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Implementation of a quantum algorithm to solve the Bernstein-Vazirani parity problem
without entanglement on an ensemble quantum computer
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Bernstein and Varizani have given the first quantum algorithm to solve the parity problem in which a strong
violation of the classical information theoretic bound comes about. In this paper we refine this algorithm with
fewer resources and implement a two-qubit algorithm in a single query on an ensemble quantum computer.
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Associated with the model of a quantum computer@1,2#, a
variety of quantum algorithms have been proposed@3–7#. In
the theoretical view, these algorithms have relevance to
entanglement phenomena, the peculiar quantum prop
identified by Erwin Schro¨dinger@8#, which is invoked as the
mechanism for the speedup of quantum computing over t
classical counterpart@9#. Until recently these algorithms
were only of theoretical interest, as it proved extremely d
ficult to build a quantum computer. In the last few yea
however, there has been substantial progress based
nuclear magnetic resonance~NMR! @10#. Up to now some
simple quantum algorithms have been realized step by
on a NMR quantum computer, including Deutsch’s algorith
@11–17#, Grover’s algorithm@18–22#, and ordering find’s al-
gorithm @23#. However, a sharp criticism has been propos
by Braunsteinet al. that NMR experiments have not actual
realized quantum algorithm because at each step the sta
the system can be described as a probabilistic ensemb
unentangled quantum states@24#. On the other hand, som
scientists believe that for a specific quantum algorithm
power of a quantum computer derives from quantum sup
position and parallelism, other than entanglement@25–28#.

The problem we considered in this paper is the pa
problem about a databaseA that contains an arbitraryn-bit
string a. The answer to queries represented byn-bit string x
to the database is the parity of the bits common tox and a
given by (a,x)5a•x. Note that the problem is to determin
a in its entirety, not to merely determine the parity ofa. The
classical determination of ann-bit stringa requires at leastn
query operations~sincen-bit string a containsn bits of in-
formation and each classical evaluation of query opera
yields a single bit of information!. Bernstein and Vaziran
have given the first quantum algorithm in whichn-bit string
a can be determined in only two queries to the database@6#.
But by preparing the output one-bit register in an initial s
perposition (1/&)(u0&2u1&), the algorithm can be simpli
fied to comprise a single query@29#. Terhal and Smolin re-
discovered this algorithm, which was underappreciated
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solve binary problems and coin-weighing problems effe
tively @30#.

In this paper, based on Bersntein-Vazirani’s parity pro
lem @6#, we propose a scheme to solve this problem by us
less physics resource than the previous algorithm@28,29#,
but without loss of effectivity. Further, we demonstrate th
algorithm on a two-qubit NMR quantum computer.

Bernstein and Vazirani’s parity problem can be describ
as a functionf :$0,1%n→$0,1%, which is of the formf a(x)
5a•x[(S i 51

n aixi) mod 2, where n-bit strings a, x
P$0,1%n, ai and xi are the i th bits of a and x, and a•x
denotes the bitwiseAND ~or mod 2 scalar product!, a•x
[(a1Lx1) ^ (a2Lx2) ^¯^ (anLxn). The answer is to find
the n-bit string a. The previous quantum algorithm@28,29#
solved this problem theoretically by a pair of registers~x, b!,
wherexP$0,1%n, bP$0,1%. The quantum network to imple
ment the algorithm is shown in Fig. 1, then11 qubits reg-
ister ~x, b! start in the stateux&ub&5(u0&)n(1/&)(u0&
2u1&). The function f a(x)5a•x is designed within a uni-
tary operatorU f which denotes the transform

ux&ub&→
U f

ux&uy% f ~x!&[ux&ub% ~a•x mod 2!&.

The Hadmard gateH denotes the transform

u0&→
1

&
~ u0&1u1&),

FIG. 1. A ~schematic! quantum circuit implementing Bersntein
Vazirani’s algorithm in a single query. The uppern line corresponds
to n qubits of registerX, while the lower line corresponds to on
qubit of registerb.
©2001 The American Physical Society06-1
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u1&→
1

&
~ u0&2u1&),

H5
1

&
S 1 1

1 21D .

If we apply n Hadmard gatesH (n)5H ^ H ^¯^ H parallel
to ann qubit, then then-qubit state transforms as

H ~n!:ux&→
1

A2n (
y50

2n21

~21!x•yuy&.

