' applied, strong static magnetic fieBl, in the Z direction.
V2 The reduced Hamiltonian for this two-spin system is to an

excellent approximation given by
It is obvious that one could execute the quantum network

it | ister. findi i H=wal s+ wgl S+ 273017
once and measure tmequbit input register, finding the-bit alz T wgl, 21z
i i i =q.-X= n X i
;Egggsi;{:;qe functionf5(x) =a-x=(2-13;x;) mod 2 with where the first two terms describe the free precession of

spinsA andB of two hydrogen atoms abo#, with frequen-
cies wp/2m~wgl/27~500MHz, and the chemical shift
|wal27m— wg/27| =765 Hz enables us to address each spin

Our refined version of the Bernstein-Vazirani algorithm
usesn qubits rather tham+ 1 qubits, to findn bits stringa.

A quantum circuit for this refined quantum algorithm is : e A
shown in Fig. 2. To compare with the original algorithm (acting as a qubitindividually. I3 is the angular momentum
shown in Fig. 1, the one-qubit work registeris removed operator in the+ 2 direction forA. The third term describes

because it is redundant in the sense that its state does rdtSc@lar spin-spin coupling of the two spinsJ#7.17 Hz.
change. To do so, the binary functiég(x) =a-x encoded in AS We know, pulsed radio-frequendyf) electromagnetic

an+1 qubits unitary transformatiobl; was changed into fields, qrie_nted in the‘<-§/_ plane perpend_icular to the static
the n-qubit propagatot), such that magnetic fieldB,, selectively address eithéy or B by os-

cillating at frequencyw, and wg. For example, an rf pulse
Uy alongy rotates a spin about that axis by an anglpropor-
|X)—(—1)Ta™|x), tional to ~tP, the product of the pulse duratidrand pulse
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powerP. In this paper we shall Id?{,*(e) denoted rotations  With the application of a selective readout pu&%(w/Z), it
that act on spirA abouty, andR.®(6) denotess rotations ~ gives
that act on spirA andB aboutx simultaneously, and so forth;
superscripts will identify which spin the operation acts upon
and subscripts denote which axis an rf pulse rotates a spin
about.

Experiments are conducted at room temperature and preand the observable signal is proportional to
sure on a Bruker Avance DMX-500 spectrometer at the ' '
Laboratory of Structure Biology, University of Science and (—D)I+(—1)121218].
Technology of China. A quantum circuit for implementing
this algorithm on a two-qubit NMR quantum computer is Thus only one of the two lines in th& spin doublet will be
shown in Fig. 2 withn=2. In our experiment, pairs of Had- observed; which one of the two peaks will be observed de-
mard gates were replaced by a NMR pseudo-Hadmardrgatepends orj, the state of spitB, while the phase of the signal
(a 9@ rotation and its inverseh™! [31]. An input depends om, the state of spir\. Therefore, both the phase of
pseudopure statg,=|00) was generated using the approachthe peak in the spectrum and the position of the peak in the
of Cory etal. [32,33. This is implemented aRf(7/3)  Spectrum of each spin could be used to determine the eigen-
~G,~RA(w/4)— 7~ R~ /3)~G,, to be read from left states|a)={|00),/01),/10),[11)} before the readout selec-
to right, whereG, is the pulsed field gradient along thexis tive pulse. Figure 3 shows the r_esult spectra of the algor_lthm.
to annihilate all transverse magnetizations, dashes are fdfiS clear that our implementation of the quantum algorithm

readability only, andr represents a time interval of 14 by using a single query leaves the computer in the final state
~69.735 ms. |a), much as expected. However, there are visible imperfec-

The pair of pseudo-Hadmard gatesand h~* could be tions in the result spectra. To show how good the algorithm

o has been implemented, we also characterized the entire den-
easily implemented by two hard pulses denote&?i%( /2 ) . ' ) o
and I%/AB(E)TIZ)' the typxi/cal pulse Igngths were 10-2€ AI)I sity matrix p=p,+Tr(p)/4 (Fig. 4 describing the
y ;

unitary transformatiotJ , corresponding to the query of four pseudopure input state and the four final two-qubit states,
. . . a . . which were m in -call ntum mog-
possible two-bit stringa={00,01,10,11 in the function ch were made by using so-called quantum state tomog

- S A B A raphy[6]. The procedure was to apply a sequence of rf
fa(g=a-x CQUIdB be denoted as)po=1"@1%, U=l pulses, measure the resulting induction signal, Fourier trans-
@0y, U= 0, @17, U= 0,@0, . TheUg transformation 6, 16 get the spectra, and integrate to get the areas of the
corresponds to the unity operation or “do nothinglo, and  resonance peaks. By applying nine different pulse sequences
Uéo transforms are separately achieved by applying thgng rotation, rotation abowk, and abouty for each of the
R, () rotation selectively on the second quiiitand the o sping, the elements in the density matrix were sampled,
R} () rotation on the first qubié. The selective pulse was  allowing a least-squares procedure to recover the density ma-
implemented by the time evaluation under the Hamiltonianrix from the data. In Fig. 4 we show the fidelities of the
of Eq. (7) with refocusingm pulses applied at suitable times pesudopure staie, and the result statgs, compared to the
during the evolution period. Since the refocusingulse has  ideal eigenstate|a), determined by the equatiorF
the effect of time reversal, it can be used to make one termin- (a|p,|a).
the Hamiltonian evolve while the other terms “freeze”  The fidelities of the result statgs, vary from 93% to
[34,35. In our experiment, we extended these method t@s594. The errors of the result states are primarily due to
realize the selective puls&¥(7) andRC() separately as  the imperfection of the prepared pesudopure siatevith a

fidelity of 96%. The other errors are primarily due to the

%[(—1)‘|£+<—1>J|?+<—1>‘®leﬁl?]