Therefore, acting on the input (u0&)n(1/&)(u0&2u1&), with

f a(x)5a•x and (1/2n)Sy50
2n21(21)a•x1x•y5day , we can

evaluate the state of the input register as

~ u0&)nu1& →
H~n11! 1

A2n (
x50

2n21

ux& ^
u0&2u1&

&

→
U f 1

A2n (
x50

2n21

~21! f a~x!ux& ^
u0&2u1&

&

→
H~n! 1

A2n (
x50

2n21

(
y50

2n21

~21!a•x1x•yuy& ^
u0&2u1&

&

[ua& ^
u0&2u1&

&
.

It is obvious that one could execute the quantum netw
once and measure then-qubit input register, finding then-bit
stringa in the functionf a(x)5a•x[(S i 51

n aixi) mod 2 with
probability 1.

Our refined version of the Bernstein-Vazirani algorith
usesn qubits rather thann11 qubits, to findn bits stringa.
A quantum circuit for this refined quantum algorithm
shown in Fig. 2. To compare with the original algorith
shown in Fig. 1, the one-qubit work registerb is removed
because it is redundant in the sense that its state does
change. To do so, the binary functionf a(x)5a•x encoded in
a n11 qubits unitary transformationU f was changed into
the n-qubit propagatorUa such that

ux&→
Ua

~21! f a~x!ux&,

FIG. 2. The~schematic! refined version of the quantum circu
shown in Fig. 1; note that one-qubit registerb is removed by chang-
ing the unitary operator.
04230
k
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and the unitary transformationUa can be decomposed a
direct products of single-qubit operators

Ua5U1
^ U2

¯^ Ui
^¯^ Un21

^ Un,

Ui5H I , ai50

sz , ai51
, I 5S 1 0

0 1D , sz5S 1 0

0 21D .

The first Hadmard gateH (n)5H ^ H ^¯^ H takes uc0&
5(u0&)n to uc1&5(1/A2n)Sx50

2n21ux&. After the unitary
transformation Ua responds to this quantum query, th

state is uc2&5(1/A2n)Sx50
2n21(21) f a(x)ux&5(1/A2n)Sx50

2n21

(21)a•xux&. The final Hadmard gateH (n) outputs uc3&
5(1/A2n)Sx50

2n21Sy50
2n21(21)d•x1x•yuy&5ua&. Whereupon

measuring the wholen-qubits register identifiesa with prob-
ability 1 ~the output states for differenta’s are orthogonal!.

Quantum entanglement and quantum interference are
ally thought to be the key gradient in a quantum algorith
and the reason why the quantum algorithm exceeds a cla
cal algorithm. But in the above refined quantum algorith
there is no entanglement in it. The initial state isuc0&
5(u0&)n, which is obviously separable. After the Hadama
transformation, the state isuc1&5(1/A2n)(u0&1u1&) ^ (u0&
1u1&) ^¯^ (u0&1u1&). Performed by query operation
Ua , the state becomesuc2&5(1/A2n)(u0&1eipa0u1&) ^ (u0&
1eipa1u1&) ^¯^ (u0&1eipanu1&). And the state after the
second Hadamard transformation is the output stateuc3&
5ua0&ua1&¯uan&. In the whole procedure, the state is a te
sor product of the states of the individual qubits, so it
unentangled. And because the operators in the algori
(H (n), Ua , and H (n)! are also tensor products of th
individual local operators on these qubits;H (n)

5H ^ H ^¯^ H, Ua5U1
^ U2

^¯^ Ui
^¯^ Un21

^ Un.
Such a unitary transformation cannot change the entan
ment of a state.

Experimentally, this quantum algorithm without entang
ment was implemented using the nuclear spins of the
hydrogen atoms in a deuterated cytosine molecule.u0&~u1&!
describes the spin state aligned with~against! an externally
applied, strong static magnetic fieldB0 in the ẑ direction.
The reduced Hamiltonian for this two-spin system is to
excellent approximation given by

H5vAI z
A1vBI z

B12pJz
AI z

B ,

where the first two terms describe the free precession
spinsA andB of two hydrogen atoms aboutB0 with frequen-
cies vA/2p'vB/2p'500 MHz, and the chemical shif
uvA/2p2vB/2pu5765 Hz enables us to address each s
~acting as a qubit! individually. I z

A is the angular momentum
operator in the1 ẑ direction forA. The third term describes
a scalar spin-spin coupling of the two spins ofJ'7.17 Hz.
As we know, pulsed radio-frequency~rf! electromagnetic
fields, oriented in thex̂- ŷ plane perpendicular to the stat
magnetic fieldB0 , selectively address eitherA or B by os-
cillating at frequencyvA andvB . For example, an rf pulse
along ŷ rotates a spin about that axis by an angleu propor-
tional tou'tP, the product of the pulse durationt and pulse
6-2
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powerP. In this paper we shall letRy
A(u) denoteu rotations

that act on spinA about ŷ, andRx
AB(u) denotesu rotations

that act on spinA andB aboutx̂ simultaneously, and so forth
superscripts will identify which spin the operation acts up
and subscripts denote which axis an rf pulse rotates a
about.

Experiments are conducted at room temperature and p
sure on a Bruker Avance DMX-500 spectrometer at
Laboratory of Structure Biology, University of Science a
Technology of China. A quantum circuit for implementin
this algorithm on a two-qubit NMR quantum computer
shown in Fig. 2 withn52. In our experiment, pairs of Had
mard gates were replaced by a NMR pseudo-Hadmard gah
~a 90y

° rotation! and its inverse h21 @31#. An input
pseudopure statec05u00& was generated using the approa
of Cory et al. @32,33#. This is implemented asRx

B(p/3)
2Gz2Rx

A(p/4)2t2Ry
A(2p/3)2Gz , to be read from left

to right, whereGz is the pulsed field gradient along theẑ axis
to annihilate all transverse magnetizations, dashes are
readability only, andt represents a time interval of 1/(2J)
'69.735 ms.

The pair of pseudo-Hadmard gatesh and h21 could be
easily implemented by two hard pulses denoted asR2y

AB(p/2)
andRy

AB(p/2); the typical pulse lengths were 10– 20us. All
unitary transformationUa corresponding to the query of fou
possible two-bit stringa5$00,01,10,11% in the function
f a(x)5a•x could be denoted asU005I A

^ I B, U015I A

^ sz
B , U105sz

A
^ I B, U115sz

A
^ sz

B . TheU00 transformation
corresponds to the unity operation or ‘‘do nothing.’’U01 and
U10 transforms are separately achieved by applying
Rz

B(p) rotation selectively on the second qubitB and the
Rz

A(p) rotation on the first qubitA. The selectivez pulse was
implemented by the time evaluation under the Hamilton
of Eq. ~7! with refocusingp pulses applied at suitable time
during the evolution period. Since the refocusingp pulse has
the effect of time reversal, it can be used to make one term
the Hamiltonian evolve while the other terms ‘‘freeze
@34,35#. In our experiment, we extended these method
realize the selective pulsesRz

A(p) andRz
B(p) separately as

t1/42Rx
B~p!2t1/22R2x

B ~p!2t1/4,

t2/42Rx
A~p!2t2/22R2x

B ~p!2t2/4,

wheret15t251.3 ms and the axes of successivep pulses
were chosen in the way to cancel imperfections of selec
pulses.U11 corresponds to ap rotation Rz

AB(p) about the
axis ẑ of both qubits, up to a global phase factor. Glob
phase changes are not detectable in NMR and are henc
nored for the purpose of experiment. This nonselectivelẑ
rotation was implemented using a composite-pulse sandw
as a set ofx̂ and ŷ axesR2y

AB(p/2)2Rx
AB(p)2Ry

AB(p/2).
The prediction is that the algorithm will put the spins

the eigenstatesua&5u i j & which can be expressed similarly a

u i j &^ i j u5
1

2
@~21! i I z

A1~21! j I z
B1~21! i % j2I z

AI z
B#.
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With the application of a selective readout pulseRy
A(p/2), it

gives

1

2
@~21! i I x

A1~21! j I z
B1~21! i % j2I x

AI z
B#

and the observable signal is proportional to

~21! i@ I x
A1~21! j2I x

AI z
B#.

Thus only one of the two lines in theA spin doublet will be
observed; which one of the two peaks will be observed
pends onj, the state of spinB, while the phase of the signa
depends oni, the state of spinA. Therefore, both the phase o
the peak in the spectrum and the position of the peak in
spectrum of each spin could be used to determine the ei
statesua&5$u00&,u01&,u10&,u11&% before the readout selec
tive pulse. Figure 3 shows the result spectra of the algorit
It is clear that our implementation of the quantum algorith
by using a single query leaves the computer in the final s
ua&, much as expected. However, there are visible imperf
tions in the result spectra. To show how good the algorit
has been implemented, we also characterized the entire
sity matrix r5rD1Tr(r)/4 ~Fig. 4! describing the
pseudopure input state and the four final two-qubit sta
which were made by using so-called quantum state tom
raphy @6#. The procedure was to apply a sequence of
pulses, measure the resulting induction signal, Fourier tra
form to get the spectra, and integrate to get the areas of
resonance peaks. By applying nine different pulse seque
~no rotation, rotation aboutx̂, and aboutŷ for each of the
two spins!, the elements in the density matrix were sampl
allowing a least-squares procedure to recover the density
trix from the data. In Fig. 4 we show the fidelities of th
pesudopure stater in and the result statesra compared to the
ideal eigenstate ua&, determined by the equationF
5^auraua&.