71/4—RE(7) — 72— RB () — 7,/4, imperfection of the selective pulses used in computation and
readout procedure, off-resonance effects of pulses, and other
Told— Rﬁ(w)— ol 2— R?X(w)— 14, smaller errors coming from the readout proced{ineorder

of importance. First, the important source of errors in the
experiments is the rf field inhomogeneity and imperfection

where 7, =r,=1.3ms and the axes of successiwepulses of the selective pulses in our two-qubit homonuclear spin
were chosen in the way to cancel imperfections of selective P d P

. AB System. In practice it is difficult for a selective pulse to
pullseAs.Ull corresp_onds to ar rotation R, () about the achieve the desired effect at one spin while leaving the other
axis z of both qubits, up to a global phase factor. Global

h h ¢ detectable in NMR and h entirely unaffected. In order to achieve a good selectivity the
phase changes are not detectable in R and are hence IFé'ngth of the selective pulse is about 5.23 ms in our experi-
nored for the purpose of experiment. This nonselectizely

. . ; : . ments while in this period the evolvement of the other spin
rotation was implemented using a composite-pulse sandwic duces errors which are difficult to reduce. We notice that
as a set ok and§ axesRA%(7/2) — Re®(m) — R)®(7/2).

o . ) .. such errordshown in Figs. 3 and)dare more severe in the
Th_e prediction is _that t_he algorithm will put th_e SPINS IN case ofpy, and pyo, in Which cases there atdy, and Uy
the eigenstate®) =|ij) which can be expressed similarly as njtary operations where the selective pulses are used, and
L less severe in the case pfy and p44, in which cases there
SN/ T aNitAL  _17\i1Bo/_ 1 \i®jo]AB areUandU 44 unitary operations where no selective pulses
= + + . Lo ;
Il 2[( DIz + (=D + (=121 1] are used. Second, the contribution to errors is the off-
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FIG. 3. Proton spectrum after completion of the quantum algo- 6.5
rithm and a selective readout pulse, with a pseudopure input state ™
|00). The left-hand pair of signals corresponds to the proton spectra 0
of spin A obtained by the selective readout puB@(w/Z), while 0.5
the pair at the right hand corresponds to the proton spectra oBspin
obtained by the selective readout pulQ%( 7/2). Each proton spec-
trum is the Fourier-transformed time varying voltagé), induced
in the pickup coil by the precession of this spin abeuB, after a
selective readout pulse. Only the real parts of the spectra are shown,
with NMR peaks at o+ 7Jg)/27m and (wg=* 7Jg)/27 (shown in
Hz relative to the center of the proton spectjymnd the vertical 0.5 )
scale is in the same arbitrary units. The phase and the position of (¢
the peaks clearly indicate the two-bit striagequal to 00, 01, 10,
and 11(from top to botton), see text.

93%

-0.5

95%
resonance effec{d0]. In our experiment, the applied rf field 7

is not perfectly resonant with the NMR transitions, but in-

stead is applied a small distancg* (wa— wg)/dm . . :
_ e density matrices of the pseudopure input state and the four
=+382.5H7 away. Thus the effect of the fieldn the ro- output two-qubit statep, after completion of the quantum algo-

tating frame is not simply to cause a rotation around itself, iy The diagonal elements represent the normalized populations
but rather to cause a rotation around a titled axis. The otheg; the stated00), [01), |10), and[11) (from left to right. The off-
smaller contribution to errors may come from the readoujiagonal elements represent coherence between different states. The
procedure, such as the numerical errors in the data analysigagnitudes are shown with the sign of the real component; all the
Taking these errors into consideration, we can say the resulihaginary components are small. In the experiments, the normal-
are remarkably good, as it is still easy to determine the resulked pure-state populatigiideally equal to 1 varied from 0.975 to
state of the algorithm because our computer is small and the005. The other density matrix elemeriideally 0) are smaller
pulse sequences that run on it are short. The longest compthan 0.08 in magnitude. The fidelities of the pesudopure gtate
tation in our experiment took less than 12 ms., which is welland the result states, compared to the ideal eigensta# deter-

within the decoherence tini,~3 s, hence all the spectra in mined by the equatiorF=(a|p,/a) varied from 93% to 96%,
Fig. 3 have similar amplitudes. which are shown in the right-hand side of figure.

FIG. 4. Experimentally measured and theoretically expected

042306-4



IMPLEMENTATION OF A QUANTUM ALGORITHM TO . .. PHYSICAL REVIEW A 64 042306

To summarize, we have presented a refined version afealization demonstrate that the superposition principle
Bernstein and Vazirani’s quantum algorithm with fewer re-brings about a more effective and concise procedure even if
sources and implemented this algorithm in a single query othe entanglement phenomena do not occur. As we all know,
an ensemble quantum computer. This algorithm, which vioSOmMe quantum algorithms have relevance with entanglement

lates the classical information theoretic bouf&0] and a

clear separation between the quantum and classical difficult
of the problen{6], reduces the number of queries all the way

from n to 1. It is obvious that in this algorithm there is

[3,7], but some others do nf25-28, so it is meaningful to
now the role of entanglement in quantum algorithms, i.e.,
e relationship between the entanglement and the complex-
ity of the algorithm.

neither an entangle state nor an entangle transformation, only This project was supported by the National Nature Sci-
the concept of coherent superposition is exploited to preparence Foundation of ChinéGrants No. 10075041 and No.

“in parallel” an input state which is a superposition of all

10075044 and the Science Foundation of USTC for young

possible classical inputs. Our algorithm and its experimentascientists.
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