The fidelities of the result statesra vary from 93% to
95%. The errors of the result statesra are primarily due to
the imperfection of the prepared pesudopure stater in with a
fidelity of 96%. The other errors are primarily due to th
imperfection of the selective pulses used in computation
readout procedure, off-resonance effects of pulses, and o
smaller errors coming from the readout procedure~in order
of importance!. First, the important source of errors in th
experiments is the rf field inhomogeneity and imperfecti
of the selective pulses in our two-qubit homonuclear s
system. In practice it is difficult for a selective pulse
achieve the desired effect at one spin while leaving the o
entirely unaffected. In order to achieve a good selectivity
length of the selective pulse is about 5.23 ms in our exp
ments while in this period the evolvement of the other s
induces errors which are difficult to reduce. We notice th
such errors~shown in Figs. 3 and 4! are more severe in the
case ofr01 and r10, in which cases there areU01 and U10
unitary operations where the selective pulses are used,
less severe in the case ofr00 andr11, in which cases there
areU00 andU11 unitary operations where no selective puls
are used. Second, the contribution to errors is the
6-3
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resonance effects@10#. In our experiment, the applied rf fiel
is not perfectly resonant with the NMR transitions, but i
stead is applied a small distance@6(vA2vB)/4p
56382.5 Hz# away. Thus the effect of the field~in the ro-
tating frame! is not simply to cause a rotation around itse
but rather to cause a rotation around a titled axis. The o
smaller contribution to errors may come from the read
procedure, such as the numerical errors in the data anal
Taking these errors into consideration, we can say the res
are remarkably good, as it is still easy to determine the re
state of the algorithm because our computer is small and
pulse sequences that run on it are short. The longest com
tation in our experiment took less than 12 ms., which is w
within the decoherence timeT2'3 s, hence all the spectra i
Fig. 3 have similar amplitudes.

FIG. 3. Proton spectrum after completion of the quantum al
rithm and a selective readout pulse, with a pseudopure input s
u00&. The left-hand pair of signals corresponds to the proton spe
of spin A obtained by the selective readout pulseRy

A(p/2), while
the pair at the right hand corresponds to the proton spectra of spB
obtained by the selective readout pulseRy

B(p/2). Each proton spec
trum is the Fourier-transformed time varying voltageV(t), induced
in the pickup coil by the precession of this spin about2B0 after a
selective readout pulse. Only the real parts of the spectra are sh
with NMR peaks at (vA6pJB)/2p and (vB6pJB)/2p ~shown in
Hz relative to the center of the proton spectrum!, and the vertical
scale is in the same arbitrary units. The phase and the positio
the peaks clearly indicate the two-bit stringa equal to 00, 01, 10,
and 11~from top to bottom!, see text.
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FIG. 4. Experimentally measured and theoretically expec
density matrices of the pseudopure input stater in and the four
output two-qubit statesra after completion of the quantum algo
rithm. The diagonal elements represent the normalized populat
of the statesu00&, u01&, u10&, and u11& ~from left to right!. The off-
diagonal elements represent coherence between different states
magnitudes are shown with the sign of the real component; all
imaginary components are small. In the experiments, the norm
ized pure-state population~ideally equal to 1! varied from 0.975 to
1.005. The other density matrix elements~ideally 0! are smaller
than 0.08 in magnitude. The fidelities of the pesudopure stater in

and the result statesra compared to the ideal eigenstateua& deter-
mined by the equationF5^auraua& varied from 93% to 96%,
which are shown in the right-hand side of figure.
6-4
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To summarize, we have presented a refined version
Bernstein and Vazirani’s quantum algorithm with fewer r
sources and implemented this algorithm in a single query
an ensemble quantum computer. This algorithm, which v
lates the classical information theoretic bound@30# and a
clear separation between the quantum and classical diffic
of the problem@6#, reduces the number of queries all the w
from n to 1. It is obvious that in this algorithm there
neither an entangle state nor an entangle transformation,
the concept of coherent superposition is exploited to prep
‘‘in parallel’’ an input state which is a superposition of a
possible classical inputs. Our algorithm and its experime
on
r

n

r.
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.

g,

z,
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realization demonstrate that the superposition princi
brings about a more effective and concise procedure eve
the entanglement phenomena do not occur. As we all kn
some quantum algorithms have relevance with entanglem
@3,7#, but some others do not@25–28#, so it is meaningful to
know the role of entanglement in quantum algorithms, i
the relationship between the entanglement and the comp
ity of the algorithm.
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